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Abstract. Timing is a critical component of a wide range of sensorimo-
tor tasks that can span from a few milliseconds up to several minutes.
While it is assumed that there exist several distributed systems that are
dedicated for production and perception [1], the neuronal mechanisms
underlying precise timing remain unclear. Here, we are interested in the
neural mechanisms of sub-second timing with millisecond precision. To
this end, we study the control of song timing in male Zebra Finches whose
song production relies on the tight coordination of vocal muscles. There,
the premotor nucleus HVC (proper name) is responsible for the precise
control of timing. Current models of HVC rely on the synfire chain, a pure
feed-forward network. However, synfire chains are fragile regarding noise
and are only functional for a narrow range of feed-forward weights, re-
quiring fine tuning during learning. In the present work, we propose that
HVC can be modelled using a ring attractor model [2], where recurrent
connections allow the formation of an activity bump that remains stable
across a wide range of weights and different levels of noise. In the case
of asymmetrical connectivity, the bump of activity can “move” across
the network, hence providing precise timing. We explore the plasticity
of syllable duration in this framework using a reward-driven learning
paradigm and a reward-modulated covariance learning rule applied to
the network’s synaptic weights [3]. We show that the change in dura-
tion induced by the learning paradigm is specific to the target syllable,
consistent with experimental data.

Keywords: Timing · Songbirds · Attractor.

1 Introduction

Timing is crucial for a wide range of sensorimotor tasks. However, there are
numerous uncertainties regarding the underlying mechanisms. For instance, sen-
sory and motor timing may or may not rely on the same circuitry, there could be
different mechanisms for different scales of timing (subsecond, suprasecond etc.)
and it can be considered as a dedicated or intrinsic system [4] [5]. In this study,
we focus on motor timing at the scale of tens to hundreds of milliseconds. Ad-
dressing this question has led to the design of several computational models such
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as ramping models, internal clocks, population clocks, labeled-line models and
multiple-oscillator models [6, 7]. Ramping model-like patterns of activity during
timing tasks [8–10] have been observed in multiple brain areas, but it is unclear
whether they are indeed timekeepers or whether they reflect motor preparation
instead. On the other hand, internal clocks provide a linear readout of time,
assuming the presence of a pacemaker-integrator system, the location of which
remains unclear[7]. Lastly, population clock models assume that time is encoded
in the dynamically changing population of neurons, but have the limitation of
lacking an intrinsic metric of time. They are, however, well suited for pattern
timing underlying speech and birdsong.

Birdsong relies on the tight coordination of vocal muscles with a precise tim-
ing at the scale of tens to hundreds of milliseconds. In songbirds, a localized
timing area has been identified in the premotor nucleus HVC (proper name).
HVC projects to a downstream motor nucleus controlling syringeal and respira-
tory muscles. Neurons in HVC projecting to downstream motor nucleus fire in
a time-locked manner during singing, producing a single 10 ms long burst of
3-6 spikes [11]. Manipulating HVC temperature modifies song duration, with a
dilation and song stretching when HVC is cooled [12], supporting the hypothesis
of HVC as a population clock model.

The dynamics of neuronal activity in the nucleus HVC of songbirds have
been previously modelled with networks of excitatory neurons organized in a se-
quentially connected chain of neuronal populations, referred to as synfire chain
[13], belonging to the class of population clocks. However, the purely feedforwad
connectivity pattern of synfire chains does not appear compatible with the con-
nectivity patterns revealed experimentally in cortical networks. More specifically,
unidirectional connectivity between groups of neurons is incompatible with the
high level of reciprocal connectivity typically observed in cortex [14]. Addition-
ally, synfire chain networks are sensitive to noise and not very robust to weight
variability, requiring very precisely tuned synaptic strengths to avoid runaway
excitation or decay.

An alternative hypothesis is that the gradual propagation of an activity bump
is driven in HVC by attractor dynamics. In particular, a linear attractor, also
referred to as ring attractor, can drive a drifting activity bump with robust
and resilient properties thanks to recurrent connections [2]. However, it remains
unclear if the ring attractor can account for the properties of HVC neuronal
dynamics and the behavioral adaptation of song timing. In previous studies [15,
16], timing flexibility in motor timing in adult songbirds has been investigated,
through targeting a syllable for modification using a Conditional Auditory Feed-
back (CAF) protocol (based on reinforcement learning). The results showed that
birds can change the targeted element of their stereotyped song with specificity,
i.e. with no effect on other syllables. Upon confrontation of these results with
three modelling approaches, only synfire chains and not attractors, could ac-
count for specificity in adaptive learning. Conversely, we propose and provide
evidence that a structured attractor, such as the ring attractor, can simulate
adaptive learning and provide results consistent with behavioral data.
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2 Methods

2.1 Ring Attractor

We first consider a neural population of 1000 units whose mean firing rate is
expressed as m(x, t) with x being the position over a closed one-dimensional
manifold (ring) and t represents time. The evolution of m(x, t) is governed by
equation:

τ
d

dt
m(x, t) = −m(x, t) +G(Iext(x, t) + Isyn(x, t)− T +

√
τnσnη(x, t)), (1)

where τ is the neuronal membrane time constant. On the right hand side (rhs)
of Eq. (1), Iext is the external constant input, Isyn the synaptic input and T
represents the threshold. The last rhs term is a zero-mean Gaussian white noise.
For the nonlinear gain function G(I), the simple semi-linear form is adopted:

G(I) =


0 I < 0

I 0 < I < 1

1 I > 1

(2)

We use the following expression for the synaptic input:

Isyn(x, t) =

N∑
x′=1

1

N
W (x− x′)m(x′, t), (3)

where
∑N

x′=1 denotes a summation over all neuronal indices. The weight matrix
W is choosen of the following form:

W (x− x′) = W0 +W2
1

σ
√
2π

e
−
(

x−x′+β
2σ

)2
, (4)

where W is defined based on the neurons’ preferred timing (see Fig. 1 (A))
and not on the spatial topology, as HVC microcircuitry does not display spatio-
temporal organization (see Fig. 1 (B)). The parameter W0 stands for the global
inhibition, W2 the excitation factor, σ the standard deviation and β is the bias
term which makes the connectivity pattern asymmetric.

2.2 Implementing a Reward-Covariance Reinforcement Learning
Rule

Equations of the learning rule are implemented based on a reward-covariance
learning rule [3], to adaptively change W:

∆Wij = γReij with eij =

∫ t

0

dt′

τe
e−(t−t′)/τeηi(t

′)mj(t
′), (5)
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A. B. C. D.

Fig. 1: Simplified illustration of the ring connectivity and consequences
of local inhibition. (A) The connectivity is represented using the preferred
timing as a neighbourhood proxy for the placement of neurons. (B) The same
connectivity is represented using the physical location of neurons. (C) Injection
of a local inhibition in nucleus HVC. (D) The same local inhibition shown when
neurons are ordered according to their preferred timing. In this spatial represen-
tation, the effect is not local, but rather distributed, which makes the network
more robust.

j and i represent the pre- and postsynaptic neurons, respectively. The learn-
ing rateγ is chosen to match learning rates observed in songbirds experiments, R
the reward value and eij the eligibility trace, τe is the eligibility time constant, ηi
the noise of the postsynaptic and mj the rate of the presynaptic neuron. R takes
a value of 0 or 1, when the syllable is targeted for modification and 0 when it is
not. At the end of each learning trial, a reward of 1 is given if the targeted sylla-
ble duration is lower (higher) than the updated target duration. This paradigm
is based on the one introduced in [16], where I(tar) denotes the current duration
of the syllable, and Ī(tar) represents the running average of the target syllable
duration, which is updated after every trial according to the following:

Ī(tar) ← 0.995Ī(tar) + 0.005I(tar), (6)

across the 1000 learning trials. Additionally, prior to learning, we run 50
trials with no reinforcement to determine a baseline distribution of syllables.
Following learning, we run 50 more trials without reinforcement and with the
updated weight matrix W (Winitial + ∆W ). Significant change between these
two duration distributions is determined by performing independent t-tests.

2.3 Analysis

The quality of the model is evaluated regarding several objectives.

– The speed of the bump, which acts as a proxy for the accuracy of the timing,
– the mean syllable duration when noise is present, and
– the capacity for the model to shorten or lengthen a syllable duration without

interferring with others.
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Bump speed At any time, the position C(t) of the bump of activity can be
measured using the center of mass (COM) of the whole population, based on
equations for COM in systems with periodic boundary conditions. This center
C(t) is further discretized into C̄(t) such as to coincide with the nearest unit
position:

C̄(t) = argmini(C(t)− xi). (7)

The speed of the bump is then computed as the displacement (in the neuronal
feature space) of the center of mass over time.

Syllable definition and duration A syllable corresponds to a fixed segment
of the ring. Mean syllable length in zebra finches has been reported to be 110 ±
56 ms [17]. We choose a syllable duration close to the mean reported value and
for simplification, we chose equal size segments such that for s syllables and n
neurons, syllable i is defined by [ isn,

i+1
s n]. Syllable duration is then measured

from when the center of the activity bump Ĉ(t) crossed the lower limit of the
segment up to when it crossed the upper limit of the segment.

Simulation All simulations were performed using Euler integration with a
timestep (dt) of 0.25 ms. Multiple runs were performed to identify an appro-
priate (high enough) value for dt that does not alter the outcome. Parameter
values for the simulations are detailed in Table 1.

Table 1: Values of the parameters used in Eqs.(1) - (5).
Parameters Values Parameters Values

N (number of neurons) 1000 T (threshold) 0.9
dt (timestep) 0.25 ms W0 -5
duration 2 s W2 7
τ (membrane time constant) 10 ms β (bias in the weight matrix) 0.05 radians
Iext (external constant input) 1.1 σ ( Eq. (4)) 0.067
τnoise (time constant of the noise) 1 ms σnoise 0.01
γ (learning rate) 0.004 τe (eligibility trace time constant) 35 ms

3 Results

In the ring attractor model, recurrent connections allow for the formation of
an activity bump that remains stable across a wide range of weights. In the
presence of a fully symmetric connectivity and a constant stimulus, the activity
bump settles in one of the stationary states and remains there until another
input or a high enough perturbation is exerted. However, since the purpose of
this model is to generate a sequential activity, we investigate how propagation
across these states can be achieved.
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Fig. 2: Activity propagation in the ring. The first two panels show the
position of the bump of activity (normalized firing rate) in the network at a
particular point in time. The third panel serves to present the possible spiking
pattern this rate network would be compatible with. They were generated using
a homogenous Poisson process.

3.1 Moving Bump

Three ways to ensure bump propagation have been identified. These include an
external drive in the form of a moving stimulus, adaptation and an asymmetric
connectivity profile. In the case of a moving stimulus, the velocity/speed of this
stimulus has a linear relationship with the speed of the bump.

Intrinsic drive: Adaptation and Bias Adaptation [2] can make the bump
move by generating a local, strong, delayed negative feedback, and hence sup-
pressing localized activity. This causes higher activity in the nearby unadapted
region. Moreover, making the connectivity pattern asymmetric by adding a bias
also ensures bump propagation. The activity bump’s center of mass encodes
time such that at time t(x), neuron x is maximally activated and as it moves
across the network different neurons will be more active at different points in
time (Fig. 2). The magnitude of the bias also exhibits a quasi-linear relationship
with bump speed, such as the higher the bias, which assures the feedforwardness
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of the network, the higher the speed of movement of the bump (Fig. 3). The rest
of the presented results is for the asymmetric connectivity profile.
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Fig. 3: An asymmetric connectivity pattern makes the bump of activity
move across the network. (A) The speed of the bump is driven by the am-
plitude of the bias. This is a quasi-linear relationship. (B) Connectivity profile
for each presynaptic neuron to the postsynaptic neurons with no bias and bias.
(Neuron index difference = presynaptic− postsynaptic) This bias is the one we
use for the rest of the results presented. Self-connections are set to 0 but not
illustrated in the figure.

3.2 Robustness

We design a test protocol to evaluate the robustness of the network under possi-
ble biological perturbations. We simulate the local injection of a drug inducing
the inhibition of neuronal activity (e.g. Muscimol) with an effect that spreads
spatially according to a Gaussian spatial distribution into the network, as shown
in Fig. 1(C, D). The formula of diffusion of the inhibitory substance is that of
a Gaussian distribution and it is added to the main equation as an external
inhibitory input:

Ii = α
1

σ
√
2π

e−
1
2 (

x−µ
σ )2 .

We test distributions with different spatial widths (σ) or amplitudes (α). We
show that the perturbation is diminished across time and, if not too high, there
is no disruption in sequence generation and the speed of the bump is conserved.
This allows us to make a prediction for the HVC behavior in presence of such
inhibition. More precisely, this would mimic inhibition with a GABA-A agonist,
Muscimol in HVC and the prediction states that there will only be a delay in
the initiation of the sequence (song), but no further disruption as shown in Fig.
4, meaning the timing accuracy would be sustained.
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Fig. 4: Influence of a local inhibition. A local inhibition in the model (i.e.
an inhibition that only affects a distributed sub-population) induces a delay in
the initial formation of the bump even though the model can recover after tens
of milliseconds. After this initial delay, the timing is correct.

3.3 Local Plasticity and Comparison with Experimental Data

To validate the model and to address the second question of whether the ring
attractor is able to give account for experimental evidence witnessed in the CAF
protocol [16], we use a reward covariance rule [3] for the conditioning. Consistent
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Fig. 5: Syllable duration distribution before and after reinforcement
learning (for decrease, increase) of the targeted syllable.

with behavioral data, the duration of a syllable can be modified in response to a
perturbed reward profile (Fig. 5) and this change is specific to the target syllable.
No interference was present in adjacent or non-adjacent syllables, both in the
case of targeting for a duration increase or decrease (Fig. 6).
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Fig. 6: Adaptive learning is specific to the targeted syllables. 10 runs
(of 1000 trials) of learning, aiming to achieve syllable duration reduction (red)/
increase (blue) are run. Baseline mean duration is in gray. For each of the 10
runs in the three conditions, a mean duration is computed from the duration
distribution; these are shown as points in the bar plot. Hence, the bars represent
the mean duration across the 10 runs. * stands for p < 0.001. Only the target
syllable is significantly affected after reinforcement learning.

The change in synaptic weights (∆W ), driving the change in syllable du-
ration, is illustrated in Fig. 7. For instance, when the duration is targeted for
shortening, connections from the presynaptic neurons to the postsynaptic neu-
rons prior (neuron 450 to 500) are weakened and the ones to the postsynaptic
ahead (neuron 500 to 550) are strengthened, changing slightly the slope of the
bump and making it move faster in that area (defined by the presynaptic neu-
rons).

4 Discussion and Conclusion

Attractor dynamics have been used to model a wide range of cognitive pro-
cesses including memory representation, sequence generation, decision making,
integration etc. [18]. A group of criteria have been proposed to claim possible
attractor dynamics in different networks in the brain. HVC activity corresponds
to the sequence generation category, and abides at least 4 out of 5 of these cri-
teria, namely: i) Possession of a low-dimensional set of states that correspond to
attractors in the state space (a one dimensional output in HVC) [11]. ii) Robust-
ness to perturbation and return to the low-dimensional state after it. Electrical
stimulation [19] in HVC perturbs song timing, but once removed, it is quickly
restored. iii) Invariance and persistence of the states over time, in particular
across states. In adult zebra finches, even in the absence of HVC main inputs
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Fig. 7:How do the weights change to achieve specific adaptive learning?
On the left: ∆W of a single run (target: decrease syllable duration), zoomed in
at the area of pre and post-synaptic neurons encoding the target syllable. On
the right: the change in synaptic weights across 10 runs of learning with respect
to the presynaptic neurons encoding the target syllable, both when the target is
reducing (red) the duration and increasing (blue) it. The thicker line represents
the mean across runs and the filled in area the SD extracted from the means
across the postsynaptic neurons of the ∆W for each of the 10 runs.

[20] [21], HVC neuronal activity underlying song production persists. Moreover,
HVC singing-related activity can be evoked outside singing, e.g. during sleep
[21]. iv) Isometry [22]. The fifth condition, pertaining to anatomical and struc-
tural correlates, remains to be studied and investigated further. However, there
are three reasons that make us speculate it may be true as well. First, based
on the resulting HVC dynamics, the underlying pattern could include reciprocal
connectivity and relies on stronger connectivity between neurons firing at the
same time in song. Secondly, as a local circuit encoding motor timing, HVC
is expected to rely on regimes with strong internal connections capable of self-
sustained activity [7]. Thirdly, evidence from mammalian visual cortex show that
neurons with similar tuning, exhibit stronger connections.

As an attractor, the resulting model is robust to noise and weight variabil-
ity. Moreover, it is compatible with HVC’s sparse coding and exhibits specific
learning, consistent with experimental findings. It is also able to derive an ex-
perimental predicition regarding possible neural dynamics in the HVC, in the
presence of a local GABA-A agonist (Muscimol), which remain to be tested.
However, the duration of the burst of activity observed in HVC in zebra finches
(approx 10 ms) can only be reproduced with artificially short neuronal time
constants (1 ms) in the rate model exposed here. For a more accurate repre-
sentation of the spiking dynamics in the network and a short-duration burst of
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activity spreading across the nucleus, it may be necessary to model the network
with spiking neurons, e.g. using leaky integrators and relying on adaptation to
minimize burst duration [23].

Some observations in the ring attractor lead to important questions in the
songbird literature. For instance, activity propagation is possible not only through
an asymmetric connectivity, but also adaptation, which is an intrinsic neuronal
property. In this setting, we question whether the timing in birdsong is intrinsic
(i.e coming from adaptation) or a combination of intrinsic and experience based
factors (bias) [24] [25]. Furthermore, the connectivity pattern may be learned
through sensory (auditory) stimulation of the nucleus during the sensory pe-
riod of learning as HVC neurons can respond to auditory stimulation and may
display mirror-like activity pattern during singing and auditory stimulation[26].
However, it still remains an open question.

Finally, songbirds are also known for being a good model for the neural
mechanisms of vocal production in humans [27]. Therefore, similar neural mech-
anisms may underlie speech and song timing control. The dynamics of cortical
neurons driving speech production may thus also be accurately represented by
the present model.
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