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Abstract– In this paper, we study a novel variant of
the voter model on adaptive networks in which nodes10

can flip their spin, create new connections or break
existing connections. We first perform an analysis based
on the mean-field approximation to compute asymptotic
values for macroscopic estimates of the system, namely
the total mass of present edges in the system and the15

average spin. However, numerical results show that this
approximation is not very suitable for such a system,
for which it does not capture key features such as the
network breaking into two disjoint and opposing (in
spin) communities. Therefore, we propose another20

approximation based on an alternate coordinate system
to improve accuracy and validate this model through
simulations. Finally, we state a conjecture dealing with
the qualitative properties of the system, corroborated
by numerous numerical simulations.25

Keywords– Voter models, adaptive voter models, spin
systems, complex social networks.

I. INTRODUCTION

A. Research context and literature review30

In the last decades, models of statistical mechanics
have been extensively studied to describe a wide spec-
trum of complex phenomena, ranging from ferromag-
netism to biochemical interactions. Social systems and
collective phenomena are also under the scope of the35

aforementioned framework. In this case, the particles
are agents that influence each other according to simple
rules. One of the main models is a spin system called the
voter model (VM) first introduced by Thomas Liggett [1]
and defined as follows. Consider a population of agents of40

size K and index by an integer k each agent, k ∈ J1,KK.
At all times t ≥ 0, each agent k is endowed with a binary
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value Xk(t) ∈ {+1,−1}. These two values represent two
opposite orientations that may be opinions, consumer
preferences, behaviors, etc. Across time, the agents may45

change their spin under the influence of others, leading
to a stochastic process. Since Liggett’s seminal work, the
VM has attracted a lot of attention and numerous refine-
ments have been explored, e.g., nonlinear voter models
[2], with stubborn agents [3] or contrarian [4], including50

noise [5]. A comprehensive survey can be found in[6].
By the way, the word voter should be taken in a very ab-
stract sense: it may actually model any situation where
some agents have to make a repeated choice between sev-
eral possibilities, here two for sake of simplicity. Specifi-55

cally, in the context of social networks, the main mecha-
nisms shaping the social dynamics are social mimetism,
homophily and selective exposure. Social mimetism is the
behaving trend involving synchronization of one’s own
opinions with those of the imitated person. Homophily60

is the trend one has to connect with alike people, alike
simply means having the same spin in the VM formal-
ism. Analogously, selective exposure is the trend one
has to dismiss dissonant neighbors, that is agents having
an opposite spin. These notions have been thoroughly65

described by psychosocial studies [7, 8] and then taken
for granted in this work. While VMs over static graphs
encompass social mimetism, they fail to encompass se-
lective exposure and homophily. In order to keep track
of these last two key characteristics, we have to consider70

a model where the graph is adaptive, evolving according
to the spin profile

(
Xk

)
k∈J1,KK. Models of this kind are

said coevolutionary [9] or adaptive and are the focus of
this work. Though more recent and less studied than sys-
tems over static graphs, adaptive voter models (AVMs)75

are the subject of growing interest, e.g., in the context of
epidemics [10]. By allowing the edges to evolve, a wide
choice of network dynamics is worth considering. Some
authors define a local linkage mechanism [11, 12], called
triadic closure or transitivity reinforcement, where agents80

only seek new friends among their 2-hop neighbors. Nev-
ertheless, the main model is the one proposed in [13] with
two possible opinions. It is an AVM with a simple linking
rule: when agent l breaks his tie with agent m, he im-
mediately reconnects to another agent p, the latter being85

uniformly chosen over the whole population (rewire-to-
random). See for instance [14, 15] and references therein.
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Sometimes, rewiring is done only among like-minded peo-
ple, that is people of the same spin (rewire-to-same). The
main difference in the model studied here is that breaking90

and linking are done simultaneously, hence the total mass
of edges is conserved. The refinement we propose is to
allow edge breaks and edge creations separately. In this
model, the degree distribution is then dynamic, increas-
ing the range of possible configurations. In particular,95

the degree distribution can evolve.

B. Motivation and main contributions

Among the traditional questions raised by such
statistical mechanics models, the most classical one
is that of the phase transition. It is well known that100

in VMs, several radically different regimes can be
observed depending on the model’s parameters: in
the case of static graphs, the two types of spins can
survive - this case is mentioned as coexistence in [1],
also called metastable regime; or on the contrary one105

spin can rapidly conquer all the agents: in this case,
we talk about consensus. After reaching consensus, the
dynamics stops, consensus is said to be an absorbing
configuration. When defining model’s parameters, there
are range of values dedicated to each of the phase, and110

there exists (surface of) values at the boundary, whence
the term phase transition. In the case of adaptive
networks, the situation is a bit different. One may have
clustering according to the spins. Thus, both spins are
preserved but the two clusters are completely separated.115

On the contrary, a third possibility is the coexistence of
disagreeing agents among same connected components.
In this case, some links between the two community of
spins, named discordant links and properly defined in
the sequel, maintains. Hence, global consensus is simply120

a very particular case of the first scenario.

In this paper, instead of tracking threshold values for
phase transitions, as it has been done in [16], we rather
strive to give qualitative results about the macroscopic125

behaviour of the coupled dynamics. The main contribu-
tions are the following:

• In the dense graph regime, we highlight the homo-
geneous behaviour and the existence of a continu-
ous trajectory which might be the limiting system130

as K → +∞. It is notable that this phenomenon
is independent of the model’s parameters. Further
investigations may uncover the very nature of this
object.

• We also provide quantitative results: by a change135

of coordinates, we identify the surface of equilib-
ria, and estimate the limiting discordance (namely
the mass of discordant edges) for the metastable
regime. This estimation shows very good results

compared to the standard mean-field approxima-140

tion applied to the natural edges-spins coordinates.

• Finally, a linearization based analysis of the
reduced-order system around the points corre-
sponding to absorbing states, provides a reasonable
approximation of the phase transition that occurs145

in the initial stochastic system.

In the remainder of the paper, Section II presents the
model. Section III analyzes the model using the standard
mean-field approximation. Section IV refines the analy-
sis by introducing a change of coordinates partitioning150

the edges into blocks. Section V formulates a conjecture
and supports it with numerous numerical simulations.
Section VI concludes the article and indicates avenues
for future research. The table below summarizes some
notations.155

Object definition Formula Symbol

population index {1, ...,K} [K]
unweighted digraph alm = 0 or 1 A

complete graph Klm = 1∀l,m ∈ [K] K

Hadamard product (A⊙B)ij = aijbij ⊙
ith unitary vector of RK ei

0 matrix with 1 at only lm ele
T
m elm

all-1 vector
∑

j ej 1

indicator U 1 if U occurs, 0 else 1U

II. MODEL

Let us define a population of agents of size K ≥ 1
evolving and interacting over time. At all time t ≥ 0,160

each agent k ∈ {1, ...,K} (denoted by [K] for short) is
endowed with a binary value Xk(t) = ±1 called a spin.
The spin can represent an orientation, a preference or
any other individual state. The term ”spin” comes from
the analogy with magnetization models, and is already165

used in early works on voter models over lattices. We
then keep it throughout the text by commodity. The
vector X(t) :=

(
Xk(t)

)
k∈[K]

∈ {+1,−1}K is the spin

profile at time t. The agents interact through a dynamic
graph Gt, the latter co-evolving with the spin profile.170

Throughout this work, the graph Gt, supposed to be
unweighted and directed, is represented by its adjacency

matrix A(t) ∈ {0, 1}K2

. We have that alm(t) = 1 if
and only if there is a link from agent l to agent m
at time t. In the sequel, we also use the generalized175

notation: for two subsets U, V ⊂ [K] we denote by
aUV :=

∑
l∈U,m∈V alm.

The overall process (XK , AK) (the dependence in K
will be omitted when it is clear from the context) then
evolves in the finite state space SK := {+1,−1}K ×
{0, 1}K2

. The rates associated to the coevolution dy-
namics, namely the nodes’ dynamics and the edges ’one
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are now introduced. The dynamics of agents’ spins cor-
respond to the standard linear VM, already abundantly
analysed over regular lattices (chapter V of [1] and part
II of [17]) and more recently over heterogeneous and ran-
dom graphs [18, 19]. It models the mimetic behaviour of
individuals. Typically, an agent with positive spin (value
+1) surrounded by agents displaying negative spin (value
−1) is very likely to flip because of the influence of the
neighbours. The flip rate of agent k ∈ [K] is given by:

flip: (X,A) −→ (X − 2Xkek, A) at rate

Φ(k;X,A) = ϕ
∑
j∈[K]

Akj1(Xk ̸=Xj) (1)

where ek is the kth unit vector of RK . The voter step
is said to be linear because the rate to flip is linear with
respect to the number of disagreeing neighbors. In this
regard, the parameter ϕ > 0 can be interpreted as the
persuadability coefficient, equal for all agents.
On top of this linear flip dynamics, we consider the fol-
lowing edges’ dynamics. It takes into account two im-
portant properties that are characteristic of social inter-
actions, namely homophily and selective exposure. As
mentioned in the introduction, they respectively corre-
spond to the trend one has to create links with alike
people on one hand and to dismiss disagreeing neighbors
on the other hand. These two features have been copi-
ously described by psycho-social studies [7, 20] and are
nowadays well recognized to play a structural role in so-
cial dynamics. Then, for any individuals l,m ∈ [K], the
rate for link creation and link deletion (when it exists)
are respectively defined as follows:

link creation: (X,A) −→ (X,A+ elm) at rate

Γ(lm;x,A) = γ(1−Alm)1(Xl=Xm)︸ ︷︷ ︸
homophily

(2)

where one shall remember that we are dealing with a
directed graph and elm = ele

T
m is the unitary matrix with

a 1 at entry (l,m) and only 0’s everywhere else, and

link deletion: (X,A) −→ (X,A− elm) at rate

B(lm;x,A) = βAlm 1(Xl ̸=Xm)︸ ︷︷ ︸
selec. exposure

(3)

where γ (resp. β) is the propensity of one agent l to get
connected (resp. disconnected) to another agent m en-
dowed with the same spin (resp. with opposite spin).
For any f : SK 7→ R, the associated generator Q :
R

SK 7→ R
SK allows to characterize the Markov process

by a single formula. Then,

(Qf)(x, a) =
∑
k

Φ(k;x, a) [f(x− 2ekxk, a)− f(x, a)]

+
∑
lm

Γ(lm;x, a) [f(x,A+ elm)− f(x, a)]

+
∑

lmB(lm, x,A) [f(x, a− elm), f(x, a)] .

(4)

Note that if the rate parameters ϕ, γ, and β are in the
same range, the agents’ spin dynamics (1) is, therefore,180

K times faster compared to the edge stones given by (2)
and (3). Since we are interested in the coevolution of the
two dynamics (spin and graph) at the same time scale,
from now on we consider that the flip rate is in the same
range as the others and thus ϕ = O(γ/K).185

The Markov process (XK , AK) can equivalently be
described by a set of stochastic differential equations
(SDEs) driven by 3K2 independent Poisson point pro-
cesses Nα

kj of intensity α with (k, j) ∈ [K]2 and α ∈
{ ϕ
K , β, γ}:190


dXk(t) = −2Xk(t

−)
∑

j Akj(t
−)1(Xk(t

− )̸=Xj(t−))N
ϕ/K
kj (dt)

dAlm(t) = (1−Alm(t−))1(Xl(t
−)=Xm(t−))N

γ
lm(dt)

−Alm(t−)1(Xl(t
− )̸=Xm(t−))N

β
lm(dt)

(5)

A. Absorbing configurations

When K is finite, it is clear that the VM over static
(and adaptive) graphs possesses absorbing configurations
(sometimes called frozen states), which can be identifi-
able. In our setting, the Markov process (XK , AK) in-
deed admits the following absorbing states:

A =
{
(x, a) ∈ SK : ∀(l,m), (xl = xm and alm = 1) (6)

or (xl ̸= xm and alm = 0)
}
.

(7)

In words, an absorbing state is then a configuration where
the population of individuals is clustered in two sepa-
rated complete subgraphs denoted by C+ and C− with195

C+
⋃
C− = [K], C+

⋂
C− = ∅, with xl = +1 ∀l ∈ C+

and xk = −1 ∀k ∈ C−, and with no links between the two
blocks: aij = aji = 0 ∀i ∈ C+, ∀j ∈ C−. Furthermore
the absorbing configurations are strongly attractive: with
probability one, the process gets trapped into one of them200

after a (random) finite time Tabs defined as:

Tabs := inf
{
t : (X(t), A(t)) ∈ A

}
< ∞ (8)

B. Filter bubbles and discordance

When the stochastic process (X,A) has reached an ab-
sorbing state, then it stops: each agentXk has ultimately205

chosen his spin and has broken all of his links with the
opposite individuals. This configuration represents the
emergence of the so-called filter bubbles: each one con-
fines himself to a group of people sharing the same opin-
ion, and then has no access to other viewpoints, whence210

the term filter bubble. This phenomenon is suspected to
increase radicalization and fake news propagation [21–
23]. Detecting and forecasting the emergence of these
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bubbles is a major issue in social network analysis. A
simple estimator to quantify the filter bubble effect is the215

discordance (sometimes called interface density [5]). This
value measures how strongly two opposite communities
influence one other. An edge lm is said to be discordant
if alm1(xl ̸=xm) = 1, meaning that a link between individ-
uals l and m exists and the two individuals have opposite220

spin.

Definition 1 (total discordance). The total discordance
D(x, a) of any configuration (x, a) ∈ SK is defined as:

D(x, a) :=
1

K2

∑
lm

alm1(xl ̸=xm). (9)

If D(x, a) = 0, then it means that (x, a) is225

close to an absorbing configuration: the node dynam-
ics has stopped, and after the link creation between
agreeing agents, the overall process (X,A) will get
frozen. Let define the associated hitting time Tabs :=
inf {t > 0 : D(X(t), A(t)) = 0}. The following property,230

called slow extinction [24], properly formalizes metasta-
bility.

Definition 2 (slow extinction). The total discordance
slowly extincts if

∃c > 0, P
(
Tabs < ecK

)
< e−cK . (10)235

Figure 1 illustrates this phenomenon: we have plot-
ted the extinction time evolution in terms of time to ex-
tinction for two different regimes: the sub-critical regime
(ϕ ≈ β, in blue), and the metastable regime (ϕ ≫ β, in
red). It is clear that extinction time grows much faster for240

the metastable regime compared to sub-critical regime.
The next section is devoted to a first line of analysis,
namely one of the standard mean-field approximation.

III. A FIRST APPROXIMATION: THE245

CLASSICAL NIMFA

The principle of the N-intertwined mean-field approx-
imation (NIMFA) [25] is to consider that when the
number of particles in the system is high, indepen-
dence between particles state emerges, and then we have250

EXkXj = EXkEXj . Thus applying this approximation
by considering large number of agents, we can assume
that EAlm(t)Xk(t) = EAlm(t)EXk(t). Introducing the
variables x(t) := EX(t) ∈ [−1, 1]K , a(t) := EA(t) ∈
[0, 1]K

2

, taking both lines of (5) under expectation E[.],255

and assuming independence between particles yields the
associated NIMFA system for (x, a):

ẋk = ϕ
K

∑
j akj(xj − xk)

ȧlm = γ(1− alm)
1 + xlxm

2︸ ︷︷ ︸
homophily

−βalm
1− xlxm

2︸ ︷︷ ︸
sel. exp.

(11)

FIG. 1. Extinction time of the process for different num-
ber of agents K = 10, 20, ..., 80. In each case, 10 simula-
tions have been performed for each regime: in blue, the sub-
critical regime: (ϕ, β, γ) = (1, 1, 1); in red, the metastable
one: (ϕ, β, γ) = (4, 1, 4). One can see that the absorbing time
Tabs grows much faster in the metastable regime than in the
subcritical regime.

In matrix form, it reads{
ẋ = ϕ

K (A− diag(A1))x

ȧ = γ (K− a)⊙ K+xxT

2 − βa⊙ K−xxT

2

(12)260

where diag(u) is the diagonal matrix
(
diag(u)

)
lm

:=

ul1(l=m), u ∈ RK and ⊙ is the Hadamard (matrix) prod-

uct. Here, we have used the fact that 1(p ̸=q) =
1−pq

2 for
p, q ∈ {+1,−1}, implying:

−2XkAkj1(Xk ̸=Xj) = Akj [Xj −Xk], (13)265

hence recognizing a Laplacian term for the spin evolution
in (11). By this computation, we can clearly identify the
homophily term as well as the selective exposure term in
(11).

270

A. Analysis of the NIMFA system

The deterministic system (11) is easier to analyze than
the initial large-scale stochastic system: we are able to
derive the entire set of equilibria and determine their
stability.275

Proposition 3. Let g := γ
β . The set of attractive equi-

libria of the above dynamical system (11) is

S =
{
(x, a) : x = c1, c ∈ [−1, 1], a = v∗(c, g)K

}
, (14)
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where 1 is the vector full of 1’s: 1 =
∑

j ej and

v∗(c, g) =
1

1 + 1−c2

2g

. (15)280

Furthermore, there exists a set of unstable equilibria:

U =
{
(x, a) : xk = ±1 ∀k and xl = xm ⇐⇒ alm = 1

or xl ̸= xm ⇐⇒ alm = 0
}
.

(16)

Proof. First suppose that the system has reached a con-
sensus state: x ∈ {c1 : c ∈ [−1, 1]}. We automatically
have ẋ = 0. At consensus, the graph evolution yields

0 = γ(K−A)− β(1− c2)

2
A = v∗(c, g)K (17)

with v∗(c, g) given by (15). From this we can conclude285

that there is only one graph at consensual equilibrium
xk = c ∀k.
Let us now take in the more general case Ȧ = 0K×K

and ẋ = 0K . Suppose first aij > 0 ∀i, j, and define the
homophily matrix as290

H(x) :=
K+ xxT

2
(18)

We then obtain

ȧ = 0K×K

⇐⇒ 0 = −a⊙ {γH(x) + β(K−H(x))}+ γH(x)

⇐⇒ a = f⊙(H(x)), (19)

with

f(h) =
γh

γh+ β(1− h)
(20)

and f⊙ : [0, 1]K
2 7→ [0, 1]K

2

the associated entry-wise
map taking matrices as arguments. Note that f is mono-
tonically strictly increasing, thus invertible. Therefore

f−1
⊙ (a) = H(x) =⇒ L(a) ◦ f−1

⊙ (a) = 0

=⇒
∑
j

alj

[
f−1(ajm)− f−1(alm)

]
= 0 ∀l,m.

(21)

Now, ad absurdum, suppose it exists a column m and
two lines l, L ∈ [K] such that alm < aLm. Because f−1

is also strictly increasing, aLj [f
−1(ajm)− f−1(aLm)] ≤ 0

∀j, with at least one strict inequality for j = l. Thus, the
equality 21 can not be verified for all l,m. This shows
that alj = cj ∀l, j, and then

ẋk = 0 =⇒
∑
j

cj(xj − xk) = 0 =⇒ x = c1, c ∈ [−1, 1].

(22)

And by the analysis made in the consensus state, it
implies that the only possibility for the graph is A =295

v∗(c, g)K, c ∈ [−1, 1].
Untill now, we have supposed that alm > 0 ∀l,m.
Suppose now there exists at least one null coefficient:
alm = 0. Then ȧ = 0 =⇒ 1 + xlxm = 0 ⇐⇒ xl =
xm = ±1. Without loss of generality, take xl = +1 and300

xm = −1. We have alj(xj − xl) ≤ 0. This implies that
either xj = xl, or alj = 0. Furthermore, in the case of
xl = xj = ±1, we have necessarily alj = 1. The set U is
thus well identified.

305

We now study the stability of all these equilibria. In order
to show the attractiveness of S, one can first notice that

the phase space [−1, 1]K × [0, 1]K
2

is compact. Then,
every trajectory {(x(t), A(t)) : t ≥ 0} admits at least one
accumulation point (x∗, A∗) ∈ S

⋃
U for all initial datum(

x(0), A(0)
)
∈ [−1, 1]K × [0, 1]K

2

. Second, notice that
there is a diameter contraction: xmin(t) := mink xk(t)
is increasing, while xmax(t) := maxk xk(t) is decreasing,
provided it exists some k ∈ [K] such that ẋ(0) ̸= 0. Every
accumulation is thus in S: ∃tj ≥ 0, ||x(tj) − c1K || < ϵ
and ||x(t)− c1K || < ϵ for all t ≥ tj . This implies that for
two distinct edges e = lm, f = kj,the edges dynamics
are roughly the same. Rewrite indeed (11) as

∂talm = −
(
γhlm + β(1− hlm)

)
alm + γhlm

= ulm(t)alm + hlm(t) (23)

where ulm(t) < 0 ∀l,m, t and hlm = 1+xlxm

2 . Each edge
difference (alm − akj) evolves according to

∂t (alm − akj) = ulm(t)alm + hlm(t)− (ukjakj + hkj)

= ukj (alm − akj) + η(t), (24)

where

η(t) = (vlm − vkj) + alm(ulm − ukj) (25)

can be made arbitrarily small provided ϵ is chosen small
enough. Recall ulm < −min(γ, β). Whence

∂t(alm − akj) ≤ −min(γ, β)(alm − akj) + η0. (26)310

By comparison principle (see for instance 3.4 of [26]), we
have

(alm − akj) ≤ min(γ, β) for t large enough. (27)

This allows us to conclude that A(t) converges to the
set {vA : v ∈ [0, 1]}. The previous derivation provides315

a closed-form analytical expression of the value v∗ as a
function of the consensus value c reached by the spin
profile. ■

Remark 4. The set of stable equilibria S is made up
of a continuum of points independent of ϕ, while the320

unstable ones are just isolated points in the compact
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phase space Ψ := [−1,+1]K × [0, 1]K
2

. The points in the
set U corresponds to the absorbing configurations of the
initial stochastic system, where the system is maximally
polarised and the discordance is zero.325

The NIMFA method also gives as output a closed-form
expression of the discordance. Let first extend the defi-
nition of the discordance to continuous systems as

D(x, a) :=
1

K2

∑
lm

alm
1− xlxm

2
. (28)330

Corollary 5. Consider the system having reached the
surface of equilibria computed in proposition 3: (x, a) ∈ S
which implies x = c1 for some c ∈ [−1,+1] and a =
v∗(c, g)K. Then discordance reads as

D(x, a) = v∗(c, g)
1− c2

2
, (29)335

where v∗ is defined in proposition 3.

Proof. Because by definition

D =
1

K2

∑
lm

alm1(xl ̸=xm) =
1

2K2

∑
lm

alm(1− xlxm)

(30)
the result is straightforward in view of proposition 3. ■

B. Numerical simulations340

In order to represent visually the dynamics, the
Markov process is reduced to three global estimators,
namely

X := 1
K

∑
j Xj

A := 1
K2

∑
lm Alm and

D := 1
K2

∑
lm Alm1(Xl ̸=Xm)

(31)

X is the mean spin profile, A is the global density of links345

and D is the discordance. In Figure 2 , five trajectories
are represented in the X −A axis, with slightly different
initial configurations. We can see that all the trajecto-
ries are quasi-attracted by the consensual equilibria line
analytically computed in proposition 3, although a small350

but consistent gap subsists. In the second plot, three
trajectories are represented in the X − D axis. Also,
in that case, the theoretical NIMFA-based discordance
seems similar yet quantitatively distinct.
In order to understand this bias, let us represent the355

asymptotic system K −→ +∞ with a continuum of pop-
ulation u ∈ [0, 1], and the associated spin profile and
generalized matrix {Xu, Auv : u, v ∈ [0, 1]}. The NIMFA
actually partitions in an arbitrary fashion the population
in K cells and applies a cell-wise averaging:360

xj ∼
1

K

∫
u∈Ij

Xudu alm ∼ 1

K2

∫
(u,v)∈Il×Im

Auvdudv

(32)

FIG. 2. Simulations have been performed in the metastable
regime: (ϕ, β, γ) = (4, 1, 4), and K = 800. The grey points
are the initial configurations. We see that the system is at-
tracted by the blue curve analytically computed in proposition
3, although there is still a small gap between the simulations
and the theoretical result. A similar observation can be stated
for the figure below: we see that the three independent stochas-
tic simulations have roughly the same shape as the theoretical
NIMFA discordance line (in red), but here also a substantial
gap persists.

for j ∈ [K], with Ij = [ j
K , j+1

K [. Thus, this approxima-
tion puts in the same category discordant links {(lm) :
xl ̸= xm} and concordant links {(lm) : xl = xm}, lead-
ing to a dead-weight loss of information. To see this, let365

us take the following example: suppose xl = xm = 0
and alm = 1

2 . This means that half of the mass of cell
l has a positive spin and the other half has a negative
spin, and the same with cell m. Nonetheless, one can
not in any way determine whether the links from cell370

l to cell m are discordant or concordant, and in which
proportion. Thus, as depicted in Figure 3, one of the
drawbacks of the NIMFA is the ambiguity. It can cor-
respond either to a case of discordance free: all agents
of cell l are linked toward people in m of the same spin375

and only with them, or it can correspond to maximum
discordance (and zero concordance) configuration. In the
next section, an alternative system of coordinates is pre-
sented to make the distinction between concordant edges
and discordant edges, and then assign distinct dynamics380

to these possible cases.
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FIG. 3. In each cell l,m, a first half of the population is +1
and the other half is −1.

IV. NEW BLOCKWISE COORDINATE SYSTEM

Instead of considering the spin profile, let us just keep
the graph structure. We separate the links in four cate-

gories C1,D1, C0,D0 ∈ {0, 1}K2

according to two criteria:385

concordant (C) or discordant (D), and present (indexed
with a one), or absent (indexed with a zero). This parti-
tion leads to the following equivalences:

alm = 1 ∧ xl = xm ⇐⇒ C1
lm = 1

alm = 0 ∧ xl = xm ⇐⇒ C0
lm = 1

alm = 1 ∧ xl ̸= xm ⇐⇒ D1
lm = 1

alm = 0 ∧ xl ̸= xm ⇐⇒ D0
lm = 1

(33)

In this new coordinate system, the stochastic evolution390

equation is rewritten as:
dC1 = +C0 ⊙N γ(dt) + (D1 − C1)⊙ F (dt),
dC0 = −C0 ⊙N γ(dt) + (D0 − C0)⊙ F (dt),
dD1 = −D1 ⊙N β(dt) + (C1 −D1)⊙ F (dt),
dD0 = +D1 ⊙N β(dt) + (C0 −D0)⊙ F (dt),

(34)

where

F (dt) :=
(
D1⊙N

ϕ
K (dt)

)
◦K+K◦

(
D1⊙N

ϕ
K (dt)

)⊤
(35)

Here Nα(t) =
(
Nα

lm(t)
)
(l,m)∈[K]2

is a square matrix of395

dimension K stacking all the independent Poisson pro-
cesses of intensity α > 0, α ∈ { ϕ

K , β, γ}. One can see that
the first terms of the right-hand side correspond to the
network dynamics, while the second terms correspond to

the flip dynamics with the N
ϕ
K as driving processes. Fig-400

ure 4 provides a schematic picture of the different flows
between the four compartments defined above.

A. Dimensionality reduction

System (34) describes the initial one (5) but from an-
other viewpoint. Its main advantage is that it separates405

conveniently the discordant and concordant edges, and

FIG. 4. A partition of the edges linked with flows.

these two categories of edges display very different behav-
ior. It has to be noticed that through these coordinates,
one has no access to the mean spin profile X neither the
proportion of agents with positive spin410

m :=
1

K

∑
j

1(Xj=1). (36)

Because of its high dimensionality, actually 4K2, it seems
intractable. Proposition 3 suggests to circumvent this dif-
ficulty by making the following homogeneity hypothesis:

Cσ ≈ cσK and Dσ ≈ dσK, (37)415

for some dσ, cσ ∈ [0, 1], σ ∈ {1, 0} with vanishing random-
ness when K gets large. Some details of this assumption
will be given in the next section. The large-scale stochas-
tic system (34) can then be described by a nonlinear 4-
dimensional deterministic ODE:420

∂tYt = Ψ(Yt) = Nβ,γYt + 2ϕd1MYt (38)

where

Y =

c1c0d1
d0

 , Nβ,γ :=

0 γ 0 0
0 −γ 0 0
0 0 −β 0
0 0 β 0

 (39)

and

M :=

−1 0 +1 0
0 −1 0 +1
+1 0 −1 0
0 +1 0 −1

 . (40)425

Remark 6. Contrary to system (11) where the absorb-
ing points are always unstable and repulsive regardless
of the models’ parameters, this system displays a stable
discordance-free region for ϕ ≪ β:
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Let us consider the discordance-free absorbing points that430

are easily identifiable:

A =

{[
u 0 0 1− u

]T
: u ∈ [

1

2
, 1]

}
(41)

Setting u = 1 corresponds to a global consensus, while if
u = 1

2 , then the two blocks are of same size. By lineariza-
tion of the vector field Ψ in (38), we get for y ∈ A435

∂Ψy =

0 γ −2ϕu 0
0 −γ 2ϕ(1− u) 0
0 0 −β + 2ϕu 0
0 0 β + 2ϕ(u− 1) 0

 (42)

A simple examination of the eigenvalues leads to

Sp ∂Ψy = {0, 0,−γ, 2ϕu− β}. (43)

Furthermore, the null eigenvalue is semisimple. Then,
by linearization method (thm. 3.15 of [27]), for β high440

enough, that is ϕ < β
2u , the point y is stable.

Furthermore, system (38) being low dimensional, we can
now give an explicit formula for the equilibria.

Proposition 7 (characterization of the equilibria). For
any values ϕ, β, γ, in the coordinates (c1, d1,m), the sur-445

face of equilibria Seq of the reduced system (38) is given
by

Seq =
{
(c1, d1,m) : d1 = g

(
1− c1 − 2m(1−m)

)}
. (44)

Proof. Recall g := γ
β . At equilibrium: ∂tY = 0, we have

d1 = gc0, (45)450

and by construction, d1+c1+d0+c0 = 1 and 2m(1−m) =
d0 + d1 at all times. Combining the last three identities
yields the last proposition. ■

B. Computation of the discordance

We are now able to derive a formula for the global455

discordance d1 at equilibrium: the third line of (38) yields

0 = −βd1 + (c1 − d1)2ϕd1. (46)

Then, adding the first and the second lines gives 0 =
(d1 − c1 + d0 − c0) 2ϕd1. Because d1 > 0, we thus get:

d1 + d0 = c1 + c0 =
1

2
. (47)460

Recall d1 = gc0, combining all the last identities allows
us to state the following proposition.

Proposition 8. (limit value for the discordance) For
high K, the discordance d1 of system (X,A) converges

toward the value d∗ = 1
2 × 1− β

ϕ

1+ β
γ

∈ [0, 1
2 ].465

Remark 9. This quantity does make sense only for ϕ >
β. More specifically, for ϕ ≫ β and γ ≫ β, d∗ is almost
maximal, namely d∗ ≈ 1

2 . On the contrary, for β < ϕ,
the system is attracted toward the discordance-free region.

C. Numerical plots470

Figure 5 shows how close is the actual process to the
analytical surface Seq when projected to the phase space
(c1,m, d1). Figure 6 displays four independent numeri-

FIG. 5. Seq is represented by the grey surface. Red points
are sample of the overall trajectory starting at the black
point, under the metastable regime: (ϕ, β, γ) = (4, 1, 4), and
K = 800. We see that there is no gap between the surface of
theoretical surface and the stochastic simulation.

475

cal simulations in the metastable regime with the same
model’s parameters. The horizontal line d∗ corresponds
to the value obtained in proposition 8. When taking

FIG. 6. (ϕ, β, γ) = (4, 1, 4), K = 800. Here is a plot of six
independent simulations for the discordance d1. We see that
in the metastable regime, discordance maintains and is close
to the value computed via block-coordinates (represented as an
horizontal pink line on the plot), that is d∗ = 0.3.

480

smaller ϕ, we observe that discordance is vanishing: see
Figure 7.



9

FIG. 7. (ϕ, β, γ) = (1, 0.8, 1), and K = 800. Six independent
plots have been performed. We see that there is a fast extinc-
tion of discordance when β ≈ ϕ (subcritical regime).

V. DISCUSSION

The results of the preceding section rely on the ho-485

mogeneity assumption obtained by the standard NIMFA
method (see proposition 3). Because the spins and the
edges are binary Xk ∈ {+1,−1}K and Alm, Cσ

lm,Dσ
lm ∈

{0, 1}, it is necessary to clarify that Cσ is roughly equal
to some cK for c ∈ [0, 1]. Actually, this approxima-490

tion has to be taken in the macroscopic viewpoint, that
is when taking an arbitrary but infinite subset of agents
{j ∈ [K] : j

K ∈ U} for some interval U ⊂ [0, 1]. Sampling

this way and taking the associated averages XU , AUV de-
fined below, we then obtain, when K tends to +∞, de-495

terministic limits with identical trajectories, regardless of
the choice of U, V ⊂ [0, 1]. It is what we call homogeneity.

Conjecture 10. Recall that |U | stands for the Lebesgue
measure of an interval U in R. Define the partial aver-
age:500

X
K

U :=
1

K|U |
∑
j

Xj1U (
j

K
) (48)

for any interval U ⊂ [0, 1] with U = [a, b], a < b. Then,

X
K

U converges towards a deterministic and continuous
trajectory as K −→ +∞, under the hypothesis that the
initial samples (Xk(0))k∈[K] and (Alm)l,m are i.i.d. This505

statement is also valid for the functionals

A
K

UV :=
1

K2|U ||V |
∑
lm

Alm1U×V

(
l

K
,
m

K

)
(49)

Especially, the global density of links defined as

A
K

=
1

K2

∑
lm

alm (50)

converges toward a deterministic and continuous trajec-
tory. Furthermore, the limiting trajectories are identical:
For any U, V, U ′, V ′ ⊂ [0, 1],

||XK

U −X
K

U ′ ||∞,T −→ 0 and (51)

||AK

UV −A
K

U ′V ′ ||∞,T −→ 0 (52)

as K −→ +∞, provided that the entrance sample is i.i.d:510

alm(0) = 1 with probability a0 for all l,m, Xk = +1
with probability x0 all variables being independent, and
where ||.||∞,T is the uniform norm over the set of bounded
real-valued functions defined on the time interval [0, T ]:
||u|| := sups∈[0,T ] |u(s)|.515

Remark 11. The hypothesis on the entrance law is cru-
cial. Indeed, suppose that we set Xk(0) = +1 with prob-
ability 1 for k < K

2 and Xk(0) = −1 with probability 1

for k ≥ K
2 , which is not an i.i.d entrance law. Setting

β ≫ ϕ would yield X [0, 12 ]
≈ +1 and X [ 12 ,1]

≈ −1, which520

would contradict the last result.

Remark 12. The type of convergence stated above via
partial sampling along intervals U ∈ [0, 1] has strong links
with the cut metric over dense graphs. Roughly speaking,
it says that the sequence of random trajectories (AK(t))t525

admits a correctly defined limit object Wt [28].

In order to verify numerically that the graph displays
an homogeneous behaviour, we have partitioned the pop-
ulation in 4 equal parts Ij := {k ∈ [K] : k ≡ j mod 4}.
We thus obtain a partition P4 of size 4. Then, for530

U, V ∈ P4 := (Ij)1≤j≤4, we compute the average block-
wise defined as:

AUV = (
K

4
)−2

∑
lm

Alm1U×V (l,m) (53)

We then obtain 16 trajectories. We have performed the
simulations for several values of K (see Figure 8). For535

increasing K, it is clear that the 16 curves concentrate
over the same trajectory and randomness decays. We
also display the partial means for the spins: XU , U ∈
(Ij)j . We observe that the edges means Alm converge

much faster compared to the spins’ onesXU because each540

average AUV contains (K4 )
2 = K2

16 terms whereas the spin

averages only contains K
4 terms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new continuous-time
AVM where node and edge steps are not simultaneous.545

By taking into account additional permissible configu-
rations, the model is more flexible and satisfactory. Its
analysis by the standard NIMFA was refined by a pre-
cise change of coordinates using a blockwise approach.
Moreover, in the case of dense graphs, a phenomenon550

that we called homogeneity has been conjectured when
K becomes large. Although we could not give a rigorous
proof, numerous numerical simulations were provided to
corroborate our intuition. This may be an interesting
topic for further investigation.555
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[2] C. Castellano, M. A. Muñoz, and R. Pastor-Satorras,

Nonlinear q-voter model, Physical Review E 80, 041129
(2009).

[3] E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and565

A. Scaglione, Binary opinion dynamics with stubborn
agents, ACM Transactions on Economics and Compu-
tation (TEAC) 1, 1 (2013).

[4] N. Masuda, Voter models with contrarian agents, Physi-
cal Review E 88, 052803 (2013).570

[5] A. Carro, R. Toral, and M. San Miguel, The noisy
voter model on complex networks, Scientific reports 6,
1 (2016).

[6] Y. Dong, M. Zhan, G. Kou, Z. Ding, and H. Liang, A
survey on the fusion process in opinion dynamics, Infor-575

mation Fusion 43, 57 (2018).
[7] M. McPherson, L. Smith-Lovin, and J. M. Cook, Birds of

a feather: Homophily in social networks, Annual review
of sociology , 415 (2001).

[8] D. Zillmann and J. Bryant, Selective exposure to commu-580

nication (Routledge, 2013).
[9] T. Gross and B. Blasius, Adaptive coevolutionary net-

works: a review, Journal of the Royal Society Interface
5, 259 (2008).

[10] S. Trajanovski, D. Guo, and P. Van Mieghem, From epi-585

demics to information propagation: Striking differences
in structurally similar adaptive network models, Physical
Review E 92, 030801 (2015).

[11] T. Raducha, B. Min, and M. San Miguel, Coevolving
nonlinear voter model with triadic closure, EPL (Euro-590

physics Letters) 124, 30001 (2018).
[12] N. Malik, F. Shi, H.-W. Lee, and P. J. Mucha, Transitiv-

ity reinforcement in the coevolving voter model, Chaos:
An Interdisciplinary Journal of Nonlinear Science 26,
123112 (2016).595

[13] T. Rogers and T. Gross, Consensus time and confor-
mity in the adaptive voter model, Physical Review E 88,
030102 (2013).

[14] P. Holme and M. E. Newman, Nonequilibrium phase
transition in the coevolution of networks and opinions,600

Physical Review E 74, 056108 (2006).
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FIG. 8. For several values of K, we plot the curves of the 16
partial edges means {t 7→ AUV (t) : U, V ∈ P4}. In all cases,
models’ parameters are taken constant: (ϕ, β, γ) = (4, 1, 4).
At initial times, all random variables are taken i.i.d: alm(0) =
1 with probability 0,95. The concentration of the all trajec-
tories around the same curve when K grows is visible when
comparing K = 120 and K = 1600.
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FIG. 9. For several values of K, we plot the curves of the four
partial edges means {t 7→ XU (t) : U ∈ P4} , with (ϕ, β, γ) =
(4, 1, 4). For all simulations xk(0) are taken i.i.d with xk(0) =
+1 with probability 1

2
. Here too, a concentration effect occurs,

but it is less pronounced because the spin profile includes less
variables as the graph.
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