
HAL Id: hal-04168324
https://hal.science/hal-04168324

Submitted on 21 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Performance variability in MILP modeling
Rémi Garcia

To cite this version:
Rémi Garcia. Performance variability in MILP modeling. ROADEF 2023: 24ème congrès de la
Société Française de Recherche Opérationnelle et d’Aide à la Décision, Feb 2023, Rennes, France.
�hal-04168324�

https://hal.science/hal-04168324
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Performance variability in MILP modeling

Rémi Garcia
Nantes Université, LS2N, France
remi.garcia@univ-nantes.fr

Keywords : optimization, milp modeling, partial order, solver, performance variability

1 Introduction
Since a few decades, research is going through the so-called replication crisis. It is known that
different software versions or CPU architectures will impact the performance and results of an
algorithm. This awareness has a positive impact on the research as more and more published
papers pay more attention at the reproducibility aspect by giving more details about the
proposed algorithms and experiment parameters. Yet, implementation choices are often left
out of the publishing process and using the exact same machine and parameters as the original
authors is usually impossible. With this work, we give some information on how the modeling
language JuMP passes the constraints to the solvers and we present a new julia tool called
SortModel which allows for changing the order of the constraints in the JuMP model. Using
SortModel, we show the performance variability [3] induced by constraint ordering and provide
a simple way to experiment with.

2 JuMP ordering
The following applies to JuMP 1.4.0 and should remain true for most, if not all, the JuMP
1.x versions [1]. First, it should be noted that the order of the constraints seems to be out of
scope of the JuMP project.

Currently, JuMP stores the linear constraints of the model in three different blocks: the
constraints “LessThan” the right hand side (RHS); the ones “GreaterThan” the RHS; and the
equality constraints. When a process such as writing an LP file or sending the constraints
to an optimizer is called, the constraints are passed block by block making it difficult to mix
blocks together.

The order of the constraints within a block is determined by the declaration order, however,
the order of the blocks is fixed by JuMP and depends on the function called, e. g., when writing
an .lp file, the constraints of the type ≤ are written first, followed by the ≥ ones and finishing
with the equality constraints.

Following the order in which the constraints are given to the solver is not an easy task and
could be of no interest if no impact on the solver could be observed.

3 SortModel to shuffle the deck
To explore the impact of different constraint ordering, we propose a julia package1 that can
reorder the constraints within the blocks. Our package exports the function sort! which can
be applied to JuMP models. Without any keyword argument, the constraints are shuffled.

1https://github.com/remi-garcia/SortModel.jl

https://github.com/remi-garcia/SortModel.jl


(a) Solver: Gurobi (b) Solver: CPLEX

FIG. 1: Number of instances solved at optimality after 1 to 600 seconds

Constraints can be sorted with respect to multiple criteria and not just shuffled. Currently,
we propose the following criteria:

• ordering constraints by the number of involved variables;
• ordering constraints starting with the ones in which there is only binary variables;
• ordering constraints starting with the ones in which there is only discrete variables;
• ordering constraints starting with the ones in which there is only continuous variables.
Due to the JuMP way of storing constraints, blocks are still reordered separately, yet the

we implemented an option that permits to merge the “LessThan” and “GreaterThan“ blocks
together. We will provide an option to decompose equality constraints into two “LessThan”
constraints aiming at combining all the blocks into a single one.

4 Reordering effect
We experimented different sorting strategies and constraints shuffling on a model that solves the
Multiple Constant Multiplication (MCM) problem [2]. We use 86 instances from the digital
signal processing domain and solved our model with Gurobi and CPLEX. A time limit per
instance of 10 minutes has been fixed.

In Figure 1, we show the number of instances solved at optimality for different sorting
strategies: nosort means that we optimize without using SortModel; more (less) means that
constraints with more (less) variables are passed first; bin (int) means that constraints with
only binary (discrete) variables are passed first. We show that no strategy clearly outperform
compared to the others. However, this clearly illustrates that different constraints orders will
lead to different solving times. Particularly, on the instance YLI01_30, using Gurobi, while
most sorting strategies timed out at the 600 seconds time limit, one of the shuffling proved
optimality in less than a second.

We plan to do extensive testing of these strategies on different models from various do-
mains. A specific order of the constraints might be preferred as it outperforms any other for
a fixed model. In any case, when comparing models, we believe that multiple orders of the
constraints should be tested to have a significant comparison.

References
[1] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for mathe-

matical optimization. SIAM Review, 59(2):295–320, 2017.

[2] Rémi Garcia, Anastasia Volkova, and Alexandre Goldsztejn. A New Model for the Multiple
Constant Multiplication Problem. ROADEF2022, February 2022.

[3] Andrea Lodi and Andrea Tramontani. Performance Variability in Mixed-Integer Program-
ming. In Theory Driven by Influential Applications, pages 1–12. INFORMS, September
2013.


	Introduction
	JuMP ordering
	SortModel to shuffle the deck
	Reordering effect

