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On the Fisher infinitesimal model without variability

Amic Frouvelle∗†¶ Cécile Taing‡§¶

July 21, 2023

Abstract

We study the long-time behavior of solutions to a model of sexual populations structured
in phenotypes. The model features a nonlinear integral reproduction operator derived from
the Fisher infinitesimal operator and a trait-dependent selection term. The reproduction
operator describes here the inheritance of the mean parental traits to the offspring without
variability. We show that, under assumptions on the growth of the selection rate, Dirac
masses are stable around phenotypes for which the difference between the selection rate and
its minimum value is less than 1

2 . Moreover, we prove the convergence in some Fourier-based
distance of the centered and rescaled solution to a stationary profile under some conditions
on the initial moments of the solution.

1 Introduction

1.1 The population model

We study a model of sexual populations structured by a phenotypic trait, represented by a
continuous variable x ∈ R. Denoting by f(t, ·) the population density at time t ⩾ 0 in the trait
space, the model we are interested in is the following :{

∂tf(t, x) = B0[f(t, ·)](x)−m(x)f(t, x), t ⩾ 0,

f(0, x) = f0(x),
(1)

where B0 is the trait inheritance operator, defined as, for x ∈ R,

B0[f ](x) :=

∫∫
R2

δ0

(
x− z1 + z2

2

)
f(z1)

f(z2)∫
R f(z′) dz′

dz1 dz2, (2)

with δ0 the Dirac measure. We interpret this last quantity as a the number of newborns with
trait x per unit of time, and thus we refer to it as the reproduction term. With the operator B0, it
is assumed that newborns inherit exactly the mean of the parental traits 1

2(z1+z2). This mixing
operator also features a normalization by the total mass of the population density

∫
R f(z′)dz′,

to illustrate that the choice of a partner is made at constant rate in time, uniformly among the
whole population. We assume the selection rate m to be bounded below.

In the present work, we investigate the long time behavior of f . More precisely, we prove the
local stability of some particular Dirac masses, and the convergence of a rescaled formulation
of f to a stationary state with a measure-adapted Fourier distance.
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The model (1) is motivated by works on the Fisher infinitesimal model [4, 22], with the
following operator Bε :

Bε[f ](x) :=
1

ε
√
π

∫∫
R2

exp

[
− 1

ε2

(
x− z1 + z2

2

)2
]
f(z1)

f(z2)∫
R f(z′) dz′

dz1 dz2.

which describes the offspring traits as normally distributed around the mean of the parental
traits with small variance of order ε2. This model has been used in theoretical evolutionary
biology [8]. From a mathematical point of view, the Fisher infinitesimal operator appears in the
works [29, 35], where a different scaling than the small variance is used, and a spatial structure is
added to study invasions. The authors show a derivation of the Kirkpatrick-Barton system [25]
at a limit of a large reproduction rate. Also the infinitesimal operator is included in a selection-
competition model in [18] with a population evolving between two habitats and a regime of small
phenotypic variance compared to the environment heterogeneity. In [36], the Fisher infinitesimal
operator is combined with a multiplicative selection one. The author showed local uniqueness
of a steady state and exponential convergence of the solution for weak selection effects, thanks
to a contraction property of the reproduction operator for the 2-Wasserstein distance, under
the assumption of a compactly supported selection rate. A time-discrete version of the Fisher
infinitesimal model, with a quadratic selection rate and non-overlapping generations, is analyzed
in [10, 11], within a framework other than the Wasserstein one.

The study of the asymptotic behavior of the Fisher infinitesimal model with an appropriate
time scaling has been tackled in [9, 31]. The authors study the concentration of the population
distribution around some particular traits. More precisely, in the first work the authors studied
the special stationary states at a regime of small variance, while in the second one the author
considered the associated Cauchy problem in the same regime, showing that solutions can be
approximated by Gaussian profiles with small variance. The asymptotic framework was built on
the spirit of [20] with small variance limit for asexual population models.

Also, similar operators as Bε have been studied in different contexts : alignment [17], protein
exchanges [27], among other works. Mathematical models of sexual populations have recently
received some attention, with variations of the reproduction term, to account for mating prefer-
ences [16, 26], asymmetrical inheritance [32] and allelic structure [15, 19].

In the present study, the main ingredients, coming from kinetic theory, are the estimation
on the evolution of moments and the Fourier distance for measures. Indeed, the operator B0

shares similarities with kinetic models of inelastic collisions. The idea of using the Fourier
transform for Boltzmann-type equations goes back to the works of A. V. Bobylev in [6, 7] and the
resulting equation has also been studied in [33]. Then, the Fourier distance has been employed
in [23] to investigate the trend to equilibrium of the solutions to the Boltzmann equation for
Maxwell molecules, and then has been adapted for other kinetic models of Boltzmann type,
e.g. [5, 21, 28, 30, 34], where the formation of overpopulated tails is observed. Indeed, by the
use of the Fourier transform of the collision operators, the equation on f̂ is simpler than the one
for f . This is also the case here for the operator B0 defined in (2) since we have

B̂0(f)(ξ) = f̂(ξ/2)2,

which makes the use of Fourier metrics possible.
Apart from the trait mixing operator, our model also differs from the ones considered by

these mentioned works in the selection component. This component is described by a trait-
dependent mortality rate and is considered as being a constraint on the phenotypic variability
of the population. This affects the properties of the solution : there is no more conservation of
mass, neither of the center of mass, and the evolution equation for the second moment is not
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closed. In the mentioned works on kinetic models, the proof of the convergence of the solution
strongly relies on a contraction property of the collision operator in the Fourier distance and the
estimation of the moments of the distribution. In the present work, we take the same approach
with, in addition, the estimation of quantities derived from the selection rate, which helps to
tackle the loss of conservation of the center of mass.

The work is organized as follows. In Section 2, we establish the existence and uniqueness
of the solution of (1) in the sense of measures, we also define the moments of the centered
and normalized solution and state some properties that they satisfy. Finally, we also derive
the equation on the Fourier transform of the centered and rescaled formulation of the solution.
In Section 3, we provide a local stability result of Dirac masses and derive estimates on the
exponential decay in time of the moments. In Section 4, we prove the long time convergence of
the centered and rescaled solution to a stationary self-similar profile.

1.2 Assumptions and main results

We outline in this section the assumptions we use and the main results that we prove throughout
the present work.

First, we state the existence and uniqueness of the solution to (1) in the sense of measures.
Denoting M+ the set of nonnegative Borel measures with finite mass, we use the following
definition of a measure solution.

Definition 1.1. If f0 ∈ M+, we say that f ∈ C([0, T ],M+) is a weak solution to the model (1)
if, for any Borel set A ⊂ R, we have for all t ∈ [0, T ]:∫

A
f(t, x)dx =

∫
A
e−m(x)tf0(x)dx+

∫ t

0

∫
A
e−m(x)(t−s)B0[f(s, ·)](x)dx ds. (3)

The existence and uniqueness result is given by the following theorem that we prove in
Section 2.1.

Theorem 1.1. If m is a measurable function and is bounded below, then for any f0 ∈ M+, and
for any T > 0, there exists a unique weak solution f ∈ C([0, T ],M+) to the model (1), in the
sense of Definition 1.1.

The proof of Theorem 1.1 relies on standard arguments of fixed point construction using a
distance based on the total variation of a measure.

Next, we focus on the study of the moments of f . As a first step, we derive a control on the
time propagation of the initial moments of f , which enables to define the moments of f at any
time. Namely, defining for any finite nonnegative measure ν, when

∫
R |x|kν(x)dx is finite, its

moment of order k by

µk(ν) :=

∫
R
xkν(x)dx,

the moments of f(t, ·), denoted by µk(f(t, ·)) are well defined for all time as soon as they are
finite initially. Moreover, we prove that these moments are continuous and, for k even, that they
satisfy some kind of differential inequalities, which will be used to establish estimates on the
centered moments of the normalized density, denoted by

g(t, x) =
f(t, x)∫

R f(t, z) dz
.

We aim to get some regularity on the centered moments of g in order to determine the long
time behavior of its centered and standardized formulation, which we will also call self-similar
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profile throughout this work. For this purpose, we add the following assumption of the selection
rate m.

Assumption 1.1. We suppose that m is measurable and that there exist constants K ⩾ 0
and C ⩾ 0 such that for all x ∈ R, we have

−K ⩽ m(x) ⩽ C(1 + x2).

A first consequence of this assumption is that the time derivative of the moment of order k
of f can be expressed with the lower order moments at any time, provided that the initial data has
a finite moment of order k+2. This implies that, in this case, the moments of f are continuously
differentiable. Note that we do not impose the selection rate to be nonnegative. This may be
interpreted as a supplementary asexual reproduction rate favored by the environment.

Then, we define the centered moments of g and the centered variations of m by the quantities

Mk(t) =

∫
R

(
x− x(t)

)k
g(t, x)dx, (4)

Sk(t) =

∫
R

(
x− x(t)

)k(
m(x)−m(x(t))

)
g(t, x)dx, (5)

with x(t) the center of mass at time t,

x(t) :=

∫
R
xg(t, x) dx =

µ1(f(t, ·))
ρ(t)

, (6)

and we denote their initial values by M0
k , S0

k , x
0. We obtain differential equations on the centered

moments of g for any k ⩾ 2, assuming that f0 has a finite moment of order k + 2. In the case
where k ⩾ 4 is even and f0 has only a moment of order k, we get a differential inequality on Mk.

A quantity that appears to be important in our study of these differential inequalities is the
shifted deviation of m from its minimum, defined as

η(x) = inf
R

m+
1

2
−m(x), (7)

which is a quantity not exceeding 1
2 (and which is positive if the excess of mortality is less than 1

2).
For instance, when f has initially a fourth moment, we obtain

d

dt
x = −S1, (8)

d

dt
M2 = −1

2
M2 − S2 + S0M2, (9)

d+

dt
M4 ⩽ −

(3
8
+ η(x)− S0

)
M4 +

3

8
M2

2 + 4S1M3, (10)

where we have written d+

dt M4(t) := lim supτ→0,τ>0
M4(t+τ)−M4(t)

τ .
One can see that we always have S2 ⩾ (η(x)− 1

2)M2, and therefore the differential equation (9)
for M2 gives d

dtM2 ⩽ −(η(x)− S0)M2. We expect the variation S0 to be small, and we will see
that a criterion for exponential decay of M2 is indeed that η(x) is initially positive.

With these differential equations and inequations, we aim to derive time estimates on the
centered moments Mk. To do so, we need to have some bounds concerning the regularity and
growth of the selection rate, which we state in the following assumption, which is for instance
satisfied when m is C2 with bounded second derivative, or when m is Lipschitz. Notice that this
allows to cover the cases of selection rates with quadratic growth.
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Assumption 1.2. We suppose that there exists a continuous nonnegative function α and a
constant β ⩾ 0 such that for all x, y ∈ R, we have

|m(x)−m(y)| ⩽ α(y)|x− y|+ β|x− y|2.

With this last assumption on the growth of m, we prove the stability of Dirac masses around
positions x0 for which the excess of mortality compared to its minimum value is less than 1

2 ,
that is to say η(x0) > 0. We show that if the center of mass at initial time is at such a position
and if M0

4 is small enough (which means that the initial normalized profile g0 is close to a Dirac
mass), then the center of mass converges to some limit, and the moments M2 and M4 decrease
exponentially to 0 at long time, as stated in the following theorem.

Theorem 1.2. Under Assumption 1.2, we suppose that initially we have η(x0) > 0. Then, for
all δ such that 0 < δ < η(x0), if M0

4 is sufficiently small, we have for all t > 0:

η(x(t)) ⩾ δ, (11)

M2(t) ⩽ M0
2 e

−δt, (12)

M4(t) ⩽ M0
4 e

−δt. (13)

Furthermore, in that case, x(t) converges exponentially fast towards some x∞ ∈ R. Consequently
it means that if g is initially sufficiently close to a Dirac mass located at x0 (in 4-Wasserstein
distance), then it converges exponentially fast to the Dirac mass at x∞.

Thanks to this stability result and the regularity on the moments, we can define the Fourier
transform of the centered and rescaled formulation of g and then characterize its convergence to
a limit profile at long time, as announced in the beginning of this work.

Indeed, in order to investigate the long time behavior of the solution to (1), we make use of
the following Fourier distance

ds(γ1, γ2) := sup
ξ ̸=0

|γ̂1(ξ)− γ̂2(ξ)|
|ξ|s

, (14)

which is defined when γ1 and γ2 are some measures that have same moments up to order p ∈ N,
with respective Fourier transforms γ̂1 and γ̂2, and s ⩾ p to be determined.

For all ξ ∈ R, we can define the Fourier transform of f solution to (1) on the trait variable

f̂(t, ξ) := f̂(t, ·)(ξ) =
∫
R
e−iξxf(t, x)dx.

Thus, to apply the Fourier distance (14) on measures that have same moments up to order 2, we
define γ(t, ·) as the rescaled and centered formulation of g(t, ·), or associated self-similar profile,

γ(t, x) :=
√
M2(t) g

(
t,
√
M2(t)x+ x(t)

)
. (15)

Then, we obtain that the Fourier transform satisfies the equation

∂tγ̂(t, ξ) = γ̂(t, ξ2)
2 − γ̂(t, ξ) +

1

4
ξ∂ξγ̂(t, ξ) +R(t, ξ),

in which the term R(t, ξ) comprises all the quantities generated by the selection rate m. Thus, R
depends on some of the moments Mk and Sk, because of the formulation of γ and of the equa-
tions (8) and (9).
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So, this last equation on γ̂ is divided into an operator applied only on γ̂, which comes from
the Fourier formulation of the reproduction operator B0 for probability distributions, and the
remaining term R that we expect to become small at long time, because of the stability result
on the center of mass of g and the estimates on the moments stated in Theorem 1.2.

In fact, it appears that the estimates on Mk obtained at this point are not sufficient to control
the remaining term R. More precisely, we need to specifically quantify the exponential decay of
the moments M2 and M4, and also to derive a control on the ratio M2k

M2
. With the assumptions

of Theorem 1.2, we are able to improve the rates of convergence of the moments. First, we start
by refining the estimates on M2 and M4 alone thanks to (9)-(10), then we obtain better rates
of convergence for higher order moments, which finally are propagated back in the differential
equations for lower moments to obtain precise estimates for all moments.

However, this is not sufficient to get a lower bound on the behaviour of M2, which happens to
be crucial to control the remainder R. To this aim, we make a stronger assumption on the initial

condition, by starting with an initial profile g0 such that
M0

2k0

M0
2

is small (for some k0 large enough).
This is not necessarily the case for any profile close to a Dirac mass, but if we take any profile
centered around x0 (with finite moment of order 2k0) and we shrink it by some large factor, we
satisfy this assumption. In this framework we are able to obtain precise rates of convergence, as
follows.

Theorem 1.3. Under the assumptions of Theorem 1.2, we take k0 ⩾ 2 such that 1
22k0−1 < δ,

and we suppose that
M0

2k0

M0
2

is sufficiently small. Then,

• there exists Ck0

(M0
2k0

M0
2

)
> 0, converging to 1 as

M0
2k0

M0
2

→ 0 such that

M2(t) ⩾ Ck0

(M0
2k0

M0
2

)
M0

2 e
− t

2 ,

• for all k ⩾ 2 (with k ⩽ k0) and for all λ < min(12 − 1
22k−1 , δ0 − 1

22k0−1 ), there ex-

ists C̃λ,k

(M0
2k0

M0
2

)
> 0, converging to 0 as

M0
2k0

M0
2

→ 0 such that

M2k(t)

M2(t)
⩽ C̃λ,k

(M0
2k0

M0
2

)
e−λt.

Interestingly, we obtain that the rate of convergence for M2 is 1
2 , even when δ is very small.

Finally, the last theorem states the convergence in the Fourier distance of the profile γ to a
stationary profile γ∞, which is identified in [3, 12], when t goes to +∞, as

γ∞(x) =
2

π(1 + x2)2
, (16)

or given by
γ̂∞(ξ) = (1 + |ξ|)e−|ξ|.

Theorem 1.4. Under the assumptions of Theorem 1.3, if there exists some k0 ⩾ 3 such

that 1
22k0−1 < δ and

M0
2k0

M0
2

is small enough, then we have that, for some values of s ∈ (2, 3),
there exists a constant L > 0 such that

ds(γ, γ∞)(t) ⩽
(
ds(γ0, γ∞) + L

)
e−λst,

with λs := 1− s
4 − 21−s, which is positive for s ∈ (2, 3).
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Remark 1.1. When δ − 1
22k0−1 > 1

4 , this estimation is valid for all s ∈ (2, 3). Otherwise,
there exist 2 < s0 < s̄ < 3 such that this estimation is valid on (2, s0). For s = s0 we ob-
tain ds0(γ, γ∞)(t) ⩽

(
ds0(γ0, γ∞) + Lt

)
e−λs0 t, and for s ∈ (s0, s̄), we obtain that there exists a

constant cs ∈ (0, λs) such that

ds(γ, γ∞)(t) ⩽ ds(γ0, γ∞)e−λst + Le−cst.

In all these situations, the constant L depends on δ, s and the initial moments M0
2k for 1 ⩽ k ⩽ k0.

To prove this last theorem, we prove a contraction property on the reproduction operator B0

in the distance ds, which is due to the quadratic formulation of its Fourier transform, and combine
it with the results of Theorems 1.2 and 1.3 that enable to control the remainder R.

2 General results

2.1 Global existence and uniqueness of measure solutions

We want to give a meaning to our model (1) for an arbitrary nonnegative measure of finite mass
on R. If f is a smooth solution of (1), thinking of B0[f(t, ·)](x) as a prescribed source term, we
can interpret (1) pointwise for every x ∈ R as an ordinary differential equation in time, therefore
for all t ⩾ 0 and for all x ∈ R we have

f(t, x) = f0(x)e−m(x)t +

∫ t

0
e−m(x)(t−s)B0[f(s, ·)](x)ds,

and this will be the starting point of our definition of a measure solution. In the following, we
will often use the abusive notation f(x)dx even if f is only a measure (or f(t, x)dx if the measure
depends on time). Similarly, if h a measurable function in R, we may write φ(x) = h(x)f(x) to
define a signed measure φ, even if f is only a measure.

We denote by M the space of finite signed (Borel) measures on R. Using the total variation
norm defined by

∥ν∥TV = sup
n∑

i=1

|ν(Ai)|,

where the supremum is taken over all finite partitions of R by Borel sets (Ai)1⩽i⩽n, this turns M
into a Banach space [14].

Furthermore, we have that for any measurable function h taking values in [−H,H], we have∣∣∣ ∫
R
h(x)dν(x)

∣∣∣ ⩽ H∥ν∥TV ,

and therefore we obtain that ∥ν∥TV = sup |
∫
R h(x)dν(x)| where the supremum is taken over all

measurable function h taking values in [−1, 1].
The set M+ ⊂ M of nonnegative measures with finite mass is a closed subspace of M.

Indeed, if νn converges to ν in total variation norm, then we have |νn(A)−ν(A)| ⩽ ∥νn−ν∥TV → 0
for all Borel set A ⊂ R, thus νn(A) → ν(A). So, if νn is a nonnegative measure for all n, then ν
is also nonnegative.

Notice that if ν ∈ M+, then B0[ν] also belongs to M+, has same mass, and for all bounded
(or nonnegative) and measurable h we have∫

R
h(x)B0[ν](x)dx =

∫
R×R h

(y+z
2

)
ν(y)dy ν(z)dz∫

R ν(x)dx
, (17)
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when ν has positive mass (thus the conservation of mass is obtained with h = 1), and B0[ν] = 0
if ν is the zero measure.

We are therefore ready to study the properties of measure solutions of our model (1), given
by Definition 1.1. Notice that all terms in (3) are well defined as nonnegative integrals, and
if m is measurable and bounded below, they are finite, since x 7→ e−m(x)t is measurable and
bounded for t ⩾ 0. Consequently, if f is a weak solution and h is a measurable bounded (resp.
nonnegative) function, being a uniform (resp. monotone) limit of a sequence of measurable
simple functions, we have :∫

R
h(x)f(t, x)dx =

∫
R
h(x)e−m(x)tf0(x)dx+

∫ t

0

∫
R
h(x)e−m(x)(t−s)B0[f(s, ·)](x)dx ds. (18)

Thanks to this property, we can have a useful semigroup property for the solutions of our
model.

Proposition 2.1. Let t0 > 0. If f is a weak solution to the model (1), then t 7→ f(t0 + t, ·) is
also a solution for the initial condition f(t0, ·).

Proof. We fix t > 0. If A is a Borel set, we have∫
A
f(t0 + t, x)dx =

∫
A
e−m(x)(t0+t)f0(x)dx+

∫ t0+t

0

∫
A
e−m(x)(t0+t−s)B0[f(s, ·)](x)dx ds.

=

∫
A
e−m(x)(t0+t)f0(x)dx+

∫ t0

0

∫
A
e−m(x)(t0+t−s)B0[f(s, ·)](x)dx ds

+

∫ t

0

∫
A
e−m(x)(t−s)B0[f(t0 + s, ·)](x)dx ds.

Since the function 1A(x)e
−m(x)t is measurable (and nonnegative), we have thanks to (18) that

the first two terms of the right-hand side of this last equality combine and we get∫
A
f(t0 + t, x)dx =

∫
A
e−m(x)tf(t0, x)dx+

∫ t

0

∫
A
e−m(x)(t−s)B0[f(t0 + s, ·)](x)dx ds,

and this ends the proof.

We proceed to the proof of Theorem 1.1, which provides global existence and uniqueness of
solutions to (1) in M+.

Proof. First of all, we need to study some contraction properties of B0. If h is a measurable
function from R to [−H,H], and ν, ν̃ ∈ M+, we write ρ =

∫
R ν(x)dx and ρ̃ =

∫
R ν̃(x)dx and we

have, when ρ, ρ̃ > 0,∣∣∣ ∫
R
h(x)B0[ν](x)dx−

∫
R
h(x)B0[ν̃](x)dx

∣∣∣
=
∣∣∣∫R×R h

(y+z
2

)
ν(y)dy ν(z)dz

ρ
−
∫
R×R h

(y+z
2

)
ν̃(y)dy ν̃(z)dz

ρ̃

∣∣∣
⩽
∣∣∣∫R×R h

(y+z
2

)
ν(y)dy ν(z)dz

ρ
−
∫
R×R h

(y+z
2

)
ν(y)dy ν̃(z)dz

ρ

∣∣∣
+
∣∣∣∫R×R h

(y+z
2

)
ν(y)dy ν̃(z)dz

ρ
−
∫
R×R h

(y+z
2

)
ν(y)dy ν̃(z)dz

ρ̃

∣∣∣
+
∣∣∣∫R×R h

(y+z
2

)
ν(y)dy ν̃(z)dz

ρ̃
−
∫
R×R h

(y+z
2

)
ν̃(y)dy ν̃(z)dz

ρ̃

∣∣∣
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⩽

∫
R
∣∣ ∫

R h
(y+z

2

)
ν(z)dz −

∫
R h
(y+z

2

)
ν̃(z)dz

∣∣ν(y)dy
ρ

+
∣∣∣1
ρ
− 1

ρ̃

∣∣∣ ∫
R×R

∣∣h(y + z

2

)∣∣ν(y)dy ν̃(z)dz
+

∫
R
∣∣ ∫

R h
(y+z

2

)
ν(y)dy −

∫
R h
(y+z

2

)
ν̃(y)dy

∣∣ ν̃(z)dz
ρ̃

⩽ 2H∥ν − ν̃∥TV +H|ρ̃− ρ|.

We actually have ρ = ∥ν∥TV (since ν is nonnegative) and ρ̃ = ∥ν̃∥TV , therefore we obtain∣∣∣ ∫
R
h(x)B0[ν](x)dx−

∫
R
h(x)B0[ν̃](x)dx

∣∣∣ ⩽ 3H∥ν − ν̃∥TV , (19)

and one easily checks that this inequality is still valid if ρ = 0 or ρ̃ = 0.

We now fix f0 ∈ M+ and T > 0. For any fixed L > 0 (to be determined later on), the
space X = C([0, T ],M) with the norm

∥f∥X = sup
t∈[0,T ]

e−Lt∥f(t, ·)∥TV ,

is a Banach space. The subset X+ = C([0, T ],M+) of nonnegative finite measures varying
continuously in time is a closed subset of X , and we will construct a fixed point by Picard
iteration on this complete metric space.

For f ∈ C([0, T ],M+), we denote Φ(f) the time-dependent measure defined for all Borel
set A ⊂ R by∫

A
Φ(f)(t, x)dx =

∫
A
e−m(x)tf0(x)dx+

∫ t

0

∫
A
e−m(x)(t−s)B0[f(s, ·)](x)dx ds, (20)

and we are therefore looking for a fixed point in X+ of the operator Φ. Let us first check that Φ
is well-defined from X+ to itself.

If h : R → [−1, 1] is a measurable function, being a uniform limit of a sequence of measurable
simple functions, we have∫

R
h(x)Φ(f)(t, x)dx =

∫
R
h(x)e−m(x)tf0(x)dx+

∫ t

0

∫
R
h(x)e−m(x)(t−s)B0[f(s, ·)](x)dx ds.

Then, taking K ⩾ 0 such that m is bounded below by −K, we obtain, for t, t′ ⩾ 0,∣∣∣ ∫
R
h(x)Φ(f)(t′, x)dx−

∫
R
h(x)Φ(f)(t, x)dx

∣∣∣
⩽
∫
R
|e−m(x)t′ − e−m(x)t|f0(x)dx+

∫ t′

t

∫
R
|e−m(x)(t′−s)|B0[f(s, ·)](x)dx ds

+

∫ t

0

∫
R
|e−m(x)(t′−s) − e−m(x)(t−s)|B0[f(s, ·)](x)dx ds

⩽ KeKT |t′ − t|∥f0∥TV +

∫ t

0
KeKT |t′ − t|∥f(s, ·)∥TV ds+

∫ t′

t
eKT ∥f(s, ·)∥TV ds,

where we used the fact that e−m(x)t is KeKT -Lipschitz in time for all x ∈ R, and the fact that
the total mass of B0[f(s, ·)] (which is its total variation since f is nonnegative) is the same as
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the one of f(s, ·). Furthermore we have ∥f(s, ·)∥TV ⩽ eLs∥f∥X ⩽ eLT ∥f∥X for all s ∈ [0, T ].
Therefore we obtain

∥Φ(f)(t′, ·)− Φ(f)(t, ·)∥TV ⩽ (KeKT ∥f0∥TV + (KT + 1)e(K+L)T ∥f∥X )|t′ − t|,

showing that t 7→ Φ(f)(t, ·) is continuous in time (and actually Lipschitz). Notice that since
all the measures in the definition of Φ are nonnegative, we get that Φ(f)(t, ·) is a nonnegative
measure for all time, and the operator Φ therefore sends X+ into itself.

For f, f̃ ∈ X+, we fix a measurable function h : R → [−1, 1], and we compute similarly,
thanks to (19)∣∣∣ ∫

R
h(x)Φ(f)(t, x)dx−

∫
R
h(x)Φ(f̃)(t, x)dx

∣∣∣
⩽
∫ t

0

∣∣∣ ∫
R
h(x)e−m(x)(t−s)B0[f(s, ·)](x)dx−

∫
R
h(x)e−m(x)(t−s)B0[f̃(s, ·)](x)dx

∣∣∣ds
⩽
∫ t

0
3eKT ∥f(s, ·)− f̃(s, ·)∥TV ds

⩽
∫ t

0
3eKT ∥f − f̃∥X eLs ds =

3eKT

L
(eLt − 1)∥f − f̃∥X ,

which shows that

∥Φ(f)(t, ·)− Φ(f̃)(t, ·)∥TV ⩽
3eKT

L
eLt∥f − f̃∥X ,

and therefore

∥Φ(f)− Φ(f̃)∥X ⩽
3eKT

L
∥f − f̃∥X .

So, for L > 3eKT , Φ is a contraction and therefore has a unique fixed point in X+.

2.2 Evolution of moments

In order to investigate the large time behavior of a solution f , we will need to control the
moments. The key observation is that any bound on finite moments is preserved by B0.

Lemma 2.1. If ν ∈ M+, then for all k ∈ N,
∫
R |x|kB0[ν](x)dx ⩽

∫
R |x|kν(x)dx. Furthermore,

if
∫
R |x|kν(x)dx is finite and ν has positive mass, all the moments up to order k are well defined

and we have

µk(B0[ν]) =
k∑

j=0

(
k

j

)
µj(ν)µk−j(ν)

2kµ0(ν)
. (21)

Proof. Let us remark that both sides of the first inequality are well defined as nonnegative
integrals. We suppose that

∫
R |x|kν(x)dx is finite and that ν has positive mass, thanks to (17)

we get : ∫
R
|x|kB0[ν](x)dx =

∫
R×R

|y+z|k
2k

ν(y)dy ν(z)dz∫
R ν(x)dx

⩽

∑k
j=0

(
k
j

) ∫
R |y|jν(y)dy

∫
R |z|k−jν(z)dz

2k
∫
R ν(x)dx

.

Then, by Hölder inequality, for 0 ⩽ j ⩽ k we obtain∫
R
|y|jν(y)dy ⩽

(∫
R
ν(x)dx

)1− j
k
(∫

R
|x|kν(x)dx

) j
k
,
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and we therefore get∫
R
|x|kB0[ν](x)dx ⩽

∑k
j=0

(
k
j

)( ∫
R ν(x)dx

)( ∫
R |x|kν(x)dx

)
2k
∫
R ν(x)dx

=

∫
R
|x|kν(x)dx.

Now, by using the dominated convergence theorem, we can approximate xk by a bounded
measurable function hN (x), for instance by setting

hN (x) =


(−N)k if x ⩽ −N

xk if −N ⩽ x ⩽ N

Nk if x ⩾ N,

(22)

and obtain, by applying (17) to hN , that in the limit N → ∞, we have∫
R
xkB0[ν](x)dx =

∫
R×R

(y+z)k

2k
ν(y)dy ν(z)dz∫

R ν(x)dx
,

=

∑k
j=0

(
k
j

) ∫
R yjν(y)dy

∫
R zk−jν(z)dz

2k
∫
R ν(x)dx

.

which is then well-defined and provides the formula (21).

Thanks to this property, we can now give the proof of the following proposition, which shows
that finiteness of moments is propagated in time.

Proposition 2.2. Let f0 ∈ M+, m be measurable and bounded below by −K ⩽ 0, and f be the
global solution to the model (1) given by Theorem 1.1. If for some k ∈ N,

∫
R |x|kf0(x)dx < +∞,

then for all t ⩾ 0, we have ∫
R
|x|kf(t, x)dx ⩽ e(K+1)t

∫
R
|x|kf0(x)dx.

Proof. Back to the Picard iteration sequence (fn)n with fn+1 = Φ(fn) and f0 = f0, where Φ is
defined in (20) in the proof of Theorem 1.1, we proceed by induction and assume as the induction
hypothesis for n ⩾ 0 that ∫

R
|x|kfn(t, x)dx ⩽ e(K+1)t

∫
R
|x|kf0(x)dx.

Then we have, since hN (x) defined in (22) is bounded and measurable,∫
R
|hN (x)|fn+1(t, x)dx =

∫
R
e−m(x)t|hN (x)|f0(x)dx

+

∫ t

0

∫
R
e−m(x)(t−s)|hN (x)|B0[fn(s, ·)](x)dxds

⩽ eKt

∫
R
|x|kf0(x)dx+

∫ t

0
eK(t−s)

∫
R
|hN (x)|B0[fn(s, ·)](x)dxds.

By Lemma 2.1 and the induction hypothesis, we obtain∫
R
|hN |(x)fn+1(t, x)dx ⩽

(
eKt +

∫ t

0
eK(t−s)e(K+1)sds

)∫
R
|x|kf0(x)dx

=

(
1 +

∫ t

0
esds

)
eKt

∫
R
|x|kf0(x)dx = e(K+1)t

∫
R
|x|kf0(x)dx.

11



By construction of f , passing to the limit n → ∞ we obtain∫
R
|hN (x)|f(t, x)dx ⩽ e(K+1)t

∫
R
|x|kf0(x)dx.

By monotone convergence theorem, we can pass to the limit N → ∞ to get∫
R
|x|kf(t, x)dx ⩽ e(K+1)t

∫
R
|x|kf0(x)dx.

Thanks to these bounds, we will obtain more precise properties on the evolution of the
(even) moments of the solution. In some cases, we do not necessarily have that the moments
are differentiable in time, but we obtain estimates similar to differential inequalities. A good
framework to work with continuous functions of time is set in the following lemma.

Lemma 2.2. Given t 7→ y(t) a function of time, we write

d+

dt
y(t) = lim sup

τ→0,τ>0

y(t+ τ)− y(t)

τ
.

Then, for any T > 0, if y is continuous and satisfies d+

dt y(t) ⩽ 0 on [0, T ], then it is nonincreasing
on [0, T ].

Consequently, if, for some integrable functions a and b, we have a continuous function y
satisfying the following Grönwall-like estimate for all time t ∈ [0, T ]:

d+

dt
y(t) ⩽ a(t)y(t) + b(t),

then we have for all t ∈ [0, T ],

y(t) ⩽ y(0)e
∫ t
0 a(s)ds +

∫ t

0
b(u)e

∫ t
u a(s)dsdu.

Proof. The proof (by contraposition) is based on a result similar to the mean value theorem :
if there exist some times t0 < t1 such that y is continuous on [t0, t1] and y(t0) < y(t1), then
there exists t∗ ∈ [t0, t1) such that lim inf

τ→0,τ>0

y(t∗+τ)−y(t∗)
τ ⩾ y(t1)−y(t0)

t1−t0
. Thus, we can conclude

that d+

dt y(t∗) ⩾ y(t1)−y(t0)
t1−t0

> 0. Surprisingly, we see that we only need the liminf of the slope
to be nonpositive to show that a continuous function is nonincreasing (the proof also works for
lower-semicontinuous functions). This result may be classical, but we did not find any reference,
this is why we include the proof here.

To show the claimed result, if there exist such times t0 and t1, we introduce

z(s) = y((1− s)t0 + st1)− (1− s)y(t0)− sy(t1).

The function z is continuous on [0, 1], and satisfies z(0) = z(1) = 0. Therefore it reaches its
minimum on s∗ ∈ [0, 1], and without loss of generality we may assume s∗ ̸= 1 (since in that case
the minimum is also reached at s = 0). We therefore get lim infs→s∗,s>s∗

z(s)−z(s∗)
s−s∗

⩾ 0, which
corresponds to the claim, with t∗ = (1− s∗)t0 + s∗t1.

Finally, the resolution of the Grönwall-like estimate is a direct consequence of the first part
of the lemma, by setting z(t) = y(t)e−

∫ t
0 a(s)ds −

∫ t
0 b(u)e

−
∫ u
0 a(s)dsdu. Then the continuous

function z is such that d+

dt z ⩽ 0, therefore nonincreasing.

We are now ready to provide this kind of estimates for the even moments of the solution,
which will be useful when we derive estimates for the moments of the centered and normalized
distribution. We proceed to the proof of the following proposition.
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Proposition 2.3. Let f0 ∈ M+, m be measurable and bounded below by −K ⩽ 0, and f be the
global solution to the model (1) given by Theorem 1.1.

For k ⩾ 0, if
∫
R |x|kf0dx < +∞, then t 7→ µk(f(t, ·)) is continuous. Furthermore, if k is

even, for all t ⩾ 0, we have

d+

dt
µk(f(t, ·)) ⩽ µk(B0[f(t, ·)]) +Kµk(f(t, ·)). (23)

Proof. We fix T > 0. For 0 ⩽ t < t+ τ < T , and hN as in (22), we write, thanks to (18) and to
Proposition 2.1 :∫

R
hN (x)f(t+ τ, x)dx =

∫
R
e−m(x)τhN (x)f(t, x)dx

+

∫ τ

0

∫
R
e−m(x)(τ−s)hN (x)B0[f(t+ s, ·)](x)dxds.

By dominated convergence as N → +∞, thanks to Lemma 2.1, Proposition 2.2 and the fact
that m(x) ⩾ −K, we obtain

µk(f(t+ τ, ·)) =
∫
R
e−m(x)τxkf(t, x)dx+

∫ τ

0

∫
R
e−m(x)(τ−s)xkB0[f(t+ s, ·)](x)dxds. (24)

In particular, by setting t = 0 and writing t instead of τ , we get that for all t ⩾ 0,

µk(f(t, ·)) =
∫
R
e−m(x)txkf0(x)dx+

∫ t

0

∫
R
e−m(x)(t−s)xkB0[f(s, ·)](x)dxds. (25)

We write this expression under the form µ(f(t, ·)) = y(t) +
∫ T
0 z(t, s)ds, by setting

y(t) =

∫
R
e−m(x)txkf0(x)dx,

z(t, s) =

{∫
R e−m(x)(t−s)xkB0[f(s, ·)](x)dx if s < t

0 if s ⩾ t
.

By dominated convergence, since e−m(x)t|x|k ⩽ eKT |x|k which is f0 integrable, we obtain
that y is continuous on [0, T ]. Similarly t 7→ z(t, s) is continuous on (s, T ] (thanks to Proposi-
tion 2.2, Lemma 2.1 and the fact that m(x) ⩾ −K) and we also have

|z(t, s)| ⩽ eK(t−s)

∫
R
|x|kf(s, x)dx ⩽ eK(t−s)+(K+1)s

∫
R
|x|kf0(x)dx.

Consequently, z(t, s) is uniformly bounded on [0, T ]2 by some C > 0.
Obviously, t 7→ z(t, s) is also continuous on [0, s), since it is equal to zero. We now want to

prove that t 7→
∫ T
0 z(t, s)ds is continuous. We fix t0 ∈ [0, T ], and we have that for all s ̸= t0, z(t, s)

converges to z(t0, s) as t → t0, by the continuity properties of z. So by dominated convergence,
we get that

∫ T
0 z(t, s)ds converges to

∫ T
0 z(t0, s)ds as t → t0. This ends the proof of the time

continuity of µk(f(t, ·)).
We now suppose that k is even. From (24), we obtain

µk(f(t+ τ, ·)) ⩽ µk(f(t, ·))eKτ +

∫ τ

0
eK(τ−s)µk(B0[f(t+ s, ·)])ds

⩽ eKτ
(
µk(f(t, ·)) +

∫ τ

0
µk(B0[f(t+ s, ·)])ds

)
.
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We therefore obtain

µk(f(t+ τ, ·))− µk(f(t, ·))
τ

⩽
eKτ − 1

τ
µk(f(t, ·)) +

eKτ

τ

∫ τ

0
µk(B0[f(t+ s, ·)])ds. (26)

By the formula (21) and the fact that all moments of f of order j ⩽ k are continuous in time,
we get that t 7→ µk(B0[f(t, ·)]) is continuous, and therefore the right-hand side of (26) converges
to Kµk(f(t, ·)) + µk(B0[f(t, ·)]) as τ → 0, and this proves (23).

2.3 Centered moments of the normalized population density

To obtain estimates on the centered moments of f , the inequalities provided by Proposition 2.3
will not be sufficient ; we will first need a more precise description of the evolution of the
moments µk (in particular we will have to compute the time derivatives of µ0 and µ1). To this
aim, we make the stronger assumption 1.1 on the growth of m.

Under this assumption, if f0 has finite second moment, then the evolution of quantities of the
form

∫
h(x)f(t, x)dx (when h is measurable and bounded) provides a simpler weak formulation

of (1), as stated in the next proposition.

Proposition 2.4. Under assumption 1.1, we suppose that f0 has finite second moment and
denote by f the global solution to the model (1) given by Theorem 1.1. Then for all measurable
and bounded function h, the quantity

∫
R h(x)f(t, x)dx is differentiable in time and we have

d

dt

(∫
R
h(x)f(t, x)dx

)
=

∫
R
h(x)

(
B0[f(t, ·)](x)−m(x)f(t, x)

)
dx. (27)

Proof. From Proposition 2.2 and Assumption 1.1, for all measurable and bounded function h, we
want to obtain dominations of the time derivatives of the integrands appearing in (18) on [0, T ].
First of all, we have

|h(x)m(x)e−m(x)t| ⩽ CeKT (1 + x2) sup
R

|h|,

and the right-hand side is f0-integrable, therefore by dominated convergence theorem we get
that the term

∫
R h(x)e−m(x)tf0(x)dx is differentiable in time. We also have for all s ∈ [0, T ], and

for all t ⩾ s,
|h(x)m(x)e−m(x)(t−s)| ⩽ CeKT (1 + x2) sup

R
|h|,

which is B0[f(s, ·)]-integrable for all s ∈ [0, T ], thanks to Lemma 2.1 and Proposition 2.2. There-
fore by dominated convergence the derivative of

∫
R h(x)e−m(x)(t−s)B0[f(s, ·)](x)dx with respect

to variable t is well defined, and uniformly bounded, on [s, T ]. By Leibniz rule on the formula (18),
the derivative of

∫
R h(x)f(t, x)dx is well defined for all t > 0 and we have

d

dt

(∫
R
h(x)f(t, x)dx

)
=−

∫
R
h(x)m(x)e−m(x)tf0(x)dx+

∫
R
h(x)B0[f(t, ·)](x)dx

−
∫ t

0

∫
R
h(x)m(x)e−m(x)(t−s)B0[f(s, ·)](x)dxds.

Once more, by dominated convergence theorem, we can approximate h(x)m(x) by a bounded
measurable function h̃N (x) and obtain, applying (18) to h̃N , that in the limit N → ∞, we have∫

R
h(x)m(x)f(s, x)dx =

∫
R
h(x)m(x)e−m(x)tf0(x)dx

+

∫ t

0

∫
R
h(x)m(x)e−m(x)(t−s)B0[f(s, ·)](x)dx ds.
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We therefore obtain

d

dt

(∫
R
h(x)f(t, x)dx

)
=

∫
R
h(x)B0[f(s, ·)](x)dx−

∫
R
h(x)m(x)f(s, x)dx.

Hence, the second weak formulation (27).

Remark 2.1. We chose in Assumption 1.1 to have at most quadratic growth of the mortal-
ity rate m. If instead we suppose that it does not grow faster that |x|k, the same reasoning
would apply, and Proposition 2.4 would still apply, replacing the requirement on f0 by ask-
ing

∫
R |x|kf0(x)dx to be finite.

We are now ready to give the evolution equations for the moments of the solution f , which
we state in the following proposition.

Proposition 2.5. Let k ∈ N. Under Assumption 1.1, if f0 has a moment of order k + 2 and f
is the unique weak solution to the model (1), then µk(f) is continuously differentiable in time
and we have for all t ⩾ 0

d

dt
µk(f(t, ·)) =

k∑
j=0

(
k

j

)
µj(f(t, ·))µk−j(f(t, ·))

2kµ0(f(t, ·))
−
∫
R
m(x)xkf(t, x)dx. (28)

Proof. Let us remark that by Definition 1.1 we obtain that µ0(f(t, ·)) > 0 for any time. If not,
we would have

∫
R e−m(x)tf0(x)dx = 0 and therefore e−m(x)t would be zero almost everywhere

with respect to the measure f0, giving a contradiction. By Proposition 2.4, using again the
function hN defined in (22), we obtain∫

R
hN (x)f(t, x)dx =

∫
R
hN (x)f0(x)dx

+

∫ t

0

(∫
R
hN (x)B0[f(s, x)]dx−

∫
R
hN (x)m(x)f(s, x)dx

)
ds.

Thanks to Proposition 2.2 and to Assumption 1.1, m(·)f(s, ·) has a moment of order k, uniformly
on [0, t], therefore we obtain by dominated convergence theorem

µk(f(t, ·)) = µk(f
0) +

∫ t

0

(
µk(B0[f(s, ·)])− µk(m(·)f(s, ·))

)
ds.

Then, as in the proof of Proposition (2.3) for the time continuity of µk(f(t, ·)), we get similarly
as in (25) that

µk(m(·)f(t, ·)) =
∫
R
e−m(x)tm(x)xkf0(x)dx+

∫ t

0

∫
R
e−m(x)(t−s)m(x)xkB0[f(s, ·)](x)dxds.

And we proceed in the same way, by dominated convergence thanks to Assumption 1.1, to prove
that µk(m(·)f(t, ·)) is continuous in time. Thanks to Propositions 2.2 and (2.3), we have the
time continuity of µk(B0[f(t, ·)]) and therefore µk(f(t, ·)) is continuously differentiable in time
and satisfies (28).

From now on, we suppose that Assumption 1.1 is satisfied and that f0 (of positive mass ρ0)
has a finite second moment. We are interested in the normalized population distribution. Let ρ(t)
be the total population mass at time t

ρ(t) = µ0(f) =

∫
R
f(t, x) dx.
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From Proposition 2.4, we obtain the evolution equation for ρ(t)

d

dt
ρ(t) = ρ(t)−

∫
R
m(x)f(t, x) dx. (29)

As noted in the proof of Proposition 2.5, we have that ρ is positive for all time, and we can
therefore consider the normalized population distribution g that is defined in (1.2).

Thus, from Proposition 2.4, we obtain a weak formulation for the following equation on g

∂tg(t, x) = B0[g](t, x)−m(x)g(t, x)−
(
1−

∫
R
m(z)g(t, z) dz

)
g(t, x).

Remark 2.2. This evolution equation for the normalized population distribution has the same
form as the replicator-mutator equation, with the linear mutator term replaced by a sexual repro-
duction one. Replicator-mutator type equations have been quite studied in the form of nonlocal
integro-differential equations (see e.g. [1, 2, 24]). Recently, the authors of [13] have proved con-
centration results and new convergence estimates in the non-singular case for measure solutions
of the “house of cards” replicator-mutator model.

Then, we can also define the mean trait, or center of mass, which we denote by x and which
is formulated by (6). Thus, we can focus on the study of the centered moments Mk and the
centered variations of the selection Sk, for k ∈ N, which formulations are given in (4)-(5).

Indeed, the moment Mk is well-defined for all time whenever f0 has a moment of order k
and Sk is well-defined if f0 has a moment of order k+2. From now on, we will write M0

k = Mk(0).
In particular we have M0(t) = 1 and M1(t) = 0 for all time. Using (28) (for k = 1) and (29)

we obtain the equation of evolution of x given by (8) whenever f0 has a moment of order 3 :

dx

dt
=

d

dt

(µ1(f(t, ·))
ρ(t)

)
= −

∫
R
m(x)xg(t, x)dx+

µ1(f(t, ·))
ρ(t)

∫
R
m(x)g(t, x)dx

=

∫
m(x)(x(t)− x)g(t, x)dx = −S1(t),

which was claimed in (8).
From now on, we actually assume that f0 has a moment of order 4 (we will only compute

estimates for even order moments), so that this mean trait x is differentiable, and we can then
compute the evolution of the centered moments Mk, thanks to Proposition 2.5 (or Proposi-
tion 2.3) and to the evolutions (29) and (8) of ρ and x.

The next proposition states the differential equations and inequalities that Mk satisfies. They
will be used in the following sections to prove stability results of Dirac masses. Notice that
when f0 has a moment of order 4, this proposition provides the results claimed in (9)-(10) for
the evolutions of the moments M2 and M4.

Proposition 2.6. Let k ⩾ 2. Under Assumption 1.1, if f0 has a moment of order k+2, then Mk

is continuously differentiable in time and we have

d

dt
Mk = −

(
1− 1

2k−1

)
Mk +

1

2k

k−2∑
i=2

(
k

i

)
Mk−iMi − Sk + S0Mk + kS1Mk−1. (30)

If k ⩾ 4 is even and f0 has only a moment of order k, then Mk is continuous in time and
we have for all t ⩾ 0,

d+

dt
Mk ⩽ −

(1
2
− 1

2k−1
− S0 + η(x)

)
Mk +

1

2k

k−2∑
i=2

(
k

i

)
Mk−iMi + kS1Mk−1. (31)
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Proof. Let us first remark that if we fix x0 ∈ R, then f̃ = f(·, ·+ x0) satisfies the same equation
with m replaced by m̃ = m(·+ x0).

ρ(t)Mk(t) =

∫
R
(x− x0 + x0 − x(t))kf(t, x)dx =

k∑
i=0

(
k

i

)
(x0 − x(t))iµk−i(f̃(t, ·))

= µk(f̃(t, ·))− k(x(t)− x0)µk−1(f̃(t, ·)) +O(|x(t)− x0|2),

where the bounds for the term O(|x(t)− x0|2) are uniform on [0, T ], thanks to Proposition 2.2.
Therefore if x0 = x(t0) for some t0 ∈ [0, T ), since t 7→ µk−1(f̃(t, ·)) is continuous in time (and in
particular at t0), and using (8), we have that

ρ(t)Mk(t)− µk(f̃(t, ·))
t− t0

−→
t→t0

−k
dx

dt
(t0)µk−1(f̃(t0, ·)) = kS1(t0)ρ(t0)Mk−1(t0).

Therefore, setting y(t) = ρ(t)Mk(t)− µk(f̃(t, ·)), we get that y is differentiable at t0 with

dy

dt

∣∣
t=t0

= kS1(t0)ρ(t0)Mk−1(t0).

When f has a moment of order k + 2 (initially), this is the same for f̃ and therefore we can
use Proposition 2.5 to get the derivative of µk(f̃(t, ·)) at t0. We obtain

d

dt
µk(f̃(t, ·))

∣∣∣
t=t0

=
k∑

j=0

(
k

j

)
µj(f̃(t0, ·))µk−j(f̃(t0, ·))

2kµ0(f̃(t0, ·))
−
∫
R
m̃(x)xkf̃(t0, x)dx

=
1

2k

k∑
j=0

(
k

j

)
ρ(t0)Mj(t0)Mk−j(t0)− ρ(t0)

(
Sk(t0) +m(x(t0))Mk(t0)

)
.

Since Mk(t) =
1

ρ(t)(y(t) + µk(f̃(t, ·))) and since ρ is differentiable at t0, we get that

d

dt
Mk

∣∣∣
t=t0

=
1

ρ(t0)

d

dt
(y(t) + µk(f̃(t, ·)))

∣∣∣
t=t0

− Mk(t0)

ρ(t0)

dρ

dt

∣∣∣
t=t0

.

The derivative of ρ at t0 is given in (29) by ρ(t0)
(
1−S0(t0)−m(x(t0))

)
, therefore we obtain (30)

at time t0, using the fact that M0(t0) = 1 and M1(t0) = 0. Since the right-hand side of (30) is
continuous in time, as proved in Proposition 2.5, we obtain that Mk is continuously differentiable
in time.

When f has only (initially) a moment of order k with k even and k ⩾ 4, we use similarly
Proposition 2.3 instead of 2.5 to get, by setting K = − infRm,

d+

dt
µk(f̃(t, ·))

∣∣∣
t=t0

⩽
k∑

j=0

(
k

j

)
µj(f̃(t0, ·))µk−j(f̃(t0, ·))

2kµ0(f̃(t0, ·))
+Kµk(f̃(t0, ·))

⩽
1

2k

k∑
j=0

(
k

j

)
ρ(t0)Mj(t0)Mk−j(t0) + ρ(t0)KMk(t0).

Since k ⩾ 4, ρ and y are still differentiable at t0, and since ρ is positive, we get that

d+

dt
Mk

∣∣∣
t=t0

=
1

ρ(t0)

(dy
dt

∣∣∣
t=t0

+
d+µk(f̃(t, ·))

dt

∣∣∣
t=t0

)
− Mk(t0)

ρ(t0)

dρ

dt

∣∣∣
t=t0

.
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The computations are therefore similar to the previous ones, and we obtain

d+

dt
Mk ⩽ −

(
1− 1

2k−1
− S0 −K −m(x)

)
Mk +

1

2k

k−2∑
i=2

(
k

i

)
Mk−iMi + kS1Mk−1,

which corresponds to (31).

Remark 2.3. If we suppose that m grows at most linearly, we only need to have a second moment
to control the derivative of ρ, and therefore (31) is also valid for k = 2.

2.4 Fourier formulation, and rescaled profile

Before tackling the long time behavior of x and of the centered moments Mk, we finish this
section by stating the equation satisfied by the Fourier transform of the centered and rescaled
formulation of g(t, ·). This equation will be further investigated in Section 4.

From Definition 15, we have∫
R
γ(t, x) dx = 1,

∫
R
xγ(t, x) dx = 0, and

∫
R
x2γ(t, x) dx = 1. (32)

We also define the signed measure φ

φ(t, x) := [m
(√

M2(t)x+ x(t)
)
−m(x(t))]γ(t, x), (33)

Now we prove the following result.

Proposition 2.7. Under Assumption 1.1, if f0 has a moment of order 4, then γ̂ is differentiable
and we have the equation on γ̂

∂tγ̂(t, ξ) = γ̂(t, ξ2)
2 − γ̂(t, ξ) +

1

4
ξ∂ξγ̂(t, ξ) +R(t, ξ), (34)

with R(t, ξ) given by

R(t, ξ) := −iS1(t)
ξ√

M2(t)
γ̂(t, ξ)− φ̂(t, ξ) + S0(t)γ̂(t, ξ) +

1

2

(
S2(t)

M2(t)
− S0(t)

)
ξ∂ξγ̂(t, ξ). (35)

Proof. From Assumption 1.1 and Proposition 2.4, and assuming that f0 has finite moments up
to order 4, f̂ is differentiable in time, and using (17), we obtain

∂tf̂(t, ξ) =

(
f̂ (t, ξ/2)

)2
f̂(t, 0)

− m̂f(t, ξ).

Thus, we obtain the equation on ĝ, using (29):

∂tĝ(t, ξ) =
(
ĝ(t, ξ/2)

)2 − ĝ(t, ξ)−
(
1− m̂g(t, 0)

)
ĝ(t, ξ). (36)

Then, γ̂ is well defined and we have, for all ξ ∈ R,

γ̂(t, ξ) = e
i ξ√

M2(t)
x(t)

ĝ

(
t,

ξ√
M2(t)

)
.

18



Thus, from Proposition 2.6 and (36), γ̂ is differentiable in time and we can compute

∂tγ̂(t, ξ) =i
ξ√
M2

dx

dt
γ̂(t, ξ)− i

ξx

2M
3/2
2

dM2

dt
γ̂(t, ξ) + e

i ξ√
M2(t)

x(t)
∂tĝ(t, ξ/

√
M2)

− e
i ξ√

M2(t)
x 1

2M
3/2
2

dM2

dt
ξ∂ξ ĝ(t, ξ/

√
M2),

with ∂ξ ĝ well defined since g has moment of order one. Using (8) and (36), we get

∂tγ̂(t, ξ) = (γ̂(t, ξ/2))2 − γ̂(t, ξ)− e
i ξ√

M2(t)
x(t)

m̂g(t, ξ√
M2

) + m̂g(t, 0)γ̂(t, ξ)

− iS1(t)
ξ√
M2

γ̂(t, ξ)− 1

2

dM2

dt

ξ

M
3/2
2

(
ixγ̂(t, ξ) + e

i ξ√
M2(t)

x(t)
∂ξ ĝ(t,

ξ√
M2

)

)
.

And using (9), we then compute

∂tγ̂(t, ξ) = (γ̂(t, ξ/2))2 − γ̂(t, ξ)− e
i ξ√

M2(t)
x(t)

m̂g(t, ξ√
M2

) + m̂g(t, 0)γ̂(t, ξ)− iS1(t)
ξ√
M2

γ̂(t, ξ)

+
ξ

2

(
1

2

1√
M2

+
S2

M
3/2
2

− S0√
M2

)(
ixγ̂(t, ξ) + e

i ξ√
M2(t)

x(t)
∂ξ ĝ(t,

ξ√
M2

)

)
.

Then, noticing the expressions

∂ξγ̂(t, ξ) =
1√
M2

(
ixγ̂(t, ξ) + e

i ξ√
M2(t)

x(t)
∂ξ ĝ(t,

ξ√
M2

)

)
,

m̂g(t, 0) = S0(t)−m (x(t)) ,

the definition (33) enables to write

e
i ξ√

M2(t)
x(t)

m̂g(t, ξ√
M2

)− m̂g(t, 0)γ̂(t, ξ) = φ̂(t, ξ)− S0(t)γ̂(t, ξ),

and we obtain the equation on γ̂

∂tγ̂(t, ξ) = (γ̂(t, ξ/2))2 − γ̂(t, ξ) +
1

4
ξ∂ξγ̂(t, ξ)− iS1(t)

ξ√
M2

γ̂(t, ξ)− φ̂(t, ξ)

+ S0(t)γ̂(t, ξ) +
1

2

(
S2

M2
− S0

)
ξ∂ξγ̂(t, ξ).

Finally, with the definition of R (35), we get (34).

3 Long-time behaviour of normalized moments

3.1 Local stability of some Dirac masses

We begin this section by proving the local stability result of Theorem 1.2, which states that a
sufficient condition for the convergence of g towards a Dirac mass is to be initially close enough
to the Dirac mass located at x0 = x(0), when η(x0) > 0, i.e. when the initial selection rate at
the center of mass satisfies m(x0) < infRm+ 1

2 .

Proof. Thanks to the definitions (4), (5) and (7), we obtain

S2 ⩾
(
η(x)− 1

2

)
M2, S4 ⩾

(
η(x)− 1

2

)
M4. (37)
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By Assumption 1.2, using Cauchy-Schwarz inequalities in the definitions (4)-(5), we obtain

M2 ⩽
√
M4, (38)

|M3| ⩽
√
M2M4, (39)

|S0| ⩽ α(x)
√
M2 + βM2, (40)

|S1| ⩽ α(x)M2 + β
√
M2M4. (41)

Therefore we obtain, thanks to (8), (9), and (10):∣∣∣dx
dt

∣∣∣ ⩽ α(x)M2 + β
√
M2M4, (42)

d

dt
M2 ⩽ (−η(x) + α(x)

√
M2 + βM2)M2, (43)

d+

dt
M4 ⩽

(
− η(x) + 5(α(x)

√
M2 + βM2)

)
M4, (44)

where we have used (38) and (39) to get that |M2M3| ⩽
√
M4

√
M2M4 =

√
M2M4.

We now fix δ0 such that 0 < δ < δ0 < η(x0), and by continuity of m we find r > 0 such
that η(x) ⩾ δ0 for all x ∈ [x0−r, x0+r]. We set α̃ = sup[x0−r,x0+r] α, which is finite by continuity
of α. Using (38), we then fix M0

4 sufficiently small in order to have

5
(
α̃
√
M0

2 + βM0
2

)
< δ0 − δ,

α̃M0
2 + β

√
M0

2M
0
4 < rδ.

Finally we define T as the supremum of all t > 0 such that for all s ∈ [0, t], we have
|x(s)− x0| ⩽ r,

5α̃
√

M2(s) + βM2(s) ⩽ δ0 − δ,

α̃M2(s) + β
√
M2(s)M4(s) ⩽ rδ,

(45)

and the set of such t > 0 is non empty, therefore T > 0 (we may have T = +∞).
For all t ∈ [0, T ), we get from (43)-(44) that d

dtM2 ⩽ −δM2 and d+

dt M4 ⩽ −δM4, giv-
ing that M2 and M4 are nonincreasing in time and satisfying estimates (12)-(13), thanks to
Lemma 2.2. Thanks to (42), we obtain

|x(t)− x0| ⩽
∫ t

0
(α̃M0

2 + β
√
M0

2M
0
4 )e

−δsds

⩽ (α̃M0
2 + β

√
M0

2M
0
4 )

1− e−δt

δ
< (1− e−δt)r.

Let us prove that T = +∞ by contradiction. If T is finite, then |x(T )− x0| ⩽ (1− e−δT )r < r,
and by monotonicity of M2 and M4 we also get

5α̃
√

M2(T ) + βM2(T ) ⩽ 5α̃
√
M0

2 + βM0
2 < δ0 − δ,

α̃M2(T ) + β
√
M2(T )M4(T ) ⩽ α̃M0

2 + β
√

M0
2M

0
4 < rδ.

Therefore, by continuity in time of M2, M4 and x, there exists τ > 0 such that for all s
in [T − τ, T + τ ], we have the estimations (45). Thanks to the definition of T , these estimations

20



are true for all s ∈ [0, T ), and therefore also for all s ∈ [0, T + τ ], in contradiction with the
definition of T as a supremum.

Since the derivative of x is decaying exponentially fast, we get that x(t) converges to some x∞
in R, and more precisely we have

|x(t)− x∞| ⩽
∫ ∞

t
(α̃M0

2 + β
√

M0
2M

0
4 )e

−δsds =
α̃M0

2 + β
√
M0

2M
0
4

δ
e−δt.

This also shows that the smaller the value of M0
4 , the closer the location of x∞ relatively to x0.

Finally, the convergence in Wasserstein distance comes from the fact that W4(g, δx) = M4(t)
1
4 ,

and therefore

W4(g, δx∞) ⩽ (M0
4 )

1
4 e−

δ
4
t +W4(δx(t), δx∞) = (M0

4 )
1
4 e−

δ
4
t + |x(t)− x∞|.

Remark 3.1. If m is Lipschitz (β = 0 and α constant in Assumption 1.2), then we only need
to suppose M0

2 sufficiently small to get the estimates (11), (12) and the exponential convergence
of x. The proof is exactly the same, only using the estimate on the evolution of M2 given by (31)
(see Remark 2.3), and the convergence is in 2-Wasserstein distance.

3.2 Improved estimates on even order moments

We can now use this result of stability of Theorem 1.2 together with the equation for higher
order moments to improve the bound on the rate of convergence. In this subsection, we start
from the assumptions made in Theorem 1.2:

Assumption 3.1. We suppose that the selection function m satisfies Assumption 1.2, and we
take x0 and δ such that 0 < δ < η(x0). Finally, we suppose that the initial profile g0 is such
that x(0) = x0 and that M0

4 is sufficiently small, ensuring that the conclusion of Theorem 1.2
is true. As in the proof of this theorem, we denote by α̃ a uniform bound in time for α(x(t))
(independent of M0

4 , only depending on η, δ and x0).

To obtain the estimates on M2k, the idea is to use the equations (30) and (31), along with the
stability result stated in Theorem 1.2. Apart from the exponential decay rates of the moments,
we will also need a control on the constants in front of these estimates. Furthermore we will
often have to deal with quantities controlled by e−λ̃t for all λ̃ strictly less than some λ > 0 to be
identified. Therefore we introduce the following definition.

Definition 3.1. For λ > 0, we say that a nonnegative quantity y(t) (which may depend on several
parameters) has a decay controlled by the parameter σ ⩾ 0 and with rate [λ]− if for all λ̃ < λ,
there exists a constant C(σ) > 0 converging to 0 when σ → 0, and such that for all t > 0, we
have y(t) ⩽ C(σ)e−λ̃t.

We will use several times the following lemma.

Lemma 3.1. If y is a nonnegative continuous function in time satisfying for all t > 0

d+

dt
y(t) ⩽ (−λ+ v1(t))y(t) + v0(t),

where v0(t) and v1(t) have a decay controlled by the parameter σ and with respective rates [ω0]
−

and [ω1]
−, then y(t) has a decay controlled by max(y(0), σ) and with rate [min(λ, ω0)]

−.
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Proof. If λ̃ < min(λ, ω0), we fix ω̃0 and ω̃1 such that λ̃ < ω̃0 < ω0 and 0 < ω̃1 < ω1, and we have
for all t > 0

d+

dt
y(t) ⩽ (−λ̃+ C1(σ)e

−ω̃1t)y(t) + C2(σ)e
−ω̃0t,

with C1(σ) and C2(σ) converging to 0 as σ → 0. Therefore, thanks to Lemma 2.2, we obtain

y(t)e
λ̃t+

C1(σ)
ω̃1

(e−ω̃1t−1)
⩽ y(0) + C2(σ)

∫ t

0
e
λ̃s+

C1(σ)
ω̃1

(e−ω̃1s−1)
e−ω̃0sds

⩽ y(0) + C2(σ)

∫ t

0
eλ̃s−ω̃0sds = y(0) +

C2(σ)

ω̃0 − λ̃
(1− e−(ω̃0−λ̃)t)

⩽ y(0) +
C2(σ)

ω̃0 − λ̃
.

Finally we get

y(t) ⩽
(
y(0) +

C2(σ)

ω̃0 − λ̃

)
e

C1(σ)
ω̃1

(1−e−ω̃1t)−λ̃t
⩽
(
y(0) +

C2(σ)

ω̃0 − λ̃

)
e

C1(σ)
ω̃1 · e−λ̃t,

and this ends the proof, since the constant converges to 0 as y(0) and σ converge to 0.

First, we obtain the next proposition that presents links between rates of convergence of M2

and M4, allowing to improve the rates provided by Theorem 1.2.

Proposition 3.1. Under Assumption 3.1 we have that M2 and M4 have decay controlled by M0
4

and with respective rates [min(12 ,
3
8 + δ)]− and [38 + δ]−.

Proof. We first suppose that M2 and M4 have decay controlled by M0
4 and with respective

rates [λ2]
− and [λ4]

−, for λ2, λ4 > 0, and show that these rates can be improved. Thanks to
Assumption 1.2, using once again Cauchy-Schwarz inequality in the definition (5), we obtain

|S2| ⩽ α̃
√

M2M4 + βM4. (46)

Therefore we obtain, thanks to (9) and the estimate (40),

d

dt
M2 ⩽

(
−1

2
+ α̃

√
M2 + βM2

)
M2 + α̃

√
M2M4 + βM4,

⩽

(
−1

2
+ ε+ α̃

√
M2 + βM2

)
M2 +

(
α̃2

4ε
+ β

)
M4,

where we used Young’s inequality for some ε > 0. Similarly, using (10), (37) and (11) we obtain

d+

dt
M4 ⩽

(
−δ − 3

8
+ 5(α̃

√
M2 + βM2)

)
M4 +

3

8
M2

2 .

Therefore, since α̃
√
M2 + βM2, M4 and M2

2 have decay controlled by the initial moment M0
4

and respective rates [12λ2]
−, [λ4]

− and [2λ2]
−, by applying Lemma 3.1, M4 have decay controlled

by M0
4 with rate [min(38 + δ, 2λ2)]

−, while M2 has decay controlled by max(M0
2 ,M

0
4 ) (and there-

fore, thanks to (38), by M0
4 only) and with rate [min(12−ε, λ4)]

−. Since this is true for any ε > 0,
we obtain that M2 has rate [min(12 , λ4)]

−. Therefore, by applying once more this property, we ob-
tain that M2 and M4 have decay controlled by M0

4 and with respective rates [min(12 ,
3
8+δ, 2λ2)]

−

and [min(38 + δ, 2λ4)]
−. Indeed min(38 + δ, 1, 2λ4) = min(38 + δ, 2λ4) since δ < η(x0) ⩽ 1

2 .
Hence, since M2 and M4 both have decay controlled by M0

4 and with rate [δ]−, thanks to
Theorem 1.2 and the estimate (38), we directly obtain by induction that for all k ∈ N, M2 and M4

have decay controlled by M0
4 and with respective rates [min(12 ,

3
8+δ, 2kδ)]− and [min(38+δ, 2kδ)]−,

so for k sufficiently large, this ends the proof.
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The next proposition uses these estimates on M2 and M4 to obtain estimates for the rates of
convergence of all moments of even order, provided they are finite initially.

Proposition 3.2. Under Assumption 3.1, for all k ⩾ 2, if M0
2k is finite, then M2k(t) has decay

controlled by M0
2k and with rate [12 − 1

22k−1 + δ]−.

Proof. We proceed by induction, since, the case k = 2 is provided by Proposition 3.1. We
fix k > 2, and suppose the result is true for k − 1.

First of all, if 2i ⩽ ℓ ⩽ 2j, using Hölder inequality in the definition (4), we get

|Mℓ| ⩽
∫
R
|x− x(t)|ℓg(x)dx =

∫
R
|x− x(t)|2i

2j−ℓ
2j−2i

+2j ℓ−2i
2j−2i g(x)dx

⩽ M
2j−ℓ
2j−2i

2i M
ℓ−2i
2j−2i

2j . (47)

In particular, for i = 0 and j = k, we obtain

M2 ⩽ M
1
k
2k, M4 ⩽ M

2
k
2k, M2k−2 ⩽ M

1− 1
k

2k , and |M2k−1| ⩽ M
1− 1

2k
2k . (48)

Using (41) to get

|S1M2k−1| ⩽ (α̃M2 + β
√
M2M4)M

1− 1
2k

2k ⩽ (α̃
√
M2 + β

√
M4)M2k. (49)

As previously, thanks to the definitions (4), (5), (7) and the property (11), we obtain

S2k ⩾
(
δ − 1

2

)
M2k. (50)

Now, using (47) with i = 1 and j = k − 1, we obtain, when 2 ⩽ ℓ ⩽ 2k − 2:

|Mℓ||M2k−ℓ| ⩽ M2M2k−2, (51)

and therefore, we use (50), (40), and (49) in the differential inequality (31) for M2k to get

d+

dt
M2k ⩽

(
− 1

2 + 1
22k−1 − δ + v1(t)

)
M2k +

(
1

22k

2k−2∑
ℓ=2

(
2k
ℓ

))
M2M2k−2, (52)

where v1(t) = (2k + 1)α̃
√
M2 + β(2k

√
M4 + M2). Now, using (48), we obtain that when M0

2k

converges to 0, then M0
4 and M0

2 also converge to 0. Therefore by induction, and thanks
to Proposition 3.1, v1(t) and M2M2k−2 have decay controlled by M0

2k and with respective
rates [min(14 ,

3
16 + 1

2δ)]
− and [ω0]

−, where

ω0 =
(
min(12 ,

3
8 + δ) + (12 − 1

22k−3 + δ)
)
> (38 + 1

2 − 1
22k−3 + δ) ⩾ 3

4 + δ, (53)

since k ⩾ 3. Therefore, since 3
4 + δ > 1

2 − 1
22k−1 + δ, we can apply Lemma 3.1 and this ends the

proof.

We can now use the estimate on a moment of high order to obtain better rates for all lower
order moments, as stated in the following proposition.

Proposition 3.3. We suppose that Assumption 3.1 is satisfied. If M0
2k0

is finite (for k0 ⩾ 2),
then for all k ⩽ k0, M2k has decay controlled by M0

2k0
with rate [min(1− 1

22k−1 ,
1
2 −

1
22k0−1 + δ)]−.
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Proof. We proceed once more by induction, from k = k0 down to k = 1. Indeed, since we
have δ < η(x0) ⩽ 1

2 , we get that min(1 − 1
22k0−1 ,

1
2 − 1

22k0−1 + δ) = 1
2 − 1

22k0−1 + δ, which
corresponds to the rate given by Proposition 3.2. We fix k < k0 and suppose that the result is
true for k+1. We have, thanks to Assumption 1.2 and using Young’s inequality for some ε > 0:

|S2k| ⩽ α̃

∫
R
|x− x(t)|2k+1g(x)dx+ βM2k+2

⩽
∫
R
|x− x(t)|2k

(
ε+

α̃2

4ε
|x− x(t)|2

)
g(x)dx+ βM2k+2 ⩽ εM2k +

(
α̃2

4ε
+ β

)
M2k+2.

Therefore, as in the proof of Proposition 3.2, using (51), (40), and (49) in the differential equa-
tion (30) for M2k, we get

d

dt
M2k ⩽

(
− 1 + 1

22k−1 + ε+ v1(t)
)
M2k +

(
1

22k

2k−2∑
ℓ=2

(
2k
ℓ

))
M2M2k−2 +

(
α̃2

4ε
+ β

)
M2k+2,

where v1(t) = (2k+1)α̃
√
M2+β(2k

√
M4+M2) has decay controlled by M0

4 (and hence by M0
2k0

)
and rate [min(14 ,

3
16+

1
2δ)]

−. By induction M2k+2 has decay controlled by M0
2k0

and with rate [ω̃0]
−

where ω̃0 = min(1− 1
22k+1 ,

1
2−

1
22k0−1+δ). And we know by Propositions 3.1 and 3.2 that M2M2k−2

has decay controlled by M0
2k (and hence by M0

2k0
) and with rate [ω0]

− with ω0 given in (53), so
when k ⩾ 3 we have ω0 >

3
4 + δ > 1

2 − 1
22k0−1 + δ ⩾ ω̃0.

When k = 2 we also obtain ω0 = min(34 + 2δ, 1) > 1
2 − 1

22k0−1 + δ ⩾ ω̃0 since δ < 1
2 . Finally

when k = 1 the sum on ℓ is empty.
So, in all cases we get thanks to Lemma 3.1 that M2k has decay controlled by max(M0

2k,M
0
2k0

)

(and therefore by M0
2k0

only) and with rate [min(1− 1
22k−1 − ε, ω̃0)]

−, for any ε > 0, which ends
the proof.

When the initial condition has enough moments, we then see thanks to Proposition 3.3 that
all M2k with k ⩾ 2 decay with rates strictly greater than 1

2 , and that M2 decays with rate [12 ]
−.

Therefore we expect all the moments M2k to decay “faster” than M2, and we will see in the
next section that this property is important to study the self-similar behaviour of the solution
as time goes to infinity. However, to have such a property, we have to get a lower bound
for M2(t). By using a refinement of Lemma 3.1, we could prove that there exists C2 ⩾ 0 such
that |M2(t) − C2e

− 1
2
t| ⩽ Ce−ω0t with ω0 > 1

2 , but this is not sufficient to get a lower bound
on M2, as we could have C2 = 0.

To overcome this difficulty, instead of asking the fourth moment M4 to be small initially, we
will ask M2k0

M2
to be small initially, for k0 sufficiently large. This is for instance the case if we shrink

the initial profile around x0 by a given parameter 1
ε , which has the effect of scaling any initial

moment M2k by a factor ε2k. Before proving that this condition is enough to get lower bounds
on M2, we will need an adaptation of Lemma 3.1 in a nonlinear setting (the main difference
being that we now require smallness of the initial condition y(0) and of the parameter σ), which
in stated in the following result.

Lemma 3.2. We suppose that y is a nonnegative continuous function satisfying for all t > 0 :

d+

dt
y(t) ⩽

(
− λ+ v1(y(t))

)
y(t) + v0(t),

where v1(r) ⩽ Crθ for all r ⩾ 0 sufficiently small (with θ > 0 and C > 0), and v0(t) has a decay
controlled by the parameter σ and with rate [ω0]

−.
Then, if y(0) and σ are small enough, y(t) has a decay controlled by max(y(0), σ) and with

rate [min(λ, ω0)]
−.
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Proof. We fix ω̃0 < ω0, then λ̃ < min(λ, ω̃0), and we pick r > 0 such that λ − Crθ > λ̃ (and
small enough so that v1(r̃) ⩽ Cr̃θ as soon as r̃ ⩽ r). Therefore, as soon as y(t) ⩽ r, we have

d+

dt
y(t) ⩽ −λ̃y(t) + C̃(σ)e−ω̃0t,

where C̃(σ) → 0 as σ → 0. We suppose that y(0) + C̃(σ)

ω̃0−λ̃
⩽ r.

We denote T = sup{t > 0,∀s ∈ [0, t], y(s) ⩽ r}. By continuity of y, since y(0) < r, we
have T > 0 and therefore for all t ∈ [0, T ],

y(t) ⩽
(
y(0) + C̃(σ)

1− e−(ω̃0−λ̃)t

ω̃0 − λ̃

)
e−λ̃t ⩽ re−λ̃t,

showing that T = +∞. Indeed, if it was not the case, we would have y(T ) < r, in contradiction
with the definition of T , by continuity of y. Therefore we also obtain

v1(y(t)) ⩽ C
(
y(0) + C̃(σ)

1

ω̃0 − λ̃

)θ
e−θλ̃t,

showing that v1(y(t)) has a rate controlled by max(y(0), σ) with rate [θλ̃]−. We can therefore
apply Lemma 3.2, as we now have a linear estimate (provided y(0) + C̃(σ)

ω̃0−λ̃
⩽ r), and this ends

the proof.

We are now ready to prove the following result, which leads to the statements of Theorem 1.3.

Proposition 3.4. Under Assumption 3.1, if
M0

2k0

M0
2

is sufficiently small and if 1
22k0−1 < δ,

then M2k0
M2

has decay controlled by its initial value
M0

2k0

M0
2

and with rate [δ − 1
22k0−1 ]

−.

Furthermore, in that case, there exists Ck0(
M0

2k0

M0
2
), converging to 1 as

M0
2k0

M0
2

→ 0 such that

M2(t) ⩾ Ck0

(M0
2k0

M0
2

)
M0

2 e
− t

2 .

Consequently, for all k ⩾ 2 (with k ⩽ k0), M2k
M2

has decay controlled by
M0

2k0

M0
2

and with

rate [min(12 − 1
22k−1 , δ − 1

22k0−1 )]
−.

Proof. We compute
d+

dt

(M2k0

M2

)
=

1

M2

d+M2k0

dt
− 1

M2

dM2

dt

(M2k0

M2

)
.

Thanks to (9) and the estimates (40) (46), we have

d

dt
M2 ⩾ (−1

2
− α̃

√
M2 − βM2)M2 − α̃

√
M2M4 − βM4, (54)

and therefore, using (52), since 1
22k

∑2k−2
ℓ=2

(
2k
ℓ

)
⩽ 1, we obtain

d+

dt

(M2k0

M2

)
⩽
(
− δ + 1

22k0−1 + w̃(t)
)M2k0

M2
+M2k0−2, (55)

where

w̃(t) = α̃
(
(2k + 2)

√
M2 +

√
M4

M2

)
+ β

(
2k
√
M4 + 2M2 +

M4

M2

)
.
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Using (38), we get

M2 ⩽
√
M4 =

M4√
M4

⩽
M4

M2
, (56)

and therefore we obtain

w̃(t) ⩽ (2k + 3)α̃

√
M4

M2
+ (2k + 3)β

M4

M2
.

Now, using (47) with i = 1, ℓ = 4 and j = k0, we obtain

M4

M2
⩽

M
2k0−4
2k0−2

2 M
2

2k0−2

2k0

M2
=
(M2k0

M2

) 2
2k0−2 , (57)

and therefore we get

w̃(t) ⩽ (2k + 3)α̃
(M2k0

M2

) 1
2k0−2 + (2k + 3)β

(M2k0

M2

) 2
2k0−2 . (58)

Finally, thanks to Proposition 3.3, M2k0−2 has decay controlled by the initial moment M0
2k0

and with rate [min(1− 1
22k0−3 ,

1
2 − 1

22k0−1 + δ)]−, and since we have

M2k0 ⩽
(M2k0

M2

)
·M2 ⩽

(M2k0

M2

)1+ 2
2k0−2 ,

we get that M0
2k0

→ 0 if
M0

2k0

M0
2

→ 0, so M2k0−2 has decay controlled by
M0

2k0

M0
2

. Thanks to (55)

and (58), we can apply Lemma 3.2 with y(t) =
M2k0
M2

and σ =
M0

2k0

M0
2

= y(0), the function w

being given by v1(r) = (2k + 3)(α̃ rθ + β r2θ), where θ = 1
2k0−2 . We therefore obtain that

if
M0

2k0

M0
2

is sufficiently small, then M2k0
M2

has decay controlled by its initial value
M0

2k0

M0
2

and with

rate [δ − 1
22k0−1 ]

−.

Still denoting σ =
M0

2k0

M0
2

, if we pick ω0 < δ − 1
22k0−1 , we then get that there exists C(σ),

converging to 0 as σ → 0, such that we have

M2k0

M2
⩽ C(σ)e−ω0t.

Therefore, using (54), (56) and (57), we obtain

d

dt
M2 ⩾

(
− 1

2
− 2α̃

√
M4

M2
− 2β

M4

M2

)
M2

⩾
(
− 1

2
− 2α̃

(M2k0

M2

)θ − 2β
(M2k0

M2

)2θ)
M2

⩾
(
− 1

2
− C̃(σ) e−θω0t

)
M2,

where
C̃(σ) = 2α̃C(σ)θ + 2βC(σ)2θ,

which still converges to 0 as σ → 0. Solving this differential inequality for M2, we get

M2(t) ⩾ e
− t

2
+

C̃(σ)
ω0θ

(e−ω0θt−1)
M0

2 ⩾ e
− C̃(σ)

ω0θ M0
2 e

− t
2 ,

which gives the expected lower bound on M2.
The last part of the proposition is a direct application of Proposition 3.3, using the fact

that M2k0 → 0 as soon as
M0

2k0

M0
2

→ 0.
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4 Convergence to a self-similar profile

The goal of this section is to prove Theorem 1.4, which states the large time convergence of the
centered and rescaled measure γ to a self-similar profile in the Fourier distance defined in (14),
for some value of s.

We first discuss some prior results obtained on the following equation

∂tγ̂(t, ξ) = γ̂2
(
t, ξ2

)
− γ̂(t, ξ) +

1

4
ξ∂ξγ̂(t, ξ), (59)

which is precisely equation (34) in the case R ≡ 0, that is when m is constant and then there is no
selection. This equation on the Fourier transform of the rescaled distribution can also be derived
from the kinetic model of Boltzmann-type studied in [30]. In this work, the authors proved a
contraction property of the operator of equation (59) in the space of probability measures that
satisfy (32) and have finite moments up to order or s = 2 + δ with δ > 0 well chosen, endowed
with the Fourier distance ds. Also, they proved the convergence in the Fourier distance of the
rescaled measure towards the unique stationary solution of (59) with mass 1, centered, and
second moment equal to 1, which is denoted by γ∞ and defined in (16).

Here is the outline of the proof. First, we derive an estimate on the distance between γ
and γ∞, under the assumption that the term R(t, ξ) exponentially decreases in time and is also
controlled by a |ξ|s. Next, we prove that, for all (t, ξ) ∈ R+×R, R(t, ξ) satisfy theses conditions
in the framework we set. We eventually combine these results to conclude to the statement of
Theorem 1.4.

The first step of the proof is the following result.

Proposition 4.1. We fix s ∈ (2, 3) and we set λs = 1− s
4 − 21−s (we have λs > 0 since s 7→ λs

is strictly concave and λ2 = λ3 = 0). We suppose there exist L > 0 and c > 0 such that

|R(t, ξ)| ⩽ |ξ|sLe−ct, ∀ξ ∈ R. (60)

Then, for all time t,

• if c = λs, then we have

ds(γ, γ∞)(t) ⩽ ds(γ0, γ∞)e−λst + Lte−λst,

• otherwise, we have

ds(γ, γ∞)(t) ⩽ ds(γ0, γ∞)e−λst + L
e−ct − e−λst

λs − c
.

Proof. From (34), we obtain

d

dt

(
etγ̂(t, e−

t
4 ξ)
)
= etγ̂2

(
t, e−

t
4
ξ
2

)
+ etR

(
t, e−

t
4 ξ
)
,

and so we get the following Duhamel formulation

etγ̂
(
t, e−

t
4 ξ
)
= γ̂0 +

∫ t

0
eτ γ̂2

(
τ, e−

τ
4
ξ
2

)
dτ +

∫ t

0
eτR

(
τ, e−

τ
4 ξ
)
dτ. (61)

Since γ∞ is a stationary solution to (34) with R = 0, applying then in this case (61)
with γ̂(t, ξ) = γ̂∞(ξ), we obtain

etγ̂∞

(
e−

t
4 ξ
)
= γ̂∞ +

∫ t

0
eτ γ̂∞

2
(
e−

τ
4
ξ
2

)
dτ. (62)
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First, notice that

|γ̂2
(
τ, e−

τ
4
ξ
2

)
− γ̂∞

2
(
e−

τ
4
ξ
2

)
| ⩽ |γ̂

(
τ, e−

τ
4
ξ
2

)
+ γ̂∞

(
e−

τ
4
ξ
2

)
||γ̂
(
τ, e−

τ
4
ξ
2

)
− γ̂∞

(
e−

τ
4
ξ
2

)
|

⩽ 2|e−
τ
4
ξ
2 |

sds(γ, γ∞)(τ) = 21−se−s τ
4 |ξ|sds(γ, γ∞)(τ)

since ∥γ̂∥∞ ⩽ 1 and ∥γ̂∞∥∞ ⩽ 1 (γ and γ∞ are probability measures).

Besides, we have from (60)

|R(τ, e−
τ
4 ξ)| ⩽ e−

sτ
4 |ξ|sLe−cτ .

Therefore, we obtain the estimate on the last term in formula (61)∫ t

0
eτR

(
τ, e−

τ
4 ξ
)
dτ ⩽ L|ξ|s

∫ t

0
e(1−

s
4
−c)τdτ.

Now, by subtracting (62) from (61) and dividing by |ξ|s, we obtain

et

∣∣∣γ̂ (t, e− t
4 ξ
)
− γ̂∞

(
e−

t
4 ξ
)∣∣∣

|ξ|s
⩽ ds(γ0, γ∞) + 21−s

∫ t

0
e(1−

s
4
)τds(γ, γ∞)(τ)dτ +L

∫ t

0
e(1−

s
4
−c)τdτ.

Since we assumed that f0 has finite moment up to order 4 and also γ∞ up to order s, the
distance ds(γ(t, ·), γ∞) is finite, then we can take the supremum on ξ ̸= 0 in the estimate above
to finally obtain

e(1−
s
4
)tds(γ, γ∞)(t) ⩽ ds(γ0, γ∞) + 21−s

∫ t

0
e(1−

s
4
)τds(γ, γ∞)(τ)dτ + L

∫ t

0
e(1−

s
4
−c)τdτ. (63)

This Grönwall estimate can be solved classically by setting

z(t) = e−21−st
(
ds(γ0, γ∞) + 21−s

∫ t

0
e(1−

s
4
)τds(γ, γ∞)(τ)dτ

)
,

thus we obtain

z′(t) = 21−se−21−ste(1−
s
4
)tds(γ, γ∞)(t)− 21−sz(t) ⩽ 21−sLe−21−st

∫ t

0
e(1−

s
4
−c)τdτ,

which gives, since z(0) = ds(γ0, γ∞),

z(t) ⩽ ds(γ0, γ∞) + L

(
−e−21−st

∫ t

0
e(1−

s
4
−c)τdτ +

∫ t

0
e(λs−c)τdτ

)
. (64)

Getting back to (63), we obtain

ds(γ, γ∞)(t) ⩽ e−(1− s
4
)t
(
e2

1−stz(t) + L

∫ t

0
e(1−

s
4
−c)τdτ

)
and using (64), we get

ds(γ, γ∞)(t) ⩽ ds(γ0, γ∞)e−λst + L

(
e−λst

∫ t

0
e(λs−c)τdτ − e−(1− s

4
)t

∫ t

0
e(1−

s
4
−c)τdτ

)
+ Le−(1− s

4
)t

∫ t

0
e(1−

s
4
−c)τdτ.

Hence we have

ds(γ, γ∞)(t) ⩽ ds(γ0, γ∞)e−λst + Le−λst

∫ t

0
e(λs−c)τdτ,

which gives the result stated in Proposition 4.1.
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Next, we establish some estimates on R(t, ξ) and the moments of g that will help to derive
an estimate of the type (60). From now on, we use the notation

ϕ̂′(t, ξ) :=
∂ϕ̂

∂ξ
(t, ξ), ϕ̂′′(t, ξ) :=

∂2ϕ̂

∂ξ2
(t, ξ), ϕ̂′′′(t, ξ) :=

∂3ϕ̂

∂ξ3
(t, ξ),

for the sake of simplicity. We will also omit the dependency on time in the proofs of the two
next stated results, since all the estimates are derived at a fixed time t. We will resume the
dependency on time when we prove Theorem 1.4.

The lemma below provides some useful estimates on R.

Lemma 4.1. We fix t ⩾ 0. For all ξ ∈ R, we have the two following estimates:

|R(t, ξ)| ⩽ (12∥φ̂(t, ·)∥∞ + ∥φ̂′(t, ·)∥∞ + ∥φ̂′′(t, ·)∥∞)|ξ|2, (65)

|R(t, ξ)| ⩽
(

1
12(∥φ̂(t, ·)∥∞ + 3∥φ̂′′(t, ·)∥∞)∥γ̂′′′(t, ·)∥∞ + 1

2∥φ̂
′(t, ·)∥∞ + 1

6∥φ̂
′′′(t, ·)∥∞

)
|ξ|3. (66)

Proof. From the definition (35) of R, we obtain

R(t, ξ) = S0(t)γ̂(t, ξ)− φ̂(t, ξ)− 1

2

(
S0(t)−

S2(t)

M2(t)

)
ξγ̂′(t, ξ)− i

S1(t)√
M2(t)

ξγ̂(t, ξ). (67)

Since γ(t, ·) is a centered probability density with second moment 1, we get

γ̂(t, 0) = 1, γ̂′(t, 0) = 0, γ̂′′(t, 0) = −1.

Furthermore, for all ξ, we have

|γ̂(t, ξ)| ⩽
∫
R
γ(x)dx = 1, |γ̂′′(t, ξ)| = | − x̂2γ(t, ξ)| ⩽

∫
R
|x|2γ(t, x)dx = 1. (68)

We also have, by Cauchy-Schwarz inequality,

|γ̂′(t, ξ)| = | − ix̂γ(t, ξ)| ⩽
∫
R
|x|γ(t, x)dx ⩽ 1. (69)

Now, a simple change of variable reads, for k ∈ N,

Sk
√
M2

k
=

∫
R
xkφ(x)dx = ikφ̂(k)(0),

(where the dependency on time t is omitted) and therefore, the expression (67) of R(t, ξ) can be
written under the form

R(t, ξ) = φ̂(0)γ̂(ξ)− φ̂(ξ) +
(
φ̂′(0)γ̂(ξ)− 1

2

(
φ̂(0) + φ̂′′(0)

)
γ̂′(ξ)

)
ξ.

From this, we easily remark that R(0) = 0 and we obtain

R′(t, ξ) = φ̂′(0)γ̂(ξ)− φ̂′(ξ) + 1
2

(
φ̂(0)− φ̂′′(0)

)
γ̂′(ξ)

+
(
φ̂′(0)γ̂′(ξ)− 1

2

(
φ̂(0) + φ̂′′(0)

)
γ̂′′(ξ)

)
ξ.

(70)

Also, we remark once again that R′(t, 0) = 0 (since γ̂′(0) = 0), and we also have from (70)

R′(t, ξ) =

∫ ξ

0

(
φ̂′(0)γ̂′(η)− φ̂′′(η) + 1

2

(
φ̂(0)− φ̂′′(0)

)
γ̂′′(η)

)
dη

+
(
φ̂′(0)γ̂′(ξ)− 1

2

(
φ̂(0) + φ̂′′(0)

)
γ̂′′(ξ)

)
ξ.
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Using (68)-(69), we obtain a first estimate on R′

|R′(t, ξ)| ⩽ (∥φ̂∥∞ + 2∥φ̂′∥∞ + 2∥φ̂′′∥∞)|ξ|,

and since R(t, 0) = 0, by integration we get the estimation (65).

Similarly, we compute the second derivative of R and we obtain

R′′(t, ξ) = 2φ̂′(0)γ̂′(ξ)− φ̂′′(ξ)− φ̂′′(0)γ̂′′(ξ)

+
(
φ̂′(0)γ̂′′(ξ)− 1

2

(
φ̂(0) + φ̂′′(0)

)
γ̂′′′(ξ)

)
ξ.

From this, we remark once more that R′′(t, 0) = 0 (since γ̂′′(0) = −1), and we also have

R′′(t, ξ) =

∫ ξ

0

(
2φ̂′(0)γ̂′′(η)− φ̂′′′(η)− φ̂′′(0)γ̂′′′(η)

)
dη

+
(
φ̂′(0)γ̂′′(ξ)− 1

2

(
φ̂(0) + φ̂′′(0)

)
γ̂′′′(ξ)

)
ξ.

Using again (68)-(69), we obtain

|R′′(t, ξ)| ⩽
(
1
2(∥φ̂∥∞ + 3∥φ̂′′∥∞)∥γ̂′′′∥∞ + 3∥φ̂′∥∞ + ∥φ̂′′′∥∞)|ξ|,

and since R′(t, 0) = R(t, 0) = 0, by two successive integrations we get the estimation (66) and
this ends the proof.

Next, we prove estimates on the derivatives of φ with the moments Mk, using the results of
Section 3. Once more, we fix t ⩾ 0 and omit the dependency on t in the notations, the norm ∥·∥∞
being the supremum with respect to the Fourier variable ξ only.

Proposition 4.2. We have

∥γ̂′′′∥∞ ⩽

√
M4

M2
, (71)

and if m satisfies Assumption 1.2, we have

∥φ̂(k)∥∞ ⩽ α(x)

√
M4

M2
+ β

M4

M2
, for 0 ⩽ k ⩽ 2,

∥φ̂(k)∥∞ ⩽ α(x)
M4

M
3
2
2

+ β

√
M4M6

M
3
2
2

, for 0 ⩽ k ⩽ 3.

Proof. By a simple change of variable, we have
Mk

√
M2

k
=

∫
R
xkγ(x)dx,

and in particular, we get (71) by

|γ̂′′′(ξ)| ⩽
∫
R
|x|3γ(x)dx ⩽

√∫
R
x2γ(x)dx

√∫
R
x4γ(x)dx =

√
1

√
M4√
M2

4 =

√
M4

M2
.

Furthermore, the quantity
∫
R |x|kγ(x)dx is nondecreasing with k, from k ⩾ 1. Indeed, by

induction, thanks to (69) we first have
∫
R |x|γ(x)dx ⩽ 1 =

∫
R |x|2γ(x)dx. And if for some k ⩾ 1,

we have
∫
R |x|kγ(x)dx ⩽

∫
R |x|k+1γ(x)dx then by Cauchy-Schwarz inequality, we get:∫

R
|x|k+1γ(x)dx ⩽

√∫
R
|x|kγ(x)dx

√∫
R
|x|k+2γ(x)dx

⩽

√∫
R
|x|k+1γ(x)dx

√∫
R
|x|k+2γ(x)dx,
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which proves that
∫
R |x|k+1γ(x)dx ⩽

∫
R |x|k+2γ(x)dx.

If now m satisfies Assumption 1.2, we obtain by the definition (33) that for all x ∈ R, we
have

|φ| ⩽ [α(x)
√
M2|x|+ βM2|x|2]γ(x).

Therefore we obtain

|φ̂(k)(ξ)| ⩽
∫
R
|x|k|φ(x)|dx

⩽ α(x)
√

M2

∫
R
|x|k+1γ(x)dx+ βM2

∫
R
|x|k+2γ(x)dx,

which the gives

∥φ̂(k)∥∞ ⩽ α(x)
√
M2

∫
R
|x|3γ(x)dx+ βM2

∫
R
|x|4γ(x)dx for 0 ⩽ k ⩽ 2,

∥φ̂(k)∥∞ ⩽ α(x)
√
M2

∫
R
|x|4γ(x)dx+ βM2

∫
R
|x|5γ(x)dx for 0 ⩽ k ⩽ 3.

We have
∫
R |x|3γ(x)dx ⩽

√
M4
M2

thanks to (71),
∫
R |x|4γ(x)dx = M4

M2
2
, and finally, by Cauchy-

Schwarz inequality,∫
R
|x|5γ(x)dx ⩽

√∫
R
|x|4γ(x)dx

∫
R
|x|6γ(x)dx ⩽

√
M4M6

M2
2M

3
2

,

and we therefore obtain the desired estimates.

We can conclude with the proof of Theorem 1.4.

Proof. If m satisfies Assumption 1.2, then combining the results of Lemma 4.1 and Proposi-
tion 4.2 gives the following estimates for |R(t, ξ)|:

|R(t, ξ)| ⩽ 5

2

(
α(x)

√
M4

M2
+ β

M4

M2

)
|ξ|2,

and

|R(t, ξ)| ⩽

α(x)
M4

M
3
2
2

+ β

1

3

M
3
2
4

M2
2

+
2

3

√
M4M6

M
3
2
2

 |ξ|3

⩽

α(x)
M4

M
3
2
2

+ β

√
M4M6

M
3
2
2

 |ξ|3,

with the last inequality coming from the fact that M4 ⩽
√
M2M6 by Cauchy-Schwarz inequality.

Then, we fix δ from Assumption 3.1. By Proposition 3.4, assuming that
M0

2k0

M0
2

is small enough

for some k0 ⩾ 3 (and such that 1
22k0−1 < δ), we have that, for each ω < min(38 , δ−

1
22k0−1 ), there

exist constants C1 and C2 such that

|R(t, ξ)| ⩽ C1e
−ω

2
t|ξ|2,

and
|R(t, ξ)| ⩽ C2e

( 1
4
−ω)t|ξ|3.
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Thus, taking s ∈ (2, 3) and defining cs := (3− s)ω2 − (s− 2)(14 − ω), we obtain

|R(t, ξ)| = |R(t, ξ)|(3−s)+(s−2) ⩽ C3−s
1 Cs−2

2 e−cst|ξ|s,

with cs > 0 when s < s̄ := 2 + ω
1
2
−ω

.
We can distinguish two situations depending on the value of ω.

• If ω ⩾ 1
4 , then we have cs > 0 for all s ∈ (2, 3). Moreover, we have that cs > λs for each

value of s, which implies from Proposition 4.1

ds(γ, γ∞)(t) ⩽ ds(γ0, γ∞)e−λst + L
e−λst

cs − λs
.

Indeed, in this case, for s = 3 and ω = 1
4 , we have λ3 − c3 = 0, and for s ∈ (2, 3)

the function s 7→ λs − cs is increasing (it is strictly concave and its derivative at s = 3
is 1

4(ln 2 − 1
2) > 0). Therefore for ω = 1

4 we have λs < cs for all s ∈ (2, 3). Since cs is
increasing with respect to ω (and λs does not depend on ω), this provides the same result
for ω ⩾ 1

4 .

• If ω < 1
4 , s must be in (2, s̄) to get cs positive. Furthermore the function s 7→ λs − cs is

still increasing on (2, 3), since it is strictly concave and with positive derivative at s = 3.
Since λ3−c3 > 0 and λ2−c2 < 0, we get that there is a unique value s0 for which λs0 = cs0 .
Then, Proposition 4.1 can be applied. We obtain

ds0(γ, γ∞)(t) ⩽ ds0(γ0, γ∞)e−λs0 t + Lte−λs0 t.

And for s ̸= s0, we have

ds(γ, γ∞)(t) ⩽ ds(γ0, γ∞)e−λst + L′e−min(λs,c)t,

with L′ = L
|λs−c| .

Hence the statement of Theorem 1.4, together with the precisions given in Remark 1.1.
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