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Abstract
Despite the increasing accessibility of high-throughput sequencing, obtaining high-
quality genomic data on non-model organisms without proximate well-assembled and 
annotated genomes remains challenging. Here, we describe a workflow that takes ad-
vantage of distant genomic resources and ingroup transcriptomes to select and jointly 
enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from 
genomic samples for integrative studies of microevolutionary and macroevolutionary 
dynamics. This workflow is applied to samples of the African unionid bivalve tribe 
Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that 
ORFs are efficiently captured without prior identification of intron-exon boundaries. 
The enrichment of UCEs was less successful, but nevertheless produced substantial 
data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs 
(>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the 
backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant 
calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs 
per population pair. Estimates of nucleotide diversity and population differentiation 
were similar for ORFs and UCEs. They were low compared to previous estimates in 
molluscs, but comparable to those in recently diversifying Malawi cichlids and other 
taxa at an early stage of speciation. Skimming off-target sequence data from the 
same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the 
maternally-inherited mitogenome, which displays the gene order inferred for the most 
recent common ancestor of Unionidae. Overall, our workflow and results provide ex-
citing perspectives for integrative genomic studies of microevolutionary and macro-
evolutionary dynamics in non-model organisms.

K E Y W O R D S
African freshwater molluscs, gene capture, genome skimming, phylogenetics, population 
genetics, transcriptomics (RNA-seq)
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1  |  INTRODUC TION

Our planet's current biodiversity is intricately complex, dynamic and 
heterogenous, but the evolutionary history of most taxa is poorly 
documented. Such lack of knowledge may hamper conservation 
strategies, and, given current anthropogenic pressures on ecosys-
tems (Barnosky et al., 2012; Dirzo et al., 2014), it may contribute to 
the irretrievable loss of poorly known biodiversity. Genomic data at 
the inter- and/or intraspecific level are essential to assess or infer 
ecological and evolutionary properties, but despite the continuous 
development of increasingly versatile genomic methods for non-
model organisms (Romiguier et al.,  2014), the differential rates at 
which genomic resources are acquired along various branches of the 
tree of life contribute to this heterogeneity (e.g., Gayral et al., 2013). 
Currently, detailed insights into the demographic history, the 
genome-wide development of reproductive isolation, the develop-
ment of phenotypic traits and mechanisms of adaptation exist for 
a restricted number of model organisms with superior genomic re-
sources (e.g., Cooney et al., 2017; Ronco et al., 2020; Van Belleghem 
et al., 2017).

A critical challenge for model and non-model organisms 
alike remains understanding the interplay of microevolutionary 
and macroevolutionary drivers and dynamics of diversification 
(Erwin,  2000; Reznick & Ricklefs,  2009), because both have tra-
ditionally been studied with different approaches and at different 
timescales. Microevolutionary studies typically consist of in-depth 
analyses of a small number of species based on large intraspecific 
samples, with limited opportunities for generalization across taxa. 
Macroevolutionary studies usually construe from comparative 
analyses on a restricted set of representatives for each of a large 
number of extant and/or fossil species, limiting insight into mech-
anisms operating at the level of individual species. Theoretical and 
empirical studies at both levels have indicated the need of a large 
number of orthologous loci to document phylogenetic relatedness, 
genetic diversity and population history (Dutoit et al., 2017; Helyar 
et al., 2011; Leaché & Rannala, 2011; Wortley et al., 2005). Rapid 
advances in high-throughput sequencing methods and genomic data 
analysis now allow to develop large multilocus data sets on model 
and non-model organisms alike, creating novel perspectives for the 
integration of micro- and macroevolutionary dynamics.

A multitude of strategies exist to obtain molecular data sets 
at a variety of taxonomic levels, enabling the development of 
genomic sampling schemes that could tackle questions at mac-
roevolutionary and microevolutionary scales simultaneously. 
For non-model organisms the majority of approaches consist of 
reduced representation sequencing, where a subset of ortholo-
gous markers of the nuclear genome across taxa or individuals is 
obtained, for example with RAD-seq (Miller et al.,  2007), tran-
scriptomics (RNA-seq; Gayral et al.,  2013), or by sequencing li-
braries after targeted sequence capture/enrichment (Hyb-seq). 
The latter strategy includes anchored hybrid enrichment (Lemmon 
et al.,  2012), the sequencing of ultraconserved elements (UCEs; 
Faircloth et al.,  2012), sequence capture using PCR-generated 

probes (Peñalba et al.,  2014), transcriptome-based exon capture 
(Bi et al.,  2012), exome capture with cDNA probes developed 
from expressed mRNA (Eec-seq; Puritz & Lotterhos,  2018), or if 
genomic resources exist, by using conserved noncoding elements 
(CNEs; Vavouri et al., 2007), including conserved nonexonic ele-
ments (CNEEs; Edwards et al., 2017).

Here, we develop a methodological framework combining sev-
eral of the abovementioned approaches to enrich a set of loci that 
enables phylogenetic and population genetic studies in taxa with 
very limited genomic resources. Several motivations drive this ef-
fort. First, as comprehensive phylogenetic and population genetic 
studies require large sample sizes, we require a strategy that is scal-
able to 100 or 1000 s of individuals without massive inflation of se-
quencing costs. Second, micro- and macroevolutionary studies each 
impose specific constraints, for example, related to orthology, the 
identification of coding versus noncoding regions and within coding 
regions of synonymous versus non-synonymous sites, so that the 
advantages and disadvantages of an integrative strategy are to be 
evaluated. Third, given the aim of integrative studies, it is desirable 
to select targets with a high information content. Fourth, in the 
absence of a well-assembled reference genome for the focal taxa 
or their close relatives, it remains difficult to leverage many of the 
abovementioned reduced representation sequencing methods. 
Specifically, we propose a strategy based on target enrichment of 
entire open reading frames (ORFs) of genes, which have been se-
lected from ingroup-specific transcriptome sequencing, supple-
mented with more universal UCE targets that were identified from 
comparisons among distant genomes. The ORF of a gene is a stretch 
of DNA sequence, in the correct register, between start and stop co-
dons that encodes a protein for translation, i.e. the coding sequence. 
Because ORFs are usually clustered in gene-rich regions within 
animal genomes (Osbourn & Field,  2009; Sproul et al.,  2005), we 
include UCEs to increase the evenness at which the genome is sam-
pled. Additionally, the integration of multiple types of markers has 
been suggested to enhance opportunities to resolve phylogenetic 
conflict (Chan et al., 2020; Hutter et al., 2019; Reddy et al., 2017). 
Both ORFs and UCEs are useful markers for organisms with no or 
limited genomic resources (Faircloth et al., 2012; Portik et al., 2016), 
as they enable the reconstruction of phylogenetic relationships 
across clades of varying age and taxonomic scale (Bi et al.,  2012; 
Bragg et al., 2016; Faircloth et al., 2012; Harvey et al., 2016; Hugall 
et al., 2016; Lemmon et al., 2012; Teasdale et al., 2016), and they 
allow the detection of SNPs for population-level analyses (De Wit & 
Palumbi, 2012; Harvey et al., 2016; Schunter et al., 2014). A novelty 
of our approach is to focus on the entire ORFs of genes, which en-
hances the information content per marker and allows more rigorous 
assessment of genetic diversity at the population level, for exam-
ple, through more accurate characterization of synonymous versus 
non-synonymous genetic diversity and demographic history (Gayral 
et al.,  2013), including examinations of the speciation continuum 
(Roux et al.,  2016). Inclusion of multiple exons per gene also pro-
vides access to additional intronic/intergenic flanking regions (com-
pared to when a single exon is used), which may contain substantial 
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phylogenetic information, especially at shallow taxonomic levels 
(Breinholt et al., 2018).

Given the abovementioned requirements, we avoided RAD-seq, 
which produces short, blind markers for which alignment and orthol-
ogy assessment may be challenging, especially for more divergent 
species. Additionally, it may be complicated to repeat, compare and 
combine various RAD-seq data sets, because the overlap of ortholo-
gous markers between data sets may be limited (Harvey et al., 2016). 
A further constraint of using RAD-seq data in the absence of a ref-
erence genome is that reads are to be analysed without alignment 
to an a priori determined sequence, so that the genetic diversity in 
RAD-seq data sets can be influenced by the level of natural het-
erozygosity in the studied samples and the parameters used for 
orthology assessment (Harvey et al., 2016). Orthology assessments 
may also be challenging for Eec-seq, which produces comparatively 
short markers that are not optimal for reconstructing genealogy at 
various levels of phylogenetic divergence. Subjecting all samples to 
transcriptome sequencing was not feasible because it does not allow 
leveraging historical, ethanol-preserved collections nor pooling as 
many samples per sequencing run. Consequently, it would result in 
decreased species/specimen representation and/or inflated costs. 
Additionally, levels of heterozygosity may be underestimated if only 
one of both alleles is expressed. Sequence capture approaches suf-
fer less from the abovementioned issues, but face two important 
challenges to select targets: (1) the qualification of orthology, as 
only single-copy markers that are orthologous across all taxa under 
study are phylogenetically informative (Teasdale et al., 2016), and (2) 
the need to identify intron-exon boundaries to select exome targets 
(Karin et al., 2019; Portik et al., 2016). Both of these challenges typ-
ically require a reference genome (Bi et al., 2012; Bragg et al., 2016; 
Portik et al., 2016). In invertebrates, especially the molluscs we are 
concerned with here, orthology assessments are usually undertaken 
with very distant genomes due to the paucity of well-assembled 
genomes, for example, divergence >400 Ma for Lottia versus 
Eupulmonata in gastropods and Bathymodiolus versus Unionidae in 
bivalves (Combosh et al., 2017; Pfeiffer et al., 2019; Sun et al., 2019; 
Teasdale et al.,  2016). Such ancient divergences imply that ortho-
logue assessments for the reference may differ substantially from 
those for ingroup taxa. Here, we relax the need of well-assembled 
reference genomes by assessing orthology from existing genomic 
databases and representative ingroup transcriptomes. Additionally, 
by focusing on entire ORFs as functional biological units, instead of 
individual exons, we do not require to establish intron-exon bound-
aries prior to target enrichment. Whereas our proposed strategy 
enhances versatility, various issues could complicate target enrich-
ment of entire ORFs, notably their subdivision in multiple exons. If 
exons are regularly shorter than the probe length, many probes will 
be tiled over exon boundaries within ORFs, which could drastically 
reduce the enrichment efficiency in genomic libraries. Evaluation of 
various Metazoan genomes indicated that genes consist on average 
of several short exons (number: 8.20 ± 1.90; length: 196 ± 69 bp; 
mean ± SD) that are separated from one another by much longer in-
trons (length: 3079 ± 2063 bp) (Zhu et al.,  2009). The number and 

lengths of exons in transcripts, the length of probes, the level of di-
vergence between probes and targets and the length distribution of 
genomic library fragments are all important factors that could influ-
ence the success of our proposed strategy.

In light of the abovementioned considerations, we here describe 
an enrichment strategy for integrative studies of microevolution 
and macroevolution in the Afrotropical freshwater bivalve tribe 
Coelaturini (Parreysiinae; Unionidae) that can be readily expanded 
to other non-model organisms. We present a new approach to se-
lect orthologous single-copy genes from ingroup transcriptome 
assemblies, partly based on manual data curation (see Teasdale 
et al., 2016) and a strategy to successfully enrich their entire ORFs 
in genomic libraries. Additionally, we developed (to our knowledge) 
the first set of UCEs for both bivalves and gastropods (but see Moles 
& Giribet, 2021 for a gastropod-specific UCE set). We evaluate the 
performance of target enrichment for these heterogenous targets, 
and analyse the obtained data sets to illustrate their value for phy-
logenetics and population genetics. Finally, we built a custom, ver-
satile pipeline to skim the raw sequencing data and to evaluate the 
possibility of recuperating off-target mitochondrial sequences, on 
which previous Sanger-sequencing studies of Unionidae (Lopes-
Lima, Froufe, et al.,  2017; Ortiz-Sepulveda et al.,  2020; Whelan 
et al.,  2011), and bivalves in general (Combosh et al.,  2017), have 
relied heavily.

2  |  MATERIAL S AND METHODS

The workflow described below is summarized in Figure 1.

2.1  |  RNA extraction and sequencing

Foot and mantle tissues of Coelaturini specimens from Malawi, 
Uganda and Zambia were stabilized in RNA-later for subsequent RNA 
extraction. Extractions were performed with the NucleoSpin RNA 
Plus kit of Machery-Nagel, either according to the protocol of the 
manufacturer, or by adding Proteinase K to the lysis buffer. Tissues 
were disrupted with magnetic beads (matrix D, 3 × 30 s at a speed of 
6 ms, MP). The quantity and quality of mRNA was quantified with 
high-sensitivity Qubit fluorometry (Life Technologies Inc.) and with 
an Agilent BioAnalyser. We selected 12 samples from several major 
clades of Coelaturini based on the phylogeny of Ortiz-Sepulveda 
et al. (2020) for sequencing: Six specimens of Coelatura hypsiprymna 
and C. nyassaensis from the Malawi Basin; two of Grandidieria burtoni 
from Lake Tanganyika; two of Coelatura hauttecoeuri and two of Nitia 
acuminata from Lake Victoria (Table S1). RNA extraction products 
were purified and poly-A enriched for cDNA strand-specific, paired-
end library preparation with the TruSeq RNA sample preparation kit 
version 2 (Illumina). The resulting libraries were sequenced on an 
Illumina HiSeq 3000 platform version 3.0 (2 × 150 bp). Purification, 
library preparation and sequencing were outsourced to UMR AGAP 
of the INRA and the University of Montpellier.
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2.2  |  Transcriptome assembly

After transcriptome sequencing we removed adaptor sequences 
and low-quality reads in multiple steps using TrimGalore! version 
0.6.6 (Krueger, 2019), while iteratively examining the quantity and 
quality of reads with FastQC version 0.11.8 (Andrews, 2010). The 

cleaned reads were subjected to de novo transcriptome assem-
bly with Agalma version 2.0.0 (Dunn et al., 2013), which includes 
several filtering procedures and ribosomal RNA removal followed 
by assembly with Trinity version 2.8.5 (Grabherr et al., 2011). We 
screened against the NCBI UniVec database to identify vector 
contaminants and rRNA transcripts. Subsequently, we performed 

F I G U R E  1  Schematic representation of our workflow indicating the main steps of the analytical pipeline. Our four main phases are 
represented in different colours; that is, transcriptomic steps for the selection of open reading frames (ORFs, blue), comparative genomics 
for the selection of ultraconserved elements (UCEs, dark purple), probe design and the sequencing of genomic libraries (light purple), 
analyses after the processing of sequencing data (red).

Transcriptome Sequencing

RNA extraction, enrichment, 
cDNA library preparation

Illumina HiSeq sequencing

Transcriptome assembly

Adaptor and low-quality �ltering, de novo
transcriptome assembly (AGALMA), 

quality control (TransRate), 
BUSCO benchmarking

Selection of ORF targets

Supertranscriptome clustering (CD-Hit-Est),
ORF prediction (TransDecoder) and clustering

Homolog identi�cation with BUSCO Metazoa
database and Unioverse probe set

Alignment (MUSCLE), manual ortholog quali�cation

Identity and overlap screening (Yass)

Mask low-complexity and repetitive elements
(RepeatMasker)

Evaluation of retained target regions

Simulation of error-free reads, mapping to Venustachoncha genome

Target enrichment bait design (Arbor Bioscienti�c)

Preparation of NGS genomic libraries, pooling and enrichment with custom probe kit, 
veri�cation of sample quality and quantity

Illumina NextSeq sequencing

ORF analyses with HybPiper, including assemblies (SPAdes), 
identi�cation of intron-exon boundaries (Exonerate)

Demultiplexing, read trimming and cleaning

Multiple alignment (MAFFT and MUSCLE)

UCE analyses with Phyluce

Veri�cation of enrichment balance

Phylogenomic analyses Population genomicsGenome skimming

Concatenation, partitioning (AMAS),
phylogenetic inference (IQTREE)

Variant calling (GATK), SNP �ltering, 
population genomic estimators (pixy),

genomic structure (fastSTRUCTURE)

Skimming with Pyganodon mitogenome,
assembly, alignment, contig selection 

iterative read recovery, contig extension
(Bowtie2, Samtools, SPAdes, Trinity)

Selection of UCE targets

Evaluation of seven bivalve and gastropod
genomes for target selection with phyluce

pipeline
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a reference-free assessment of the quality and completeness 
of our de novo assemblies with TransRate version 1.0.3 (Smith-
Unna et al.,  2016) combined with BUSCO version 3.0.1 (Simão 
et al., 2015).

2.3  |  Selection of ORF targets

To identify target ORFs for orthology assessment, we first clustered 
the contigs of our 12 Agalma transcriptomes into a supertranscrip-
tome using CD-Hit-Est version 4.8.1 (Li & Godzik, 2006) with a 95% 
similarity threshold, retaining the longest variant per cluster. We 
predicted ORFs for the supertranscriptome with TransDecoder ver-
sion 5.5.0 (Haas & Papanicolaou, 2018) in two steps. First, we iden-
tified all likely coding regions from which we retained long ORFs, 
after which we selected the best-supported ORF per transcript. 
These ORF predictions were clustered again with CD-Hit-Est at 95% 
similarity to create homologous clusters. These homologous ORF 
clusters were expected to still contain a high level of redundancy 
because of fragmentation, frameshifts, mis-indexing, mis-assembly 
or the potential existence of isoforms or paralogues. We evaluated 
orthology in two steps. First, we mapped our ORF clusters against 
the BUSCO Metazoa_odb9 database (Waterhouse et al.,  2017) and 
against the Unioverse probe set (Pfeiffer et al., 2019) to identify tar-
gets that have high chances of being single-copy and orthologous 
(=candidate genes). This approach does not allow to detect unex-
pressed homologues or weakly divergent paralogues, so additional 
follow-up verifications are performed during probe design (see 
below). We extracted all complete BUSCO hits, which consist of sin-
gle- and multicopy hits. For ORFs with single-copy BUSCO hits the 
likelihood of multiple gene copies is small, given the gene is included 
in the single-copy orthologous database of BUSCO, and given the 
lack of expression variants with <95% similarity after clustering 12 
ingroup transcriptomes. Multicopy BUSCO hits imply that at least 
two ORF homologous clusters map to a BUSCO gene and these were 
manually curated to distinguish among the following scenarios: (1) 
multiple copies may indicate the existence of distant homologues or 
paralogues, (2) assembly errors may have resulted in the creation of 
multiple contigs for the same gene, (3) various isoforms may exist 
of a single expressed RNA fragment. All ORFs that map to an indi-
vidual BUSCO were merged into a .fasta file after which contigs were 
aligned with MUSCLE version 3.8.1551 (Edgar, 2004) and the nucleo-
tide and protein sequences of homologues were visually inspected in 
SeaView version 5 (Galtier et al., 1996; Gouy et al., 2010). If the pres-
ence of paralogues was suspected in this evaluation, we rejected all 
ORFs for the respective BUSCO hit. If different splicing or minor dif-
ficulties in assembly were suspected, the longest ORF was retained.

A similar approach was used to evaluate the 811 loci from the 
Unioverse probe set, which was developed for anchored hybrid en-
richment using the distant Bathymodiolus platifrons genome (Pfeiffer 
et al., 2019). This probe set contains 173,707 nucleotides, on aver-
age 214 per locus. To avoid overlap with targets that were already 
retained from the abovementioned BUSCO comparisons, we first 

screened the Unioverse loci against the BUSCO Metazoa_odb9 data-
base and against our already retained ORFs with Yass version 1.15 
(Noé & Kucherov, 2005). In total 109 Unioverse loci were accounted 
for by these verifications, leaving 702 loci to be examined. Our re-
maining ORF clusters produced hits on all 702 remaining Unioverse 
loci, and all hits for the same Unioverse locus were compiled and 
aligned. When several Unioverse loci mapped onto the same ORF, we 
also performed alignments including all concerned Unioverse loci and 
all associated ORFs in SeaView. The subsequent evaluation of can-
didate genes followed the criteria indicated above for our BUSCO 
evaluation. Finally, we mapped all retained ORF targets and their 
subregions to one another with Yass to examine the percentage of 
sequence similarity over a certain alignment length. ORFs were re-
moved if alignment lengths and similarities were judged to poten-
tially interfere with target enrichment.

2.4  |  Selection of ultraconserved elements

We expanded our genomic sampling by constructing the (to our 
knowledge) first UCE probe set for gastropods and bivalves. We used 
seven published bivalve and gastropod genomes (Table S2), with the 
ampullariid gastropod P. canaliculata (Sun et al., 2019) as reference, to 
detect shared UCEs using Phyluce version 1.6.8 (Faircloth, 2016, 2017; 
Faircloth et al., 2012). Upon obtaining candidate UCEs, we masked re-
petitive elements and low complexity regions with RepeatMasker ver-
sion 4.0.9 (Smit et al., 2019), and merged the results for each genome 
in a table with commands of PHYLUCE. We retained UCEs with a min-
imum length of 100 bp (the length of our probes) that were retrieved 
from seven, six or five of the genomes, respectively. Subsequently, 
candidate UCEs were mapped onto our previously retained ORFs 
with Yass to examine potential overlaps and if so, the involved UCEs 
were discarded. We also mapped UCEs onto one another to avoid the 
inclusion of multiple UCEs with similar sequences.

2.5  |  Evaluation of target regions

If exons are on average small, many probes may span exon bounda-
ries within ORFs and may be inefficient for subsequent target en-
richment with genomic DNA. We examined this issue using the 
Venustaconcha ellipsiformis genome (Renaut et al.,  2018), the only 
genome for Unionidae available at the time. We generated error-free 
reads for our target regions (ORFs and UCEs) with ART (ART_Illumina) 
version 2.5.8 (Huang et al., 2012). Each read had a length of 100 nt 
and reads were tilled to cover each base at 4×, resulting in a total 
of 84,848 reads. These reads were mapped to the Venustaconcha 
genome with Stampy version 1.0.32 (Lunter & Goodson, 2011) and 
mapping statistics were examined with SAMTools version 1.10 (Li 
et al., 2009). Subsequently, we produced a .bed file with functions 
of BEDTools version 2.29 (Quinlan & Hall, 2010), and we used IGV 
version 2.6.3 (Robinson et al., 2011) to visualize hits for a subset of 
ORFs and UCEs.
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2.6  |  Target enrichment bait design

Target regions were submitted to Arbor Bioscientific for develop-
ment of a custom MyBaits kit. Probes were 100 nt in length and we 
aimed to cover targets at 2×, resulting in a raw bait set of 40,269 
probes. Probes were subsequently verified with the Venustachoncha 
genome and 10 of our TransRate-filtered transcriptomes (i.e. those 
of individuals E4, E8, E32, E36, Mol1-Mol6). The procedure con-
sisted of repeated analyses with BLAST version 2.5.0+ (Camacho 
et al., 2009) to examine in silico how many hits these probes would 
produce on each genomic and transcriptomic reference under a va-
riety of hybridization melting temperatures. After moderate filter-
ing the probes were synthesized on magnetic beads for subsequent 
target enrichment.

2.7  |  Preparation of genomic libraries

Target enrichment was performed with genomic DNA libraries of 96 
specimens (95 Coelaturini and one iridinid bivalve), that is, 48 for 
continent-scale phylogenetics and 48 from six sampling localities (5–
11 individuals per population) in the Malawi Basin for population ge-
netics (Table S3). Two populations occur in the northern region, two 
in the southern region, one at Likoma Island and the last along the 
Shire River that drains Lake Malawi in the south. Genomic DNA was 
extracted from ~20 mg of dried tissue of the posterior or anterior 
adductor muscles, mantle tissue, and in case required the foot. DNA 
was extracted with the NucleoSpin 96 Tissue kit from Macherey-
Nagel on a KingFisher Flex robot following manufacturer's recom-
mendations. DNA concentrations in the extracts were quantified 
with Qubit fluorometry. We sheared DNA through sonication in a 
Bioruptor Pico: Samples with >20 ng/μl were subjected to 20 cycles 
of 30 s sonication, 30 s pause, for those with lower DNA concentra-
tions we used between 18 and 3 cycles depending on DNA content. 
The results of library fragmentation were verified with chip-based 
capillary electrophoresis on an Agilent BioAnalyser. Genomic librar-
ies were prepared with the NextFlex Rapid DNA-Seq version 2.0 kit 
of PerkinElmer and associated Unique Dual Indices for multiplexing.

2.8  |  Target enrichment and sequencing

We validated our selection of targets, bait design and our molecular 
protocols with four target enrichment reactions. Pools were created 
at equimolar concentrations and enriched with a ~19 h incubation 
period at 65°C and 14–16 cycles in the post-hybridization PCR reac-
tion. After enrichment, we purified the resulting products using 0.8 
magnetic beads and rehydrated the enriched pool in 30 μl TLE. Post-
enrichment libraries were quantified with Qubit and BioAnalyser, 
after which the results of multiple reactions were pooled at equi-
molar concentration and sequenced paired-end (2 × 150 bp) on 
an Illumina NextSeq 500 of the LIGAN-MP Genomics Platform of 
UMR8199.

2.9  |  Bioinformatic analysis of sequencing results

2.9.1  |  Open reading frames with HybPiper

Demultiplexed raw reads were cleaned with TrimGalore!, CutAdapt 
version 2.6 (Martin,  2011) and Trimmomatic version 0.39 (Bolger 
et al.,  2014) performing iterative FastQC quality controls at each 
step. The cleaned paired-end reads of each specimen were sub-
jected to the HybPiper workflow version 1.3.1 (Johnson et al., 2016). 
This workflow starts by mapping reads to our ORF targets and sort-
ing them per ORF in separate directories with BLASTX and BWA 
version 0.7.17 (Li & Durbin, 2009) after removal of paired duplicated 
reads. Subsequently, the reads per ORF are subjected to de novo as-
sembly using SPAdes version 3.14.0 (Bankevich et al., 2012) resulting 
in the construction of a supercontig per ORF and per specimen. The 
resulting contigs are sorted and the boundaries between exons and 
flanking regions are predicted with Exonerate version 2.4.0 (Slater 
& Birney,  2005). Alignments of the supercontigs, which include 
exons and intronic/intergenic flanking regions, were performed with 
MAFFT version 7.475 (Katoh & Standley, 2013) and MUSCLE, using 
our ORF targets to verify exon predictions.

2.9.2  |  Ultraconserved elements with Phyluce

Demultiplexed and cleaned reads were also mapped to our UCE 
targets and treated with Phyluce. We assembled contigs with 
Trinity, which subsequently underwent orthology detection, para-
logue removal and the matching of contigs to targets with LastZ 
(Harris,  2007), after which contigs were aligned with MAFFT or 
MUSCLE. Two essential parameters in the Phyluce pipeline are --
min_identity and --min_coverage (−-min_kmer_coverage was set to 
two), and we examined combinations of each factor between 50% 
and 80% at intervals of 5% (49 combinations in total). Many of these 
combinations are more permissive than the recommendations of 
Bossert and Danforth  (2017), but we used additional downstream 
processing to eliminate potential contaminant sequences. Parameter 
combinations were evaluated using the proportion of unique con-
tigs retrieved and the total number of UCEs retrieved for all 96 
samples. The resulting data were analysed in R version 3.6.1 (R Core 
Team, 2019).

2.9.3  |  Enrichment balance between 
ORFs and UCEs

To verify the enrichment balance between ORFs and UCEs, we 
examined the proportion of reads that mapped on either type of 
target. This task has been performed starting from the reads that 
were identified with HybPiper and Phyluce as mapping to ORF or 
UCE targets, respectively, which also provides information on the 
specificity of our enrichment strategy. More detailed information 
is obtained by extracting kmers of 18 to 21 bases from various 
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.fasta files with Jellyfish version 2.2.10 (Marcais & Kingsford, 2011), 
that is, first from .fasta files that contain the ORF and UCE target 
sequences, and then for a sample of specimens in our data set. 
Each kmer that occurs in both the specimen and ORF dictionary 
is considered an ORF hit, whereas each kmer that occurs in the 
specimen and UCE dictionary is considered an UCE hit. The ratio 
of hits of both types indicates the enrichment balance between 
both sets of targets.

2.9.4  |  Mitogenome skimming

Unionoida and some related bivalves have double uniparentally 
inherited mitochondria, which appears to be unique within the 
animal kingdom and which may play a role in sex determination 
(Breton et al., 2011; Zouros et al., 1994). Against this background, 
the abundant use of mitochondrial fragments in previous phyloge-
netic inferences for Unionidae (see above), and the potential role 
of conflict between mitochondrial and nuclear genes in speciation, 
we performed mitogenome skimming with a custom-build pipe-
line that outperformed MitoFinder version 1.4.1 (Allio et al., 2020) 
for this specific data set. The tissues we used for genomic library 
preparation predominantly or exclusively contain maternally-
inherited mitochondria (Breton et al.,  2011; Froufe et al.,  2020), 
so that recovering the paternally-inherited mitogenome falls be-
yond our current scope. First, we aligned reads on the mitochon-
drial genome of Pygandon grandis (NCBI GenBank: NC_013661; 
Breton et al.,  2009) with Bowtie2 version 2.3.5 (Langmead & 
Salzberg, 2012) to produce a .bam file, which was sorted and in-
dexed with functions of SAMTools. Subsequently, the files for all 
individuals were merged with SAMTools and visualized with IGV. 
This merged .bam file was converted into .fastq files after which 
the reads were assembled with SPAdes. The resulting assembly 
was aligned to the Pyganodon grandis mitogenome and visually 
inspected to retain unambiguous contigs. The retained contigs 
were used to recover reads for 48 Coelaturini specimens from the 
Malawi Basin using again Bowtie2, SAMTools and SPAdes, after 
which individual assemblies were reassembled with Trinity. The 
total assembly was evaluated and the procedure was iterated each 
time with laterally extended starting contigs. Annotations were 
performed with MITOS (Bernt et al., 2013).

2.10  |  Macroevolutionary analyses

2.10.1  |  Alignment of UCE and ORF data

A single transcriptome was available in NCBI GenBank for the sub-
family Parreysiinae at the start of these analyses, namely that of 
Scabies phaselus (Lea, 1856) (SRX5281799; Pfeiffer et al.,  2019), 
which was hence used as outgroup for phylogenetics. We used 
HybPiper as described above to recover information on our ORF 
targets for this outgroup. Phylogenetic analysis of the ORFs was 

performed using the supercontigs reconstructed for ingroup taxa 
with HybPiper. These supercontigs contain exons and intronic/
intergenic flanking regions; alignments were produced with 
MAFFT. The UCEs were processed for phylogenetic analysis with 
Phyluce. Alignments for each UCE locus were obtained using phy-
luce_align_seqcap_align with MAFFT as aligner and without edge-
trimming. Phylogenetic data sets of both UCEs and ORFs were 
filtered to retain target loci with >50% taxon completeness. ORF 
and UCE alignments were trimmed separately using BMGE version 
1.2 (Cruscuolo & Gribaldo,  2010) with a maximum gap rate per 
sequence and character of 0.3 and a maximum entropy threshold 
of 0.4 to remove ambiguous regions. After concatenating trimmed 
single-locus alignments with AMAS version 1.0 (Borowiec, 2016), 
we used Spruceup version 2020.2.19 (Borowiec,  2019) to detect 
outliers, which were replaced as missing data (windows size = 20, 
overlap = 15, criterion = lognorm, cutoff = 0.99). Alignment statis-
tics were calculated with AMAS.

2.10.2  |  Phylogenetic inference

We performed phylogenetic analysis with maximum likelihood (ML) 
on concatenated data sets for ORFs and UCEs separately to evalu-
ate the congruence between both. We used AMAS to generate a 
partition file for the UCEs with the sliding-window site charac-
teristics method based on site entropies (SWSC-EN; Tagliacollo & 
Lanfear, 2018) to define the limits of the UCE “core” and flanking re-
gions. A single partition was considered for the supercontig of each 
ORF. Concatenated data sets and the partitioning information were 
subjected to phylogenetic inference in IQTREE version 2.0.3 (Minh 
et al.,  2020), using the integrated ModelFinder (Kalyaanamoorthy 
et al., 2017) to determine the best-fit substitution model for each 
partition. We used 1000 bootstrap replicates; branch support val-
ues were calculated with a Shimodaira-Hasegawa approximate 
likelihood ratio test (SH-aLRT; Guindon et al.,  2010) and ultrafast 
Bootstrap (UFBoot2; Hoang et al., 2018).

2.11  |  Microevolutionary analyses

2.11.1  |  Variant calling

Assessments of population genetic diversity and population struc-
ture are based on ORF targets without intronic/intergenic flanking 
regions, and UCEs with flanking regions. Variant calling was per-
formed by alignment of the raw reads against custom-built consen-
sus sequences for ORFs and UCEs with their respective flanking 
regions using Bowtie2 on a sample-by-sample basis, after which  .
sam files were converted to .bam using SAMTools, modified with 
Picard version 2.21.4 (available at http://broad​insti​tute.github.io/
picard), and merged across individuals with SAMTools. These .bam 
files, one for ORFs, another for UCEs, were used to call and annotate 
single nucleotide polymorphisms (SNPs) with GATK version 4.1.9.0 
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(McKenna et al., 2010) using HaplotypeCaller. Individual GVCF files 
were merged per marker type and subjected to joint genotyping 
to obtain a .vcf file with information on all sites, both variant and 
invariant. From the .vcf file for ORFs we extracted information on 
exonic sites using an Exonerate-generated .gff annotation file. The 
resulting .vcf files were filtered with functions of VCFtools version 
0.1.16 (Danecek et al.,  2011) and BCFtools version 1.12 (Danecek 
et al., 2021) depending on downstream analyses as described below.

2.11.2  |  Nucleotide diversity and population 
differentiation

For subsequent analyses of nucleotide diversity and population dif-
ferentiation, the .vcf files for ORFs and UCEs were individually fil-
tered to retain sites with a mean genotype depth of 8 that have been 
successfully genotyped in 80% of the individuals. Because invariant 
sites do not have quality scores when using condensed nonvariant 
blocks, we created individual .vcf files for variant and invariant sites. 
Invariant sites were identified by setting the minor allele frequency 
to zero (--max-maf), whereas variant sites have a minor allele count 
≥1 (--mac). Only variant sites with a minimum quality score of 30 
(-minQ) were retained. Subsequently, we indexed both .vcf files with 
tabix of SAMtools and combined them with BCFtools to estimate 
nucleotide diversity (π) within populations per ORF and UCE, the 
average, absolute nucleotide divergence between population pairs 
(DXY) and population differentiation (FST) using Pixy version 1.0.4 
(Korunes & Samuk,  2021). We also converted the filtered .vcf file 
for ORFs into a multifasta file with random (unphased) assignment 
of variants to the two alleles. Each multifasta file was aligned to its 
ORF target, after which reading frames were manually verified in 
SeaView. Gap-only sites in protein sequences were removed. The 
verified multifasta files were combined to calculate synonymous 
and non-synonymous nucleotide diversity (πS and πN, respectively) 
with dNdSpiNpiS version 1.0 (available at http://kimura.univ-montp2.
fr/PopPhyl).

2.11.3  |  Genetic structure

Analyses of genetic structure were undertaken for variant sites of 
ORFs only, which were obtained from the total .vcf file by filtering 
for a minimum allele count of 3, a minor allele frequency ≥0.05, a 
minimum quality score of 30 and a mean genotype depth of eight 
for at least 80% of the individuals. Furthermore, indels and variants 
that were not biallelic were removed, as were sites with a Hardy–
Weinberg p < .001. Finally, we removed individuals for which >50% 
of the sites displayed missing data. The resulting .vcf file was con-
verted into a .bed file for principal component analysis (PCA) using 
PLINK version 1.90b6.18 (Purcell et al., 2007), and to examine popu-
lation structure with fastSTRUCTURE (Raj et al., 2014) using K = 1–6 
with 30 independent runs per K. The underlying genetic structure 
and the appropriate number of clusters were examined with the 

ΔK method (Evanno et al., 2005) and others that are more robust 
when sampling is uneven (Puechmaille,  2016), as implemented in 
StructureSelector (Li & Liu, 2018).

3  |  RESULTS

3.1  |  RNA-seq and transcriptome assembly

Transcriptome sequencing resulted in on average 
42,928,473 ± 14,030,906 paired-end reads with a GC content of 
38.2 ± 1.6%. De novo assembly statistics are illustrated in Table 1. 
Filtering with TransRate significantly increased the quality of as-
semblies, as evidenced by substantially less duplicated BUSCO hits 
(Table 2; two-sample Wilcoxon Rank Sum test: W = 199, p < .001), 
but it decreased completeness. Raw Agalma assemblies have signifi-
cantly more complete BUSCO hits (W = 198, p < .001), less fragmen-
tary hits (W = 31, p < .001) and less missing data (W = 8.5, p < .001). 
However, we observed no significant difference between the raw 
Agalma assemblies and TransRate-filtered assemblies in the number 
of complete single-copy BUSCO hits (W = 132, p = .436). The clus-
tered supertranscriptome contained 988,460 contigs in total and 
BUSCO analysis against the Metazoa_odb9 database indicated that 
it is very complete, but with a high level of redundancy. Prediction 
and clustering of ORFs resulted in the retention of 131,503 ORFs, 
and effectively decreased the number of duplicated BUSCO hits and 
therewith redundancy (Table 2; Ortiz-Sepulveda et al., 2022).

3.2  |  Selection of ORF target regions

Mapping the clustered ORFs from our supertranscriptome to the 
BUSCO Metazoa_odb9 database, we retained 633 single-copy and 
334 duplicated BUSCO hits, respectively (Table 2, last column), of 
which 633 and 186, respectively, were retained as likely single-copy 
orthologous targets across our ingroup taxa. Evaluation of orthology 
for ORFs that mapped to the Unioverse probe set suggested that 186 
of the 811 Unioverse loci (22.9%) are affected by homology issues for 
our ingroup taxa (which belong to the taxa for which the Unioverse 
probe set was designed). In most of these cases, several divergent 
ORFs mapped to a single Unioverse locus, suggesting paralogy, but 
we also observed instances where Unioverse loci were not ortholo-
gous to their “associated” Bathymodiolus target region, as indicated 
by less sequence divergence between Bathymodiolus and the match-
ing fragment of our ingroup ORFs than between Bathymodiolus 
and the associated Unioverse loci. Nevertheless, our evaluation 
suggested most Unioverse loci to be single-copy orthologous in 
Coelaturini, which resulted in the addition of 297 ORF targets from 
the Unioverse probe set (usually several Unioverse loci map to a single 
ORF). Mapping ORFs and subregions among each other resulted in 
the removal of one ORF from the duplicate BUSCO selection and 
another from the Unioverse set, resulting in a total of 1114 retained 
ORFs which cover 1,677,936 nucleotides (on average 1506 nt/ORF).
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3.3  |  Selection of ultraconserved elements

Iterative inclusion of additional genomes resulted in the selection of 
553, 1649 and 4040 UCEs that are shared among seven, six and five 
genomes, respectively (any set of 5 genomes includes both bivalve 
and gastropod genomes). After filtering candidate UCEs to mask 
regions with repeated motives, low-level complexity or a length 
<100 nt, we retained 388, 1257 and 3366 UCEs (5011 in total) for 
seven, six and five genomes, respectively. Further filtering and over-
lap detection (within UCEs and to ORFs) resulted in the retention of 
4107 UCEs, which jointly cover 595,060 nt.

3.4  |  Evaluation of target regions

Of the 84,484 ART_Illumina reads, 66,804 mapped onto the 
Venustaconcha genome (79.1%), all of which were unique hits. These 
hits covered 3931 of our 5221 target regions (75.3%), that is, 631 
of 633 (99.7%) of our complete single-copy BUSCO ORFs, all of 
our complete duplicate BUSCO ORFs, 295 of 296 (99.7%) Unioverse 
ORFs, 996 of the 1255 stringent UCEs (79.4%; i.e., UCEs found in at 
least 6 genomes) and 1824 of our 2852 less stringent UCEs (64.0%; 
UCEs found in 5 of our 7 genomes), indicating a higher efficiency for 
ORFs than UCEs. This mapping indicated that ORFs were regularly 
(but not always) retrieved completely on the same Venustaconcha 
contig, and that we could expect to retrieve multiple exons per ORF. 
In the Venustaconcha genome these exons were typically larger than 
200 nt and often separated from other exons of the same ORF by 
1000 or 10,000 s of nt.

Our targets for bait design covered 5221 genomic regions with 
a length of 2,272,996 nt. Of the 40,269 raw probes, 37,959 passed 
quality control (~94.3%). The impact of this filtering on the overall 
coverage of our target regions was minimal; however, for three UCEs 
we were not able to develop any probes and for four ORFs the dis-
carded probes resulted in gaps of >300 nt, so that these ORFs were 
expected to be incompletely covered upon target enrichment.

3.5  |  Recovery of open reading frames and 
ultraconserved elements

On average, we obtained over 3  million reads per sample (range: 
35,246–9,132,732), of which (mean ± SD) 61.81 ± 13.94% were on 
target. Of these on-target reads, 60.83 ± 14.15% relate to ORFs 
whereas 0.97 ± 0.73% to UCEs. There was a weak but significant 
positive correlation among the total number of reads per sample and 
the proportion of on-target reads (R2 = .045, F = 4.442, df = 1 + 94, 
p = .038), but no trend in the total number of reads per phylogenetic 
clade within Coelaturini (R2 = .020, F = 1.961, df = 1 + 94, p = .165; 
Figure  S1). We observed unbalanced enrichment of UCEs versus 
ORFs: Whereas the UCE regions contain 26.17% of the total of tar-
geted nucleotides, the number of UCE kmer hits compared to ORF 

kmer hits is around 0.05%, indicating a substantial underrepresenta-
tion of UCEs compared to ORFs.

On average over 1102 of the 1114 ORFs were consistently en-
riched and mapped for all 95 unionids (857 are consistently recov-
ered for over 50% of their length in all specimens), with the exception 
of the distant iridinid specimen (dna0240; see Figure  2). HybPiper 
detected hidden paralogy in at most 2 ORFs per specimen. As the 
number of reads obtained for a sample decreases, we see a gradual 
decrease in the recovery of ORFs, which becomes more marked for 
samples with <500,000 reads (n = 12). As to UCEs, we recovered 
data for up to 1905 out of the 4104 UCEs (46.5%), and the coverage 
per sample was proportional with the number of reads (linear model: 
r2  =  .557, p < .001), as was observed for the ORFs (Figure  2). The 
combination of 55% and 60% thresholds on sequence coverage and 
identity, respectively, maximized the total yield over all specimens, 
but it decreased the number of retrieved UCEs slightly to 1895. On 
average 281 UCEs are covered per individual (range 30–473; total of 
26,982 regions recovered for 96 samples). The number of recovered 
UCEs, and the proportion of unique contigs recovered per individ-
ual decreased gradually as the thresholds on sequence coverage and 
identity were altered, with more abrupt decreases when the thresh-
old on % identity was increased to ≥70% (Figure 3). The consistency 
with which UCEs are recovered across taxa is low: 37 and 276 UCEs 
are recovered in >75% and >50% of individuals, respectively. The 
length distribution of the retained UCEs is highly similar to that of 
all UCEs (Figure S2).

3.6  |  Mitochondrial genome skimming

Iterative rounds of genome skimming on 48 specimens allowed 
us to reconstruct the entire maternally-inherited mitogenome 
for Coelaturini from the Malawi Basin. This mitogenome con-
tains 15,664 bp, and annotation included the 37 expected genes 
(Boore, 1999): 2 for rRNA, 22 for tRNAs, which encode components 
in the mitochondrial translational machinery, and 13 other genes 
that encode protein components of the respiratory chain and ATP 
synthase (Figure 4). On average ~40% of the mitogenome was re-
covered per individual (range 0%–100%), with consistent recovery 
of several gene regions across most individuals, which would enable 
integration of mitogenomic data in phylogenetic and population ge-
netic analyses.

3.7  |  Macroevolutionary analyses

All 95 Coelaturini specimens were included in our phylogenetic analy-
ses. Selection of loci with >50% taxon-completeness resulted in a 
data set that contained 1109 ORF supercontigs with a mean and total 
alignment length of 2118 and 2,348,614 bp, respectively. For UCEs, 
the cleaned and trimmed data set contained 276 loci with a mean and 
total alignment length of 432 and 119,105 bp, respectively. For these, 
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515,219 (21.9%) and 11,001 (9.24%) sites, respectively, were phylo-
genetically informative. Additional data on specimen representation, 
alignment length, and the proportion of informative and missing sites 
for each ORF and UCE locus are given in Ortiz-Sepulveda et al. (2022). 
The partition analysis resulted in a 402-partition scheme with 45 
unique substitution models for ORFs, and a 155-partition scheme and 
51 unique substitution models for UCEs (Ortiz-Sepulveda et al., 2022). 
The phylogenetic trees reconstructed from the ORF and UCE data 
sets separately are highly congruent (Figure  5; Figures  S3 and S4). 
Whereas the ORF tree is fully supported, except for at population-
level branches within the “Malawi” clade, some uncertainty exists as to 

terminal branches in the UCE tree, as evidenced by decreasing support 
and some branch rearrangements at very shallow levels of divergence 
(Figure 5; Figures S3 and S4).

3.8  |  Microevolutionary analyses

For each ORF and UCE we genotyped 48 diploid, dioecious individ-
uals belonging to six populations from the Malawi Basin. Filtering 
for nucleotide diversity and population differentiation resulted 
in the retention of 1097 ORFs and high-quality genotypes for 

F I G U R E  2  Percentual recovery of the total length of 1114 ORFs for 96 sequenced taxa and an outgroup transcriptome. The total size 
of ORFs, on average ~1500 nt, and the number of million filtered reads per sample are also indicated. The red line as to number of reads 
indicates a cutoff value of 500,000 reads. Samples with a lower number of reads displayed a drastic decrease in ORF recovery. A drastic 
decrease in recovery was also observed for the outgroup sample dna0240 belonging to the family Iridinidae, despite having generated 
3,900,000 clean reads.
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~1,153,827 out of 1,675,638 sites (68.9%), of which 17,988 were 
polymorphic (1.1%; Ortiz-Sepulveda et al., 2022). Using identical 
filtering criteria, we retained 309 UCEs with high-quality geno-
types for 111,492 out of 254,694 sites (43.8%), of which 3148 were 
polymorphic (1.2%). Estimates of π average 0.00167 ± 0.00316 

and 0.00116 ± 0.00206 for ORFs and UCEs, respectively, and 
they are very similar across the six studied populations (Figure 6a; 
Figure S5a), indicating an average of ~1915 and ~130 nucleotide 
differences in pairwise haplotype comparisons, respectively. The 
average πS per population varies between 0.00220 and 0.00329, 

F I G U R E  3  UCE recovery depending on combinations of coverage and identity as specified in the Phyluce pipeline. Boxplots indicate the 
contig ratio for all individuals, that is, the number of unique contigs/maximum number of unique contigs per individual for all 96 individuals. 
The total number of UCEs recovered for 96 individuals varied between 1905 (combination cov50 and id50-60) and 926 (combination cov80 
and id80). Several scenarios where coverage and identity are between 50% and 65% resulted in similar results, whereas both the number of 
unique contigs and UCE recovery decrease substantially for scenarios with identity >70%.
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whereas πN varies between 0.00057 and 0.00092, resulting in an 
average πN/πS of 0.259 (Figure  S6). Including intronic/intergenic 
flanking regions of ORFs would further increase the number 

of variant sites that can be analysed. Pairwise DXY-values aver-
age 0.00175 ± 0.00008 for ORFs and 0.00127 ± 0.00015 for 
UCEs, which is only 5%–9% higher than the mean π, respectively 

F I G U R E  5  Maximum likelihood phylogeny of Coelaturini based on a concatenated data set of 1109 open reading frames (2,348,614 bp 
with 515,219 parsimony informative sites; left), including exons and their intronic/intergenic flanking regions, and based on a concatenated 
data set of 276 ultraconserved elements (119,105 bp with 11,001 parsimony informative sites; right). Red nodes are fully resolved using a 
Shimodaira-Hasegawa approximate likelihood ratio test and ultrafast bootstrapping. Both data sets result in highly congruent topologies, 
which are fully or mainly supported for ORFs and UCEs, respectively. More details are provided in Figures S3 and S4.
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(Figure  6a; Figure  S5a), indicating limited overall net nucleotide 
divergence among populations. FST-values average 0.060 ± 0.019 
for ORFs and 0.054 ± 0.015 for UCEs, indicating moderate genetic 
differentiation. Substantial variation exists in FST-values among 
ORFs (Figure 6b) and UCEs (Figure S5b). Per pairwise population 
comparison between 60 and 230 ORFs and between 16 and 38 
UCEs display FST-values >0.15, of which 42.0% and 59.3%, respec-
tively, display elevated DXY-values too (i.e., DXY > 0.002).

Filtering ORF data to examine genetic structure resulted in 
the removal of two individuals (dna0469 and dna0416) and a final 
data set of 2161 SNPs (Ortiz-Sepulveda et al., 2022). PCA on this 
data set indicated that PC1, 2 and 3 represent 11.7%, 10.9% and 
8.7% of all variation in the data set, respectively. The 95% convex 
hulls of populations overlap substantially within the northern and 
southern regions, but not between them (Figure 7). Both regions 
are mainly separated along PC3. The Likoma Island population falls 
closer to populations of the northern region in PC1 versus 2, but 
closer to those of the south in PC1 versus 3. The population of 
the Shire River overlaps with one population from the south, but 
shows substantial differentiation from the other southern pop-
ulation. These results are highly congruent with those obtained 
with fastSTRUCTURE on the same data set, which suggest K = 4 
to be the best scenario with the ΔK method and most of the es-
timators of Puechmaille  (2016). Some of these latter estimators 
suggested five clusters, but with specimen assignments that are 
almost identical to the K = 4 solution (Figure 7). Two of these four 
clusters correspond to sampling locations, that is, Likoma Island 
and Shire River, whereas the others coincide with a north–south 
separation in which one population from the south (MLW8-014) 
displays mixed assignments, including signatures from the north-
ern and Shire River clusters. Interestingly, the Shire River cluster, 
although being geographically in the far south, clusters with the 
north in the K = 3 scenario.

4  |  DISCUSSION

4.1  |  Target selection and capture

Our screening illustrates the robustness of identifying ORFs that 
are probably single-copy and orthologous from existing databases 
followed by paralogue detection based on ingroup transcriptomes. 
Our enrichment strategy performed well and was not affected much 
by the unknown intron-exon boundaries upon probe design. This 
result opens opportunities to use ORF predictions from transcrip-
tome assemblies in other Metazoa as direct targets for probe design, 
provided orthology is verified. Therewith, our strategy simplifies 
the development of genomic data sets significantly, especially for 
non-model organisms. If many short exons are expected, the use 
of shorter probes, for example, of 80 nt, or covering targets more 
densely with probes, for example, at 3× or 4×, may further enhance 
the capture efficiency.

The effectiveness of selecting UCEs for unionids with the 
Phyluce pipeline is somewhat hampered because few and only dis-
tant genomes were available for molluscs (Sigwart et al., 2021; Sun 
et al., 2019) compared to other taxa for which UCE sets have been 
developed. Nevertheless, we recovered hits for 1895 (46%) of our 
target UCEs, which is comparable to values obtained in some pre-
vious UCE studies (e.g., Kulkarni et al., 2020; Starrett et al., 2017; 
Streicher et al., 2018), indicating that our design worked. As is reg-
ularly the case in UCE studies (Buenaventura et al., 2021; Faircloth 
et al., 2012; Kulkarni et al., 2020; Quattrini et al., 2018; Starrett 
et al., 2017), the number of UCEs that can eventually be included 
in the alignment for phylogenetic inference was restricted to a 
subset of UCEs with high recovery across all ingroup taxa (but 
see Branstetter et al., 2017). Phylogenetic analysis on 276 UCEs 
allowed to unambiguously reconstruct the backbone phylogeny 
of Coelaturini and estimates of population genetic diversity from 
309 UCEs were comparable to those obtained from ORFs, but 
more similar to the diversity at non-synonymous than at synon-
ymous sites.

Combining ORFs and UCEs in the same probe set has re-
sulted in competition: Although UCEs account for over 25% of the 
probes, only ~1% of our reads cover UCE targets. A potential fac-
tor of influence is the phylogenetic distance among the genomes 
used to identify UCEs and our ingroup, compared to the selection 
of ORFs based on ingroup transcriptomes. The recovery of 1895 
UCEs across our samples despite having only ~1% of our reads 
mapping to UCE targets indicates that the issue results from hy-
bridization efficiency rather than probe design, however. This re-
sult was unexpected based on a previous integration of multiple 
types of markers (Hutter et al., 2019), where no such competition 
was observed, but in that study the average length of UCE targets 
was >700 bp, compared to ~145 bp in ours. As we did not find a 
relationship between the length and recovery of UCEs (Figure S2), 
the most likely explanation is that differences in inherent proper-
ties of UCE and ORF targets (e.g., mismatches to genomic libraries 
or differences in melting temperatures) cause variation in sensitiv-
ity and specificity during hybridization. This hypothesis is corrob-
orated by the more restricted recovery of UCEs compared to ORFs 
upon in silico mapping of reads onto the Venustaconcha genome. 
UCE recovery could be enhanced by altering the temperatures of 
hybridization and washing reactions, but further work is required 
to better understand the balance of enrichment across UCEs and 
ORFs.

4.2  |  Mitochondrial genome skimming

As cells contain multiple copies of the mitogenome versus one copy 
of the nuclear genome, enrichment bias can be expected upon 
including both nuclear and mitochondrial targets in joint enrich-
ment. Considering this issue, we aimed to recuperate mitochondrial 
data via genome skimming. We recovered on average ~40% of the 
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length of the mitogenome per specimen with a depth between 1× 
and 300×, which allowed us to reconstruct the entire maternally-
inherited Coelaturini mitogenome (note that the tissues expressing 
the paternally-inherited mitogenome were not sampled here). This 
mitogenome revealed the type UF1 gene order, which would have 

characterized the most recent common ancestor of Unionidae and 
which is conserved in the subfamilies Ambleminae, Unioninae, but 
not in Gonideinae (Froufe et al., 2020). No members of Parreysiinae 
have been subjected to mitogenomic analyses, but our results show 
that the UF1 gene order prevails in this subfamily, or at least in 

F I G U R E  7  Structure of molecular 
diversity in Coelaturini from the Malawi 
Basin. (a, b) Principal component analysis 
on genome-wide SNP data, with 95% 
convex hulls on sampling localities. A 
bathymetric map of Lake Malawi, its 
outflow and the studied populations 
is provided in the inset. (c) Bayesian 
clustering with fastSTRUCTURE on the 
same SNP data set returned most support 
for a four-cluster solution separating 
the northern and southern regions of 
the Malawi Basin, and additionally the 
populations of Likoma Island (MLW8_032) 
and the Shire River (MLW8_010).

-0.2 0.0 0.2 0.4PC 1 (11.7%)

-0.2

0.0

0.2

0.4

PC
 2

 (1
0.

9%
)

-0.2 0.0 0.2 0.4PC 1 (11.7%)

-0.2

0.0

0.2

PC
 3

 (8
.7

%
)

MLW7_004 MLW8_014 MLW7_034MLW8_010 MLW7_033MLW8_032
K = 3

K = 4

K = 5

MLW7_033

MLW7_004

MLW7_034

MLW
8_032

MLW
8_014

MLW8_010

MLW7_004

MLW7_033 MLW7_034

MLW8_032

MLW8_014

MLW8_010

MLW7_004

MLW7_033

MLW7_034

MLW8_032

MLW8_014

MLW8_010

(a)

(b)

(c)

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13735 by C

ochrane France, W
iley O

nline L
ibrary on [21/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



674  |    ORTIZ-­SEPULVEDA et al.

Coelaturini. Beyond the position of tRNA H and D, this gene order 
is also highly similar to that of the unionid male mitogenome (Lopes-
Lima, Fonseca, et al., 2017).

4.3  |  Macroevolutionary analyses

Despite important differences in the enrichment efficiency of ORFs 
and UCEs, data sets of each marker type produced highly similar 
phylogenies of Coelaturini, which allowed to resolve previous am-
biguities (Ortiz-Sepulveda et al., 2020), both along deep and shallow 
phylogenetic branches. Examples include that Grandidieria burtoni 
is recovered as the sister clade to Pseudospatha tanganyicensis and 
Moncetia anceyi rather than to all Coelaturini, and that Coelatura 
luapulaensis is sister to the “Malawi” clade, instead of being part of 
this clade as previously recovered. Additional samples indicate that 
Coelatura from West Africa represents the sister-group to Coelatura 
from the Nile and Lake Victoria. At shallow nodes topologies di-
verged somewhat between the ORF and UCE trees, with an associ-
ated decrease in support values. Our phylogenies also indicate that 
Grandidieria burtoni, Pseudospatha tanganyicensis and Coelatura spp. 
from Lake Tanganyika represent species complexes, as was already 
presumed by Ortiz-Sepulveda et al. (2020).

4.4  |  Microevolutionary analyses

Estimates of nucleotide diversity, pairwise population sequence di-
vergence and FST-values were similar for ORF and UCE data sets, sug-
gesting general robustness. Synonymous nucleotide diversity was 
overall low for the “Malawi” clade (average πS = 0.00271) compared 
to species-level estimates from transcriptomic data across molluscs 
(πS = 0.02878), or Metazoa altogether (πS = 0.01912; see Romiguier 
et al., 2014). Our estimates of πN/πS were high compared to those 
of other Metazoa but similar to those of certain Darwin finches 
and Echinodermata (see Figure  S6; Leroy et al.,  2021; Romiguier 
et al., 2014). This low diversity may relate to the brooding ability and 
parasitic life-cycle of Coelatura species, but also to Late Pleistocene 
ecological crises in the Malawi Basin, which may have caused pop-
ulation bottlenecks in the aquatic fauna (Cohen et al., 2007; Ivory 
et al., 2016), and which may explain high πN/πS-ratios. Beyond low 
nucleotide diversity, also the pairwise nucleotide divergence among 
sampling localities is low, which is very similar to what has been ob-
served in Malawi cichlids (Malinsky et al., 2018), as in recent specia-
tion in Ficedula flycatchers (Ellegren et al., 2012). In Malawi cichlids 
the distributions of individual heterozygosity at nucleotide sites 
and of pairwise nucleotide divergence between species are par-
tially overlapping, and multiple radiative events are interconnected 
by gene flow (Malinsky et al.,  2018). Malawi Coelaturini display a 
similar pattern when comparing nucleotide diversity and pairwise 
nucleotide divergence (Figure  6a), which may be driven by similar 
population histories due to ecological interactions, as Coelaturini 
have a fish-parasitizing larval stage, or by common environmental 

change. FST-values indicate moderate genetic differentiation compa-
rable to that in the Lanistes gastropod radiation of the Malawi Basin 
(Van Bocxlaer, 2017). Interestingly, several ORFs and UCEs for each 
pairwise population comparison displayed both elevated FST and DXY 
values, suggesting that such FST values do not result from local re-
ductions of genetic diversity in the genome (Charlesworth,  1998), 
but rather from diversifying selection. Despite the low degree of 
differentiation in Coelaturini, analyses of geographic structure dif-
ferentiate several gene pools with a similar geographic pattern to 
that in Lanistes (Van Bocxlaer,  2017). Geographic differentiation 
between the northern and southern regions of the Malawi Basin 
is observed, however, the geographic structure in Lanistes is more 
clearly delineated than that in Coelaturini. Further population sam-
ples are required to examine the demographic history and popula-
tion divergence of Coelaturini from the Malawi Basin. Nevertheless, 
our results seem compatible with an early stage of speciation (see 
Seehausen et al.,  2014). If generalizable to a macroevolutionary 
scale, this feature may have contributed to the lack of resolution 
within geographic clades in previous phylogenetic studies (Ortiz-
Sepulveda et al., 2020). We are hopeful that the enrichment and an-
alytical strategy described here will enable cost-effective in-depth 
studies of genetic diversity and divergence, and therewith, an inte-
gration of diversification dynamics at micro- and macroevolution-
ary scales (insights into costs associated with molecular biology and 
sequencing are provided in Table S4).

4.5  |  Advantages and disadvantages of 
our workflow

The here presented workflow provides good perspectives to en-
rich entire ORFs and intronic/intergenic flanking regions without 
prior knowledge of exon-intron boundaries, thus in the absence 
of a proximate well-assembled and annotated reference genome. 
Combining the selection of candidate ORFs using existing data-
bases with orthology assessment from ingroup transcriptomes pro-
vides a useful approach for non-model organisms, that moreover 
allows leveraging museum specimens as long as some fresh sam-
ples across the ingroup are available. Our verification includes tar-
get alignment and manual verification, as recommended previously 
(Teasdale et al., 2016), which provides empirical scientists a track-
able connection to their high-throughput sequencing data. As our 
approach features sequence capture, it is flexible, repeatable, and 
it allows the inclusion of targets from previously developed probe 
set, as demonstrated here with the Unioverse probe set (see Pfeiffer 
et al., 2019). Therefore, it enhances opportunities to effectively ex-
pand and reuse already published data sets. Our procedures indicate 
good recovery of ORFs, but if one aims to integrate UCE and ORF 
targets in the same enrichment reactions additional verifications 
to balance such reactions are recommended. Despite the reduced 
alignment length compared to ORFs or the smaller pool of SNPs, our 
retained UCEs contain substantial phylogenetic and population ge-
netic information. At both scales, analyses based on ORFs and UCEs 
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produced highly comparable results, suggesting that our genomic 
sampling is representative. Estimates of nucleotide diversity for 
UCEs were closer to those at non-synonymous than at synonymous 
sites of ORFs, indicating that UCEs and their flanking regions are 
under selective constraints rather than being neutrally-evolving. 
Decisions on whether or not to include multiple marker types in the 
same enrichment strategy strongly depend on the questions to be 
addressed (see Hendriks et al.,  2021). Whereas certain questions 
may adequately be answered using a single marker type, more rep-
resentative sampling across the genome increases opportunities to 
reliably document evolutionary patterns, including the degree of 
phylogenetic congruence or the robustness of population-level sum-
mary statistics, and, therefore, it may enhance comparability across 
taxa. Furthermore, mitochondrial (or chloroplast) genomes may be 
recovered by skimming off-target reads, albeit with more variable 
sequencing depth.
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