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Introduction 
As one of the best hydrogen carriers and a zero-carbon fuel, ammonia (NH3) will play a main role for future energy production, 

marine transport, and industrial processes. To help to design or retrofit systems able to accept ammonia as a fuel, numerical 

simulations are useful. To perform simulations accurate kinetic mechanisms of ammonia oxidation and pollutant formation 

are needed. To validate and improve them, different experimental data are still needed for a wide range of conditions 

(equivalence ratio, pressure, and temperature) and with different combustion improvers as for example hydrogen (generated 

by cracking ammonia itself) [1]. The objective of this study is to provide new experimental data for laminar flame speed (SL) 

and to compare them with the last kinetic mechanisms and literature data to further improve existing kinetic mechanisms.  

Materials and Methods 
Laminar flame speed is obtained with the spherical combustion chamber and a Schlieren optical diagnostic setup fully 

described in [2]. The study parameters of the experimental set-up are summarized in Table 1. For this study laminar flame 

speed measurements were performed under normal pressure and temperature conditions and for equivalent ratios from 0.8 to 

1.2 with a 0.1 step. Ammonia/hydrogen blend from 0 to 15% vol. of H2 were studied and compared to a selected panel of 

mechanisms [3-10] and experimental data from the literature [2,11].   

Main Study Parameters Values Optical Parameters Values 

Internal Volume [NL] 4.2 Camera Resolution [pxl] 1280x800 

Viewport Diameter [mm] 70 Camera Frame rate [fps] 3000-5000 

Temperature Range [°C] 25 Open Shutter time [µs] 20 

Pressure Range [bar] 1 Magnification [mm/pxl] 0.095 

Table 1. Experimental setup parameters 

Results and Discussions 

The experimental results are gathered on Figure 1. As well known, the addition of H2 enhances SL but the effect is noticeable 

when 10% vol of H2 is used in NH3/air mixture. The effect of H2 addition is more important to the rich sides due to the laminar 

flame speed evolution of H2 itself as a function of the equivalence ratio. But for these 4 cases, the maximum of SL is kept 

around 1.1 of equivalence ratio. The comparison with numerical simulations, Figure 2., gives spread results. For pure ammonia 

none of the simulated mechanisms fits with experimental data. At higher H2 content mechanisms tends to have a better fit for 

lean mixture but there are still inaccuracies between simulated and experimental data for rich mixtures. Furthermore, the 

maximum of SL is reached at different equivalence ratio, depending on the mechanisms, mainly between 1.0 and 1.15.  



  

 

 

 

Conclusions 

Most of the mechanisms recently available (from 2021 to 2023), provide a global good prediction of SL as a function of 

equivalence ratio in comparison to the experimental data. However, for rich and lean mixtures, with less than 10% vol. H2, 

more discrepancies can be noticed for the ambient pressure and temperature conditions. No studied mechanisms provide a 

perfect fit on laminar flame speed as a function of H2 content and equivalence ratio.  
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Figure 2. Experimental data 

Figure 1. Comparison with numerical and literature data 
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