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Abstract—Non-binary variants of Turbo and LDPC codes
are known to provide significantly improved error correcting
performance over their binary counterparts in particular for
short frame sizes. One of the reasons is the possibility to directly
map the code symbols to constellation symbols of higher order
modulations. Moreover, being defined over higher-order Galois
fields GF(q), Non-binary Turbo Codes offer high degrees of
freedom in the code and interleaver design. In this work, first
we analyse the interplay between component codes through the
interleaver. Then, we propose a suitable design methodology for
a GF(q) symbol transformation applied to the encoded frames by
one of the component codes. By modifying the values of encoded
symbols by one component code with respect to the other, the
aim of such a transformation is to avoid reproducing error-prone
sequences while taking into account the effect of the interleaver.
Without added complexity to the encoding or to the decoding
process, the transformations constructed through the proposed
methodology significantly lower the error floor of non-binary
turbo codes. Indeed, in a case study for two GF(16) codes, we
show an improvement of up to 3 decades in the error floor.

Keywords—Forward Error Correction, Non-binary, turbo
codes, coded-modulation, high order constellation

I. INTRODUCTION

Thanks to their iterative decoding, binary turbo and LDPC
codes have been adopted into a wide range of wireless
communication standards with increasing requirements on de-
coding throughput and latency. For IoT applications, however,
performance metrics like energy- and spectral efficiency are
more important leading to short transmit packets and the use
of higher order constellations [1].

The non-binary variants of turbo codes (NB-TC) and LDPC
codes (NB-LDPC), which are defined over Galois fields GF(q),
are often considered important candidates for IoT and short
packet applications [1]. This is thanks to the possibility of
a direct mapping to high order constellation symbols [2],
[3], a significantly improved error correcting performance
and lower error floor, outperforming their binary counterparts.
Their drawback of having a significant decoding complexity is
being addressed both for NB-LDPC [4]–[6] as well as for NB-
TC [7], [8] in recent works. To this end, proposed code design
methods for NB-TC explicitly aim at a lowering the decoding
complexity [9]. The resulting encoder structure with a single
memory element improves the accuracy of code design metrics
[10] and analysis tools. Hence, it facilitates the emergence of
new design methodologies [11].

In [11], it was proposed to employ a Symbol Transformation
between the inputs of the two component encoders of a NB-

TC in order to improve its error floor at no additional cost
in terms of decoding complexity. While [11] gave first results
for individual codes, a rigorous design methodology was not
given. In this work, we propose a dedicated methodology to
construct a symbol transformation for a given NB-TC that
explicitly takes into account the interplay between interleaving
and error-prone sequences. The symbol transformations found
with our methodology are shown to lower the error floor of a
given NB-TC by up to three decades.

The remainder of this paper is structured as follows: Sec-
tion II introduces the necessary mathematical background.
Then, Section III describes the proposed design methodology
to construct a symbol transformation for a given NB-TC
explicitly targeting sequences which predominantly determine
the error floor of the code. The design problem is formulated
as a decision problem and a SAT-solver is employed to solve it.
Section IV proves the NP-completeness of the design problem
justifying the use of the SAT-solver before Section V validates
the superior error correcting performance when employing the
constructed Transformations. Section VI concludes the paper.

II. BACKGROUND

In this section we give the necessary mathematical and
contextual background required for the remainder of the paper
and introduce the terminology that will be used in Section III.

A. Non-binary turbo codes: structure and constituent codes

Figure 1: (a) NB-CC Encoder (b) NB-TC Encoder (with
Transformation Γ) (c) Trellis of a GF(4) recursive NB-CC.

The encoded non-binary (NB) data symbols are elements
of the Galois Field of order q, namely GF(q), where q = 2m

for some integer m. The NB-TCs considered in this work
follow the structure proposed in [9] which is illustrated in
Fig. 1(b): two NB-Convolutional (NB-CC) encoders con-
catenated in parallel through an interleaver Π. Additionally,



a Symbol Transformation Γ may be employed to improve
performance [11]. Applying a single memory element [9], the
NB-CC structure of Fig. 1(a) achieves a trade-off between
error correcting performance and low decoding complexity
for the NB family of codes. Note that for such NB-CCs the
number of states is equal to the order of GF(q) and that the
trellis is fully connected for any choice of coefficients ai ∈
GF(q). Furthermore, a1 ̸= 0 to guarantee that the NB-CC
is a recursive systematic convolutional (RSC) code. The two
constituent NB-CCs are from now on called RSC1 and RSC2

(see Fig. 1(b)).
The symbols over GF(q) can be directly mapped to a q-order

Quadrature Amplitude Modulation (QAM) or onto several
constellation symbols of lower order q′-QAM (q′ < q) where
the q-ary code symbols are decomposed into q′-ary symbols
[10]. In the case of a 1-to-1 relation between code symbols
and constellation signals, we define the squared Euclidean
Distance (ED) between symbols, denoted as δ(s, s′), as the
ED between the associated signals in the constellation space.
Similar for the case (q′ < q), where the ED between symbols
is now defined as the sum of the ED of their composed
signals. Further, the cumulated ED between two codewords
x = (x0, x1, ...), y = (y0, y1, ...) is defined as δ(x, y) =∑

i δ(xi, yi). The ED between input-sequences is denoted as
the ED of their encodings. For higher q-QAM constellations,
the assumption of a uniform distribution of errors across the
constellation signals does not hold anymore [12].

The Euclidean Distance Spectrum of a code is the set of
all EDs between pairs of codewords and their corresponding
multiplicities. The Union Bound (UB) gives an upper bound on
the symbol-error rate via the distance-spectrum [9], the first
few terms of distance-spectrum (with lowest ED) and their
multiplicities determine the error-floor of the code. Therefore
codeword pairs with low ED (in the following low ED
codewords or low ED sequences) determine the error-floor
of the code. However, due to the non-uniform distribution
of errors of the constellation for higher order q-QAM, the
distance spectrum computation for the code can no longer
rely on the assumption of the transmission of the all-zero NB-
symbol codeword.

For NB-CC with fully connected trellis as in Fig 1(c),
we can compute the distance-spectrum by enumerating all
possible sequence pairs diverging from the same state and
later converging (diverging and converging, DC) to a common
state. DC-sequences have length-L if the two sequences in the
trellis are unequal during L stages. It was shown in [11], that
the effect of DC sequences of length-2 and length-3 dominates
the distance-spectrum of the first terms of NB-CCs of Fig. 1(a).
An example of such DC-sequences is shown in Fig. 2 for RSC1

and RSC2. These are composed of two or three segments, their
divergence, convergence and optional middle segment.

B. Low-Distance DC Sequences in NB-TCs

Low ED sequences for NB-TCs are obtained when short
DC sequences for RSC1 coincide with short DC sequences
for RSC2 [11] despite the presence of the interleaver. DC-

Figure 2: pDC-sequences connected by an interleaver cycle.

Sequences need to differ in at least 2 symbols, namely during
divergence and convergence. In the following we denote with
da, db the two symbols during divergence and with ca, cb
the symbols during convergence of DC-Sequences. Moreover,
we call DC-Sequences that differ only during their divergence
and convergence parallel DC-Sequences or pDC-Sequences.
NB-TC Sequences with the lowest ED that dominate the UB
differ in multiples of pDC-Sequences for a carefully designed
interleaver [10]. For these cases, the pDC-Sequences in each
constituent encoder are connected by an interleaver cycle
as indicated in Fig. 2. There, the symbols of the 2 pDC-
Sequences in RSC1 are rearranged by the interleaver, however,
their interleaved version still leads to 2 pDC-Sequences in
RSC2. Note that the length of a pDC-Sequence can be larger
than two (or three as in Fig. 2) when the symbols of the
middle-segments of the competing sequences are considered
equal for each RSC but can be different between RSCs (we
can have m = m′ or m ̸= m′ in Fig. 2). Hence, the length
of the interleaver cycle sets a lower bound on the achievable
minimum ED for the NB-TC.

C. Symbol Transformation

A symbol Transformation Γ is a bijective function defined
over the elements of GF(q) and applied to the values of data
symbols before being encoded by RSC2. Hence, the input
sequence of symbols encoded by RSC1 undergoes, not only a
change in the positions of the symbols due to the interleaver Π,
but also a change in the actual values of the symbols through
the proposed transformation. This change in the values of the
symbols should be designed to improve the lower bound on the
minimum ED value set by the interleaver cycle. The resulting
structure of Fig. 1(b) can be seen as a generalization of the NB-
TC architecture [13]. Indeed, recovering the original structure
is achieved when Γ is chosen to be the identity function. There
exist q! possible Γ and therefore an exhaustive search is not
feasible even for small values of q. In [11] one approach to
construct Γ was proposed which is based upon the observation
that the competing systematic symbols were always mapped
to constellation points whose ED was low. Γ was designed
to artificially increase the ED between those symbols for the
second component code. Note that similarly an intra-symbol
permutation for double-binary TCs was introduced in [2].



While first results in [11] were promising, they were limited
to the special case of a Γ for 64-QAM and did not involve
dedicated optimization of the symbol mapping with respect to
the underlying NB-TC.

III. PROPOSED SYMBOL TRANSFORMATION DESIGN

This section details a dedicated methodology to construct
Γ for a given NB-TC that explicitly takes into account the
interplay between interleaving and low-ED sequences. To this
end we propose to

1) Identify the interleaver cycles most likely to constitute
the minimal ED by a worst-case analysis then compute
the distance-spectrum of pDC-Sequences with lengths
dictated by the considered interleaver cycles.

2) Apply a design methodology for Γ which prevents
worst-case EDs for a given interleaver cycle. It exploits
that the corresponding DC-sequences share the same
symbol values (albeit interleaved) during convergence
and divergence in both constituent encoders. This is
associated to the fact that the ED of pDC-Sequences
depends on the specific values of divergence and con-
vergence symbol pairs. Thereby, the proposed design
methodology for Γ avoids duplicating in both RSCs the
specific values of divergence and convergence symbol
pairs that lead to the minimum ED, improving the
minimum ED of the code.

A. Distance-Spectrum of parallel DC-Sequences

Following a worst-case analysis for short interleaver cycles,
we can identify the subset of cycles which lead to the minimal
ED of the code. In fact, it was observed that for an algebraic
interleaver such as ARP, composite pDC-sequences connected
through the interleaver cycles largely contribute to low-ED
codewords [11]. In order to evaluate their effect, we need
to compute the distance-spectrum of pDC-sequences in RSC1

and RSC2. To this end, let us define As,i, Bs,i as the system-
atic symbols and Ap,i, Bp,i as the parity symbols of codewords
A = (As,0, Ap,0, ...) and B = (Bs,0, Bp,0, ...) respectively
that make up a pDC-sequence. A NB-TC DC-sequence con-
sists of the contributions of composite pDC sequences in each
component code. Therefore, for the computation of the ED-
spectrum of pDC-Sequences in RSC1, we consider both the
systematic and the parity symbols following

δ1(A,B) :=
∑

k=0...K−1

(δ(As,k, Bs,k) + δ(Ap,k, Bp,k)) . (1)

where δ1(A,B) denotes the ED of codewords A and B over
their length K. To avoid double-counting of the systematic
symbols, for pDC-Sequences in RSC2 we only consider the
parity symbols

δ2(A,B) :=
∑

k=0...K−1

δ(Ap,k, Bp,k). (2)

Recall, that short sequence lenths L dominate the error
probability. Therefore, we denote by δtruncj,L the truncated ED
for a pDC-Sequence of a specific length L in RSCj .

We denote by ∆j,L the set set of all δtruncj,L , providing the
distance-spectrum of pDC-Sequences of length L in RSCj .
The required complexity for their computation is in O(q2+L).
Aside from ∆j,L, we are interested in the symbol pairs (da, db)
at the divergence/convergence trellis steps of pDC-Sequences
of length L with a particular δtruncj,L . We define for each RSCj

Dj,L(δ) :={(da, db) ∈ GF (q)2
∣∣ ∃ pDC-Sequences in RSCj

with δ = δtruncj,L , where (da, db) are the symbols

during divergence} and

Cj,L(δ) :={(ca, cb) ∈ GF (q)2
∣∣ ∃ pDC-Sequences in RSCj

with δ = δtruncj,L , where (ca, cb) are the symbols

during convergence}

B. Symbol Transformation Γ and pDC-Sequences

In this section we reintroduce a symbol transformation Γ
which precedes RSC2 as shown in Fig.1(b) and study its
effects upon the definitions from the previous subsection. First
it can be noted, that Γ has no effect upon ∆1,L and ∆2,L as
these can be computed independently on the component codes
by brute-force. Furthermore, D1,L and C1,L stay unchanged
as well, since Γ has no effect on the input symbols of RSC1.
On the other hand, D2,L and C2,L become

D2,L,Γ(δ) :={(da, db) ∈ GF (q)2
∣∣ ∃ pDC-Sequences in RSC2

with δ = δtrunc2,L , where (Γ(da),Γ(db)) are the

symbols during divergence} and

C2,L,Γ(δ) :={(ca, cb) ∈ GF (q)2
∣∣ ∃ pDC-Sequences in RSC2

with δ = δtrunc2,L , where (Γ(ca),Γ(cb)) are the

symbols during convergence}

Due to the preceding definitions the following holds:

D2,L,Γ(δ) = Γ−1(D2,L(δ)) (3)

where applying Γ−1 to a set of symbol pairs during the
divergence step is defined as applying Γ−1 to each element of
each pair of the set. Note that the same holds for Γ as well.
Similarly, for the convergence step :

C2,L,Γ(δ) = Γ−1(C2,L(δ)) (4)

Next, these functions will serve as basis to prevent that low
ED pDC-Sequences coincide in both component codes.

C. Design Methodology

By making use of the definitions of the previous sections,
in this section we state the design methodology to construct a
symbol Transformation Γ for a given NB-TC, which aims to
increase the minimal ED of the code. The proposed method-
ology can be generalized for any shape of interleaver cycles
to further improve the minimal ED. However, for the sake of
clarity, we limit the discussion here to shapes as illustrated in
Fig. 2 on the example of pDC-Sequences of length l1 and l2
in RSC1 and RSC2 respectively.

First, we define △ = min(∆1,l1), △′ = min(∆2,l2) as the
minimum ED of the spectrum of each component code and



assume an arbitrary Γ. Then, the worst-case NB-TC ED is
achieved if any pDC-Sequence with ED △ in RSC1 coincides
with any pDC-sequence in RSC2 with ED △′. Due to the
interleaver cycle the pDC-Sequences in RSC1 and RSC2 share
the same symbols during divergence and convergence, and
therefore the worst-case can only occur, if there exists some
(da, db) and (ca, cb) such that:

(da, db) ∈ D1,l1(△) ∧ (ca, cb) ∈ C1,l1(△)∧
(da, db) ∈ D2,l2,Γ(△′) ∧ (ca, cb) ∈ C2,l2,Γ(△′)

The condition on Γ to avoid the occurrence of these worst
cases follows consequently as:

D1,l1(△) ∩D2,l2,Γ(△′) = ∅
∨
C1,l1(△) ∩ C2,l2,Γ(△′) = ∅

By (3) and (4), this is equivalent to:

D1,l1(△)∩Γ−1
(
D2,l2(△′)

)
= ∅∨

C1,l1(△)∩Γ−1
(
C2,l2(△′)

)
= ∅

(5)

(5) therefore serves as a requirement for the construction of
Γ. Assuming that the considered pDC-sequences constitute the
minimal ED of the code, we are increasing the minimal ED
by employing a Γ that fulfills this requirement.

Eq. (5) can be expressed as boolean formulas with ln(q)
boolean variables for each of the q values of the bijection Γ−1.
These boolean variables define the values of Γ−1 in binary
representation. To this end, we can utilize a SAT-solver1 to
find a Γ that fulfills our requirements, by constructing Γ from
a satisfying assignment to the boolean variables.

This idea is employed in the proposed symbol transforma-
tion design in Algorithm 1, where we start with the worst-
case and add further requirements until the SAT-solver can
no longer find a variable assignment satisfying the require-
ments. There, Ψ1 denotes the basic constraint that the symbol
transformation has to be a bijection and Ψ2 defines a set
of variables that encode integer constants from 0 to q − 1.
κ(U ∩ Γ−1(V ) = ∅) is defined as the boolean formula which
holds if and only if two sets U and Γ−1(V ) are disjoint
by using the previously mentioned boolean variables, where
U, V ⊆ GF (q)2.

It is worth noting, that after adding a certain amount of
requirements, other shapes of interleaver-cycles will start to
become the most critical in their contribution to codewords
with the new increased minimal ED. However, as stated
above for those cycles the same approach can be also applied
to conjunct new requirements to the already existing ones.
Further, low ED codewords can consist of more than one pDC
segment in each constituent trellis which is equivalent to more
than two symbol errors. Regardless, the presented method can
be generalized for this case as well.

1In section IV we show that the problem of finding Γ that fulfills a set of
requirements is NP-complete which justifies the use of SAT-solver.

Algorithm 1 Design symbol transformation Γ

φ0 := Ψ1 ∧Ψ2

Λ := {λ ∈ R
∣∣λ = △+△′,△ ∈ ∆1,l1 ∧△′ ∈ ∆2,l1}

i := 0
while φi is satisfied and Λ ̸= ∅ do
i = i+ 1
θ = min(Λ)
ψ := true
for all △ ∈ ∆1,l1 , △′ ∈ ∆2,l2 , such that θ = △ + △′

do
α = κ(D1,l1(△) ∩ Γ−1(D2,l2(△′)) = ∅)
β = κ(C1,l1(△) ∩ Γ−1(C2,l2(△′)) = ∅)
γ = α ∨ β
ψ = ψ ∧ γ

end for
φi = φi−1 ∧ ψ
Λ = Λ \ {θ}

end while
Construct Γ from satisfying assignment of φi−1

IV. NP-COMPLETENESS OF DESIGN-PROBLEM

First, we state the encountered design problem as a decision
problem, then we give a poly-time reduction from the k-Clique
decision problem.

Definition IV.1 (design problem). Assume two families of
sets U0, ..., Uk−1 and W0, ...,Wk−1 over a finite set X and
Ui,Wi ⊆ X2.

Problem: Does there exist a bijection φ : X → X such
that:

k−1∧
i=0

Ui ∩ φ(Wi) = ∅

where
φ({x0, ..., xn}) := {φ(x0), ..., φ(xn)}

1) Design Problem is in NP: Given a bijection φ, it
can be checked in polynomial time if the condition holds.
The problem is therefore in NP according to the certificate
definition.

2) Design Problem is NP-hard: Recall that an undirected
graph G has a k-clique if there exists a subset of k vertices
such that for every pair of vertices u, v of this subset, there
exists the edge {u, v} in G. We denote an undirected graph
as G = (V,E), with V := {1, ..., n} and E ⊆ V 2. Further,
for k ≤ n we denote Ck := {{u, v} ∈ V 2|u, v ≤ k, u ̸= v},
therefore G = (V,Ck) has a k-Clique.

Lemma IV.1. An undirected graph G = (V,E) has a Clique
of size larger or equal to k if and only if there exists a bijection
φ : V → V such that Ē ∩ φ(Ck) = ∅, where Ē := V 2\E

Proof.
⇒ Since G has a Clique of size larger or equal to k it

has also a clique of exactly size k,thus there exists a
subset Ek ⊆ E that constitutes a clique of size k. Also,



Ek∩Ē = ∅, therefore there exists a bijection φ : V → V
with φ(Ck) = Ek, which implies Ē ∩ φ(Ck) = ∅.

⇒ If ∃ a bijection φ such that Ē ∩ φ(Ck) = ∅ then
φ(Ck) ⊆ E. Thus, G has a Clique of at least size k.

Definition IV.2 (Reduction). Given k ∈ N and an undirected
graph G = (V,E). Construct Ē := V 2\E and Ck ⊆ V 2. If
k ≤ |V |, formulate a design problem instance with:

U0 = Ē and W0 = Ck

else:
U0 = V 2 and W0 = V 2

The correctness follows from the previous Lemma and the
reduction can be done in polynomial time. This reduces the
k-Clique Problem to our design problem.

V. SIMULATION RESULTS

We evaluate the proposed transformation design method in
a case study for two NB-TsC over GF(16) with primitive-
polynomial x4 + x3 + 1, which are mapped to a 16-QAM
constellation: C1 with component code parameters a1 = 2,
a2 = 5 and a3 = 11, which has a good component code
min ED of 4.0, and C2 with a1 = 4, a2 = 2 and a3 = 1
with a comparatively low component code min ED of 1.6.
Note, that the employed interleaver (ARP interleaver with
P = 143, Q = 8, S = (0, 150, 62, 10, 110, 22, 20, 98)) was
not optimized with respect to C1 and C2 to better illustrate the
effect of the transformation. Their respective transformations
constructed through Algorithm 1 are listed in table I.
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Figure 3: FER comparison (K = 160, 16−QAM, 8 iterations
max-Log-MAP decoding, AWGN Channel).

When used without Γ, both C1 and C2 suffer from high
error floors at Frame Error Rate (FER) of 10−3 and 10−4

respectively, as seen in Fig.3. The observed floors are signif-
icantly reduced to a FER of 10−6 when using C1 and C2 as
component codes together with Γ1, Γ2 respectively.

y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Γ1(y) 6 5 12 15 10 9 0 3 2 1 8 11 14 13 4 7
Γ2(y) 12 11 5 2 4 3 13 10 14 9 7 0 6 1 15 8

Table I: Symbol transformations for use with C1 and C2.

VI. CONCLUSION

In this work we presented a new methodology to construct
a symbol transformation dedicated to a given NB-TC over
GF(q). This methodology aims to increase the minimal ED of
the code by explicitly targeting low-ED sequences which are
caused by interleaving. Compared to a NB-TC without symbol
transformation, we were able to significantly increase the
error-correcting performance, hence lowering the error floor
by as much as three decades in a case study. The encountered
design problem was proven to be NP-complete justifying the
utilization of SAT-Solver in the proposed methodology. In
future work, it is expected that investigating joint optimization
of interleaver and symbol transformation will lead to further
significant improvements.

ACKNOWLEDGMENTS

We acknowledge the kind support by Prof. Dr.-Ing. Hans
D. Schotten of RPTU Kaiserslautern-Landau.
This work was partially funded by the French National Re-
search Agency TurboLEAP project (ANR-20-CE25-0007).

REFERENCES

[1] “QCSP project: Quasi cyclic small packet,” https://qcsp.univ-ubs.fr/.
[2] C. Douillard and C. Berrou, “Turbo codes with rate-m/(m+ 1) constituent

convolutional codes,” IEEE Trans. on Commun., vol. 53, no. 10, pp.
1630–1638, 2005.

[3] R. Klaimi, S. Weithoffer, and C. Abdel Nour, “Improved non-uniform
constellations for non-binary codes through deep reinforcement learn-
ing,” in IEEE 23rd Int. Workshop on Signal Process. Advances in
Wireless Commun. (SPAWC), 2022, pp. 1–5.

[4] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity, low-memory EMS algorithm for non-binary LDPC codes,”
in IEEE Int. Conf. on Commun., Glasgow, UK, 2007, pp. 671–676.

[5] E. Boutillon and L. Conde-Canencia, “Simplified check node processing
in nonbinary LDPC decoders,” in 6th Int. Symp. on Turbo Codes and
Iter. Info. Proc. (ISTC), Brest, France, Sept 2010, pp. 201–205.

[6] ——, “Bubble check: a simplified algorithm for elementary check node
processing in extended min-sum non-binary LDPC decoders,” Electron.
Lett., vol. 46, no. 9, pp. 633–634, 2010.

[7] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah, “Low-complexity
decoders for non-binary turbo codes,” in 10th IEEE Intern. Symp. on
Turbo Codes Iter. Inf. Proc. (ISTC), Hong Kong, China, Dec. 2018.

[8] H. L. Blevec, R. Klaimi, S. W. C. A. Nour, and A. Baghdadi, “Low com-
plexity non-binary turbo decoding based on the local-sova algorithm,”
in 11th IEEE Int. Symp. on Topics in Coding (ISTC), 2021, pp. 1–5.

[9] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah, “Design of Low-
Complexity Convolutional Codes over GF(q),” in IEEE Global Commun.
Conf. (GLOBECOM), Abu Dhabi, UAE, Dec 2018.

[10] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah, “Union bound
evaluation for non-binary turbo coded modulations,” IEEE Commun.
Letters, vol. 24, no. 6, pp. 1178 – 1182, 2020. [Online]. Available:
https://imt-atlantique.hal.science/hal-02502303

[11] R. Klaimi, “Study of non-binary turbo codes for future communication
and broadcasting systems,” Theses, IMT Atlantique, Jul. 2019. [Online].
Available: https://theses.hal.science/tel-02543195

[12] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE trans. on info. theory, vol. 44, no. 3, pp. 927–946, 1998.

[13] C. Berrou and M. Jezequel, “Non-binary convolutional codes for turbo
coding,” Electron. Lett., vol. 35, no. 1, pp. 39–40, 1999.


