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) codes, we show an improvement of up to 3 decades in the error floor.

I. INTRODUCTION

Thanks to their iterative decoding, binary turbo and LDPC codes have been adopted into a wide range of wireless communication standards with increasing requirements on decoding throughput and latency. For IoT applications, however, performance metrics like energy-and spectral efficiency are more important leading to short transmit packets and the use of higher order constellations [START_REF]QCSP project: Quasi cyclic small packet[END_REF].

The non-binary variants of turbo codes (NB-TC) and LDPC codes (NB-LDPC), which are defined over Galois fields GF(q), are often considered important candidates for IoT and short packet applications [START_REF]QCSP project: Quasi cyclic small packet[END_REF]. This is thanks to the possibility of a direct mapping to high order constellation symbols [START_REF] Douillard | Turbo codes with rate-m/(m+ 1) constituent convolutional codes[END_REF], [START_REF] Klaimi | Improved non-uniform constellations for non-binary codes through deep reinforcement learning[END_REF], a significantly improved error correcting performance and lower error floor, outperforming their binary counterparts. Their drawback of having a significant decoding complexity is being addressed both for NB-LDPC [START_REF] Voicila | Lowcomplexity, low-memory EMS algorithm for non-binary LDPC codes[END_REF]- [START_REF]Bubble check: a simplified algorithm for elementary check node processing in extended min-sum non-binary LDPC decoders[END_REF] as well as for NB-TC [START_REF] Klaimi | Low-complexity decoders for non-binary turbo codes[END_REF], [START_REF] Blevec | Low complexity non-binary turbo decoding based on the local-sova algorithm[END_REF] in recent works. To this end, proposed code design methods for NB-TC explicitly aim at a lowering the decoding complexity [START_REF] Klaimi | Design of Low-Complexity Convolutional Codes over GF(q)[END_REF]. The resulting encoder structure with a single memory element improves the accuracy of code design metrics [START_REF] Klaimi | Union bound evaluation for non-binary turbo coded modulations[END_REF] and analysis tools. Hence, it facilitates the emergence of new design methodologies [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF].

In [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF], it was proposed to employ a Symbol Transformation between the inputs of the two component encoders of a NB-TC in order to improve its error floor at no additional cost in terms of decoding complexity. While [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF] gave first results for individual codes, a rigorous design methodology was not given. In this work, we propose a dedicated methodology to construct a symbol transformation for a given NB-TC that explicitly takes into account the interplay between interleaving and error-prone sequences. The symbol transformations found with our methodology are shown to lower the error floor of a given NB-TC by up to three decades.

The remainder of this paper is structured as follows: Section II introduces the necessary mathematical background. Then, Section III describes the proposed design methodology to construct a symbol transformation for a given NB-TC explicitly targeting sequences which predominantly determine the error floor of the code. The design problem is formulated as a decision problem and a SAT-solver is employed to solve it. Section IV proves the NP-completeness of the design problem justifying the use of the SAT-solver before Section V validates the superior error correcting performance when employing the constructed Transformations. Section VI concludes the paper.

II. BACKGROUND

In this section we give the necessary mathematical and contextual background required for the remainder of the paper and introduce the terminology that will be used in Section III.

A. Non-binary turbo codes: structure and constituent codes The encoded non-binary (NB) data symbols are elements of the Galois Field of order q, namely GF(q), where q = 2 m for some integer m. The NB-TCs considered in this work follow the structure proposed in [START_REF] Klaimi | Design of Low-Complexity Convolutional Codes over GF(q)[END_REF] which is illustrated in Fig. 1(b): two NB-Convolutional (NB-CC) encoders concatenated in parallel through an interleaver Π. Additionally, a Symbol Transformation Γ may be employed to improve performance [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF]. Applying a single memory element [START_REF] Klaimi | Design of Low-Complexity Convolutional Codes over GF(q)[END_REF], the NB-CC structure of Fig. 1(a) achieves a trade-off between error correcting performance and low decoding complexity for the NB family of codes. Note that for such NB-CCs the number of states is equal to the order of GF(q) and that the trellis is fully connected for any choice of coefficients a i ∈ GF(q). Furthermore, a 1 ̸ = 0 to guarantee that the NB-CC is a recursive systematic convolutional (RSC) code. The two constituent NB-CCs are from now on called RSC 1 and RSC 2 (see Fig. 1(b)).

The symbols over GF(q) can be directly mapped to a q-order Quadrature Amplitude Modulation (QAM) or onto several constellation symbols of lower order q ′ -QAM (q ′ < q) where the q-ary code symbols are decomposed into q ′ -ary symbols [START_REF] Klaimi | Union bound evaluation for non-binary turbo coded modulations[END_REF]. In the case of a 1-to-1 relation between code symbols and constellation signals, we define the squared Euclidean Distance (ED) between symbols, denoted as δ(s, s ′ ), as the ED between the associated signals in the constellation space. Similar for the case (q ′ < q), where the ED between symbols is now defined as the sum of the ED of their composed signals. Further, the cumulated ED between two codewords x = (x 0 , x 1 , ...), y = (y 0 , y 1 , ...) is defined as δ(x, y) = i δ(x i , y i ). The ED between input-sequences is denoted as the ED of their encodings. For higher q-QAM constellations, the assumption of a uniform distribution of errors across the constellation signals does not hold anymore [START_REF] Caire | Bit-interleaved coded modulation[END_REF].

The Euclidean Distance Spectrum of a code is the set of all EDs between pairs of codewords and their corresponding multiplicities. The Union Bound (UB) gives an upper bound on the symbol-error rate via the distance-spectrum [START_REF] Klaimi | Design of Low-Complexity Convolutional Codes over GF(q)[END_REF], the first few terms of distance-spectrum (with lowest ED) and their multiplicities determine the error-floor of the code. Therefore codeword pairs with low ED (in the following low ED codewords or low ED sequences) determine the error-floor of the code. However, due to the non-uniform distribution of errors of the constellation for higher order q-QAM, the distance spectrum computation for the code can no longer rely on the assumption of the transmission of the all-zero NBsymbol codeword.

For NB-CC with fully connected trellis as in Fig 1(c), we can compute the distance-spectrum by enumerating all possible sequence pairs diverging from the same state and later converging (diverging and converging, DC) to a common state. DC-sequences have length-L if the two sequences in the trellis are unequal during L stages. It was shown in [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF], that the effect of DC sequences of length-2 and length-3 dominates the distance-spectrum of the first terms of NB-CCs of Fig. 1(a). An example of such DC-sequences is shown in Fig. 2 for RSC 1 and RSC 2 . These are composed of two or three segments, their divergence, convergence and optional middle segment.

B. Low-Distance DC Sequences in NB-TCs

Low ED sequences for NB-TCs are obtained when short DC sequences for RSC 1 coincide with short DC sequences for RSC 2 [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF] despite the presence of the interleaver. DC- Sequences need to differ in at least 2 symbols, namely during divergence and convergence. In the following we denote with d a , d b the two symbols during divergence and with c a , c b the symbols during convergence of DC-Sequences. Moreover, we call DC-Sequences that differ only during their divergence and convergence parallel DC-Sequences or pDC-Sequences. NB-TC Sequences with the lowest ED that dominate the UB differ in multiples of pDC-Sequences for a carefully designed interleaver [START_REF] Klaimi | Union bound evaluation for non-binary turbo coded modulations[END_REF]. For these cases, the pDC-Sequences in each constituent encoder are connected by an interleaver cycle as indicated in Fig. 2. There, the symbols of the 2 pDC-Sequences in RSC1 are rearranged by the interleaver, however, their interleaved version still leads to 2 pDC-Sequences in RSC2. Note that the length of a pDC-Sequence can be larger than two (or three as in Fig. 2) when the symbols of the middle-segments of the competing sequences are considered equal for each RSC but can be different between RSCs (we can have m = m ′ or m ̸ = m ′ in Fig. 2). Hence, the length of the interleaver cycle sets a lower bound on the achievable minimum ED for the NB-TC.

C. Symbol Transformation

A symbol Transformation Γ is a bijective function defined over the elements of GF(q) and applied to the values of data symbols before being encoded by RSC 2 . Hence, the input sequence of symbols encoded by RSC 1 undergoes, not only a change in the positions of the symbols due to the interleaver Π, but also a change in the actual values of the symbols through the proposed transformation. This change in the values of the symbols should be designed to improve the lower bound on the minimum ED value set by the interleaver cycle. The resulting structure of Fig. 1(b) can be seen as a generalization of the NB-TC architecture [START_REF] Berrou | Non-binary convolutional codes for turbo coding[END_REF]. Indeed, recovering the original structure is achieved when Γ is chosen to be the identity function. There exist q! possible Γ and therefore an exhaustive search is not feasible even for small values of q. In [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF] one approach to construct Γ was proposed which is based upon the observation that the competing systematic symbols were always mapped to constellation points whose ED was low. Γ was designed to artificially increase the ED between those symbols for the second component code. Note that similarly an intra-symbol permutation for double-binary TCs was introduced in [START_REF] Douillard | Turbo codes with rate-m/(m+ 1) constituent convolutional codes[END_REF].

While first results in [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF] were promising, they were limited to the special case of a Γ for 64-QAM and did not involve dedicated optimization of the symbol mapping with respect to the underlying NB-TC.

III. PROPOSED SYMBOL TRANSFORMATION DESIGN

This section details a dedicated methodology to construct Γ for a given NB-TC that explicitly takes into account the interplay between interleaving and low-ED sequences. To this end we propose to 1) Identify the interleaver cycles most likely to constitute the minimal ED by a worst-case analysis then compute the distance-spectrum of pDC-Sequences with lengths dictated by the considered interleaver cycles. 2) Apply a design methodology for Γ which prevents worst-case EDs for a given interleaver cycle. It exploits that the corresponding DC-sequences share the same symbol values (albeit interleaved) during convergence and divergence in both constituent encoders. This is associated to the fact that the ED of pDC-Sequences depends on the specific values of divergence and convergence symbol pairs. Thereby, the proposed design methodology for Γ avoids duplicating in both RSCs the specific values of divergence and convergence symbol pairs that lead to the minimum ED, improving the minimum ED of the code.

A. Distance-Spectrum of parallel DC-Sequences

Following a worst-case analysis for short interleaver cycles, we can identify the subset of cycles which lead to the minimal ED of the code. In fact, it was observed that for an algebraic interleaver such as ARP, composite pDC-sequences connected through the interleaver cycles largely contribute to low-ED codewords [START_REF] Klaimi | Study of non-binary turbo codes for future communication and broadcasting systems[END_REF]. In order to evaluate their effect, we need to compute the distance-spectrum of pDC-sequences in RSC 1 and RSC 2 . To this end, let us define A s,i , B s,i as the systematic symbols and A p,i , B p,i as the parity symbols of codewords A = (A s,0 , A p,0 , ...) and B = (B s,0 , B p,0 , ...) respectively that make up a pDC-sequence. A NB-TC DC-sequence consists of the contributions of composite pDC sequences in each component code. Therefore, for the computation of the EDspectrum of pDC-Sequences in RSC 1 , we consider both the systematic and the parity symbols following

δ 1 (A, B) := k=0...K-1 (δ(A s,k , B s,k ) + δ(A p,k , B p,k )) . (1)
where δ 1 (A, B) denotes the ED of codewords A and B over their length K. To avoid double-counting of the systematic symbols, for pDC-Sequences in RSC 2 we only consider the parity symbols

δ 2 (A, B) := k=0...K-1 δ(A p,k , B p,k ). (2) 
Recall, that short sequence lenths L dominate the error probability. Therefore, we denote by δ trunc j,L the truncated ED for a pDC-Sequence of a specific length L in RSC j .

We denote by ∆ j,L the set set of all δ trunc j,L , providing the distance-spectrum of pDC-Sequences of length L in RSC j . The required complexity for their computation is in O(q 2+L ). Aside from ∆ j,L , we are interested in the symbol pairs (d a , d b ) at the divergence/convergence trellis steps of pDC-Sequences of length L with a particular δ trunc j,L . We define for each RSC j D j,L (δ) :={(d a , d b ) ∈ GF (q) 2 ∃ pDC-Sequences in RSC j with δ = δ trunc j,L , where (d a , d b ) are the symbols during divergence} and C j,L (δ) :={(c a , c b ) ∈ GF (q) 2 ∃ pDC-Sequences in RSC j with δ = δ trunc j,L , where (c a , c b ) are the symbols during convergence}

B. Symbol Transformation Γ and pDC-Sequences

In this section we reintroduce a symbol transformation Γ which precedes RSC 2 as shown in Fig. 1(b) and study its effects upon the definitions from the previous subsection. First it can be noted, that Γ has no effect upon ∆ 1,L and ∆ 2,L as these can be computed independently on the component codes by brute-force. Furthermore, D 1,L and C 1,L stay unchanged as well, since Γ has no effect on the input symbols of RSC 1 . On the other hand, D 2,L and C 2,L become 

D 2,L,Γ (δ) :={(d a , d b ) ∈ GF (q) 2 ∃ pDC-Sequences in RSC 2 with δ = δ trunc 2,
D 2,L,Γ (δ) = Γ -1 (D 2,L (δ)) (3) 
where applying Γ -1 to a set of symbol pairs during the divergence step is defined as applying Γ -1 to each element of each pair of the set. Note that the same holds for Γ as well. Similarly, for the convergence step :

C 2,L,Γ (δ) = Γ -1 (C 2,L (δ)) (4) 
Next, these functions will serve as basis to prevent that low ED pDC-Sequences coincide in both component codes.

C. Design Methodology

By making use of the definitions of the previous sections, in this section we state the design methodology to construct a symbol Transformation Γ for a given NB-TC, which aims to increase the minimal ED of the code. The proposed methodology can be generalized for any shape of interleaver cycles to further improve the minimal ED. However, for the sake of clarity, we limit the discussion here to shapes as illustrated in Fig. 2 on the example of pDC-Sequences of length l 1 and l 2 in RSC 1 and RSC 2 respectively.

First, we define △ = min(∆ 1,l1 ), △ ′ = min(∆ 2,l2 ) as the minimum ED of the spectrum of each component code and assume an arbitrary Γ. Then, the worst-case NB-TC ED is achieved if any pDC-Sequence with ED △ in RSC 1 coincides with any pDC-sequence in RSC 2 with ED △ ′ . Due to the interleaver cycle the pDC-Sequences in RSC 1 and RSC 2 share the same symbols during divergence and convergence, and therefore the worst-case can only occur, if there exists some (d a , d b ) and (c a , c b ) such that:

(d a , d b ) ∈ D 1,l1 (△) ∧ (c a , c b ) ∈ C 1,l1 (△) (d a , d b ) ∈ D 2,l2,Γ (△ ′ ) ∧ (c a , c b ) ∈ C 2,l2,Γ (△ ′ )
The condition on Γ to avoid the occurrence of these worst cases follows consequently as: 3) and ( 4), this is equivalent to:

D 1,l1 (△) ∩ D 2,l2,Γ (△ ′ ) = ∅ C 1,l1 (△) ∩ C 2,l2,Γ (△ ′ ) = ∅ By (
D 1,l1 (△)∩Γ -1 D 2,l2 (△ ′ ) = ∅ C 1,l1 (△)∩Γ -1 C 2,l2 (△ ′ ) = ∅ (5) 
(5) therefore serves as a requirement for the construction of Γ. Assuming that the considered pDC-sequences constitute the minimal ED of the code, we are increasing the minimal ED by employing a Γ that fulfills this requirement.

Eq. ( 5) can be expressed as boolean formulas with ln(q) boolean variables for each of the q values of the bijection Γ -1 . These boolean variables define the values of Γ -1 in binary representation. To this end, we can utilize a SAT-solver 1 to find a Γ that fulfills our requirements, by constructing Γ from a satisfying assignment to the boolean variables.

This idea is employed in the proposed symbol transformation design in Algorithm 1, where we start with the worstcase and add further requirements until the SAT-solver can no longer find a variable assignment satisfying the requirements. There, Ψ 1 denotes the basic constraint that the symbol transformation has to be a bijection and Ψ 2 defines a set of variables that encode integer constants from 0 to q -1. κ(U ∩ Γ -1 (V ) = ∅) is defined as the boolean formula which holds if and only if two sets U and Γ -1 (V ) are disjoint by using the previously mentioned boolean variables, where U, V ⊆ GF (q) 2 .

It is worth noting, that after adding a certain amount of requirements, other shapes of interleaver-cycles will start to become the most critical in their contribution to codewords with the new increased minimal ED. However, as stated above for those cycles the same approach can be also applied to conjunct new requirements to the already existing ones. Further, low ED codewords can consist of more than one pDC segment in each constituent trellis which is equivalent to more than two symbol errors. Regardless, the presented method can be generalized for this case as well. 1 In section IV we show that the problem of finding Γ that fulfills a set of requirements is NP-complete which justifies the use of SAT-solver.

Algorithm 1 Design symbol transformation Γ

φ 0 := Ψ 1 ∧ Ψ 2 Λ := {λ ∈ R λ = △ + △ ′ , △ ∈ ∆ 1,l1 ∧ △ ′ ∈ ∆ 2,l1 } i := 0 while φ i is satisfied and Λ ̸ = ∅ do i = i + 1 θ = min(Λ) ψ := true for all △ ∈ ∆ 1,l1 , △ ′ ∈ ∆ 2,l2 , such that θ = △ + △ ′ do α = κ(D 1,l1 (△) ∩ Γ -1 (D 2,l2 (△ ′ )) = ∅) β = κ(C 1,l1 (△) ∩ Γ -1 (C 2,l2 (△ ′ )) = ∅) γ = α ∨ β ψ = ψ ∧ γ end for φ i = φ i-1 ∧ ψ Λ = Λ \ {θ} end while Construct Γ from satisfying assignment of φ i-1
IV. NP-COMPLETENESS OF DESIGN-PROBLEM First, we state the encountered design problem as a decision problem, then we give a poly-time reduction from the k-Clique decision problem.

Definition IV.1 (design problem). Assume two families of sets U 0 , ..., U k-1 and W 0 , ..., W k-1 over a finite set X and

U i , W i ⊆ X 2 .
Problem: Does there exist a bijection φ : X → X such that:

k-1 i=0 U i ∩ φ(W i ) = ∅
where φ({x 0 , ..., x n }) := {φ(x 0 ), ..., φ(x n )} 1) Design Problem is in NP: Given a bijection φ, it can be checked in polynomial time if the condition holds. The problem is therefore in NP according to the certificate definition.

2) Design Problem is NP-hard: Recall that an undirected graph G has a k-clique if there exists a subset of k vertices such that for every pair of vertices u, v of this subset, there exists the edge {u, v} in G. We denote an undirected graph as G = (V, E), with V := {1, ..., n} and E ⊆ V 2 . Further, for k ≤ n we denote

C k := {{u, v} ∈ V 2 |u, v ≤ k, u ̸ = v}, therefore G = (V, C k ) has a k-Clique.
Lemma IV.1. An undirected graph G = (V, E) has a Clique of size larger or equal to k if and only if there exists a bijection φ :

V → V such that Ē ∩ φ(C k ) = ∅, where Ē := V 2 \E Proof.
⇒ Since G has a Clique of size larger or equal to k it has also a clique of exactly size k,thus there exists a subset E k ⊆ E that constitutes a clique of size k. Also, 

E k ∩ Ē = ∅, therefore there exists a bijection φ : V → V with φ(C k ) = E k , which implies Ē ∩ φ(C k ) = ∅. ⇒ If ∃ a bijection φ such that Ē ∩ φ(C k ) = ∅ then φ(C k ) ⊆ E.
U 0 = Ē and W 0 = C k else: U 0 = V 2 and W 0 = V 2
The correctness follows from the previous Lemma and the reduction can be done in polynomial time. This reduces the k-Clique Problem to our design problem.

V. SIMULATION RESULTS

We evaluate the proposed transformation design method in a case study for two NB-TsC over GF(16) with primitivepolynomial x 4 + x 3 + 1, which are mapped to a 16-QAM constellation: C 1 with component code parameters a 1 = 2, a 2 = 5 and a 3 = 11, which has a good component code min ED of 4.0, and C 2 with a 1 = 4, a 2 = 2 and a 3 = 1 with a comparatively low component code min ED of 1.6. Note, that the employed interleaver (ARP interleaver with P = 143, Q = 8, S = (0, 150, 62, 10, 110, 22, 20, 98)) was not optimized with respect to C 1 and C 2 to better illustrate the effect of the transformation. Their respective transformations constructed through Algorithm 1 are listed in table I. When used without Γ, both C 1 and C 2 suffer from high error floors at Frame Error Rate (FER) of 10 -3 and 10 -4 respectively, as seen in Fig. 3. The observed floors are significantly reduced to a FER of 10 -6 when using C 1 and C 2 as component codes together with Γ 1 , Γ 2 respectively. 

VI. CONCLUSION

In this work we presented a new methodology to construct a symbol transformation dedicated to a given NB-TC over GF(q). This methodology aims to increase the minimal ED of the code by explicitly targeting low-ED sequences which are caused by interleaving. Compared to a NB-TC without symbol transformation, we were able to significantly increase the error-correcting performance, hence lowering the error floor by as much as three decades in a case study. The encountered design problem was proven to be NP-complete justifying the utilization of SAT-Solver in the proposed methodology. In future work, it is expected that investigating joint optimization of interleaver and symbol transformation will lead to further significant improvements.
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 1 Figure 1: (a) NB-CC Encoder (b) NB-TC Encoder (with Transformation Γ) (c) Trellis of a GF(4) recursive NB-CC.
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 2 Figure 2: pDC-sequences connected by an interleaver cycle.
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 3 Figure 3: FER comparison (K = 160, 16 -QAM, 8 iterations max-Log-MAP decoding, AWGN Channel).
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Table I :

 I Symbol transformations for use with C 1 and C 2 .
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