
HAL Id: hal-04168135
https://hal.science/hal-04168135v1

Submitted on 21 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iteration Overlap for Low-Latency Turbo Decoding
Stefan Weithoffer, Ghazi Aousaji, Jérémy Nadal, Charbel Abdel Nour

To cite this version:
Stefan Weithoffer, Ghazi Aousaji, Jérémy Nadal, Charbel Abdel Nour. Iteration Overlap for Low-
Latency Turbo Decoding. ISTC 2023 : 12th International Symposium on Topics in Coding, Sep 2023,
Brest, France. �hal-04168135�

https://hal.science/hal-04168135v1
https://hal.archives-ouvertes.fr

Iteration Overlap for Low-Latency Turbo Decoding
Stefan Weithoffer, Ghazi Aousaji, Jeremy Nadal, Charbel Abdel Nour

IMT Atlantique, Department of Electronics, Lab-STICC - UMR 6285
Email: {stefan.weithoffer, rami.klaimi, charbel.abdelnour} @imt-atlantique.fr

Abstract—Achieving high decoding throughput and latency has
been challenging for turbo decoders due to the limitations in
terms of parallelism on component decoder level. To alleviate
this issue, we propose an iteration overlap scheme able to apply
a decoding schedule tailored to both, the decoder hardware
architecture and the interleaver constraints. The proposal aims
to minimize the achieved decoding latency without penalizing
performance when compared to baseline decoders. To that end,
we formulate the window schedule optimization problem when
applying iteration overlap in pipelined Turbo Decoder hardware
architectures. Then, we propose a method to find optimal window
schedules under realistic assumptions. Results demonstrate that
latency is reduced by 20 − 25% for most Long Term Evolution
(LTE) interleaver configurations. For specific interleavers, the
achieved latency reduction can be as high as 62%. This indicates
that further latency savings could be achieved if iteration overlap
is taken into account when designing interleavers.

Keywords—Forward Error Correction, Turbo decoder, Shuf-
fled decoding, Low-latency.

I. INTRODUCTION

Turbo codes [1] are a well-known code class that provides
built-in rate flexibility with a low-complexity fast encoding. In
the more than 30 years since their inception, they have found
their way into serveral wireless communication standards
such as LTE Advanced and DVB-RCS2 [2], [3]. Despite
the contending Low Density Parity Check codes (LDPC)
being chosen for the 3GPP 5G NR standard, Turbo codes
will still be included in the continued evolution of LTE.
Indeed recent advances in code design [4], decoding algorithm
[5] and hardware architecture [6], [7] show that significant
performance improvements are still being made.

An important performance metric for forward error correc-
tion for IoT is the decoding latency [8]. However, classical
Turbo Decoder hardware architectures are limited in terms
of parallelism on component decoder level and consequently
in terms of achievable throughput and latency [6]. Shuffled
decoding has been proposed as a way to extend parallel
decoding to the iteration level by immediate extrinsic infor-
mation exchange [9], [10]. However, it comes at a penalty
in error correcting performance that has to be compensated
for by additional decoding iterations. On another note, fully
pipelining the decoding iterations allows very high decoding
throughputs [6], [11]. There, a significant part of the im-
plementation complexity is owed to first-in-first-out (FIFO)
memories needed to buffer the extrinsic information between
the half-iteration pipelines.

While for LDPC decoding, many works explored the prob-
lem of efficiently scheduling the decoding of different layers
to mitigate the drawbacks of immediate (partial) information

Figure 1: General Turbo Decoder structure.

exchange [12], [13], to the best of our knowledge similar
exhaustive works do not exist yet for Turbo Decoding.

In this work we formulate and solve the problem of ef-
ficiently scheduling the decoding of different windows while
considering the underlying hardware architecture. The solution
was applied to the case of pipelined Turbo Decoders. Latency
evaluations for the codes of the LTE-A Pro standard [2] show
an average latency saving of 20%-25% and individual savings
for certain interleavers reaching as high as 62%.

The remainder of this paper is structured as follows: Sec-
tion II briefly recalls background and context. In Section
III, we discuss the proposed iteration overlap and formulate
the scheduling problem. Section III-C presents a simplified
solution to the problem for the case of the LTE standard.
The corresponding latency savings are provided in Section IV
before Section V concludes the paper.

II. BACKGROUND

A turbo decoder consists of two component decoders con-
nected by an interleaver Π and a de-interleaver Π−1 exchang-
ing extrinsic information in an iterative loop (see Fig.1). We
refer to an execution of one component decoder as a Half
Iteration (HI). Most hardware architectures for turbo decoding
implement one decoder instance based on the max-Log-MAP
algorithm (MLM) which alternately operates as Decoder1 and
Decoder2 [1]. The MLM computes the extrinsic information
Λe from the recursively computed forward and backward state
metrics αk and βk, and from the branch metrics of the code-
trellis. In order to increase the throughput and lower the
decoding latency, frames are split into smaller sub-blocks (or
”windows” of size WS) which are then processed using spatial
and functional parallelism on component decoder level.

A. Parallel Turbo Decoder HW-Architectures

Parallel MAP (PMAP): The decoding of the windows is
performed on P serial sub-decoder cores in parallel (spatial
parallelism) [10], [14].

Figure 2: Windowing examples for (a) XMAP (b) UXMAP.

Fully Parallel MAP (FPMAP): The fully parallel MAP
decoder proposed in [15] can be seen as the extreme case
of the PMAP architecture with the P equal to the frame
size and WS = 1. It implements hardware instances for both
component decoders which work in parallel and suffers from
the same drawbacks as shuffled decoding [9] (see below).

Pipelined MAP (XMAP): The XMAP employs functional
parallelism by unrolling the recursive α- and β-calculations
onto a pipeline [16], [17]. Several windows of size WS = P
are decoded in parallel while moving through the pipeline as
illustrated in Fig. 2(a) for the decoding of a frame of size K
split into 4 windows of size WS over time t.

Fully Pipelined Iteration Unrolled MAP (UXMAP):
This architecture extends the pipelining of windows to fully
pipelining the iterative loop [6], [11]. Fig. 2(b) shows the
resulting decoding schedule: Complete frames are processed
in the UXMAP pipeline consisting of pipelined instances for
each HI and each window allowing for a very high throughput.

While our results can also be applied to the PMAP, we will
limit the following discussions regarding the proposed iteration
overlap scheduling to its application in the context of XMAP
and UXMAP for brevity and clarity.

B. Interleaving and Iteration Level Parallelism

In parallel decoder architectures, multiple Λe are generated
at the same time (see again Fig. 2) and have to be interleaved
in between HIs. For implementations with only one decoder
instance, this requires parallel memory accesses which may
lead to access conflicts. Therefore, modern interleavers like
Quadratic Permutation Polynomial (QPP) [18] and Almost
Regular Permutation (ARP) interleavers [19] are designed to
be contention free for any P that divides the frame size K.
However, extrinsic information exchange between successive
decoding HIs (ℓ, ℓ+1) must respect the precedence constraints
imposed by Π and Π−1. Indeed, meaningful extrinsic infor-
mation at position i of the frame can only be exchanged and
consumed (i.e. used for computation) by the next HI at time
C(i) once it has been generated by the previous HI at time
G(i). Therefore, the commonly used approach is to wait that
all Λe are generated at HI ℓ before starting to consume them at
HI ℓ+1 which guarantees fulfilling the precedence constraints
regardless of the interleaver. Fig. 3(a) illustrates this for the
UXMAP architecture. However, memory has to be added in

the form of FIFO (First-in-first-out) buffers to delay all but
the last generated Λe, which increases circuit area, latency
and energy consumption. For a given HI, the resulting latency
L is largely determined as L = ⌈WS/2⌉1(⌈.⌉ denotes the ceil
function). This latency accumulates at each processed HI.

Similarly, two (or more) XMAP decoder instances may be
employed to process two consecutive HIs in parallel. In order
to increase the throughput, the so called Shuffled decoding [9],
[10] runs both decoder instances on the same frame and lets
them exchange extrinsic information as soon as it is computed.
In general, this leads to the component decoders not fully
benefiting from the extrinsic information exchange. Indeed
due to interleaving/de-interleaving, the extrinsic information
needed by one component decoder may not yet have been
computed by the other (i.e. precedence constraints of the form
k < Π(k) or k > Π(k)). Consequently, additional HI are
needed in comparison to the non-shuffled case to compensate
for the loss in error correction. This effect is well known to
significantly lower the efficiency of shuffled decoding [10].

III. ITERATION OVERLAP

We propose a method to define a schedule respecting all
precedence constraints. While still maximizing the reduction in
decoding latency compared to the baseline approach of waiting
for the decoding of the HI to complete, the proposed schedule
fully mitigates the need of additional HI incurred for classical
shuffled decoding. We formulate and solve the respective
scheduling problem to guarantee maximum Iteration Overlap
(IOL) for given window size WS and Π.

A. Iteration overlap

For the UXMAP with an IOL depth of OD, the extrinsic of
bit index i, denoted by Λe

i and generated at time slot GUX(i)
can start to be consumed by the next HI at time slot CUX(i)
OD clock-cycles (time slots) earlier, resulting into a latency of
LUX = L−OD. This is illustrated in Fig. 3(b) where the grey
computation units are shifted OD = WS/2− 1 = 5 cycles to
become the green units, which represents a full overlap (one
XMAP window is 12 cycles). Our aim is to determine the
minimum UXMAP latency LUX able to respect the precedence
constraints (i.e. no performance penalty). It is directly related
to the definition of the interleaver Π such that

GUX(i) =

⌊∣∣∣ mod(i,WS)−
WS − 1

2

∣∣∣⌋, (1)

⌊.⌋ denotes the floor function. Similarly, bit index i is con-
sumed at time slot CUX(i) + LUX, with CUX(i) = ⌊(WS −
1)/2⌋ −GUX(i). The precedence constraints impose that

∀i ∈ J0,K − 1K, CUX
(
Π(ℓ)(i)

)
+ LUX ≥ GUX(i), (2)

=⇒ LUX = max
∀i∈J0,K−1K

(
GUX(i)− CUX

(
Π(ℓ)(i)

))
, (3)

where Π(ℓ) is Π or Π−1 depending on HI ℓ being even/odd.

1Pipelined computation of Λe may incur an additional latency of several
clock cycles that is omitted here for clarity [7].

Figure 3: Illustration of the extrinsic generation and consumption between successive HIs ((ℓ, ℓ+1)) for a) UXMAP without
overlap b) UXMAP with overlap c) XMAP without overlap d) XMAP with overlap.

In contrast to the UXMAP where all windows are processed
in parallel, extrinsic information Λe is sequentially gener-
ated/consumed following the order of the processed windows
in the pipeline for the XMAP. This is illustrated in Fig. 3(c)
and the corresponding delay accumulates for each processed
window. Without overlap, the resulting latency of a given HI is
LX = LUX+NW , with NW denoting the number of windows
within the frame of size K.

B. Problem Formulation

We define the Scheduling of a window as a length-NW

vector Sℓ, with the kth element denoting the time delay
(corresponding to its position in the schedule) where window
index k starts generating or consuming Λe. Note that each
element of Sℓ must be distinct, i.e. Sℓ[k] ̸= Sℓ[k

′], ∀k ̸= k′.
In the example of Fig. 3(c), we have Sℓ = Sℓ+1 = [3, 2, 1, 0].
At bit index i, the generation and consumption time slots are

G(i) = GUX(i) + Sℓ

[
wG(i)

]
, (4)

C(i) = CUX(i) + L
(ℓ)
X + Sℓ+1

[
wC(i)

]
, (5)

where wG(i) = ⌊i/WS⌋ and wC(i) = wG

(
Π(ℓ)(i)

)
are the

generation and consumption window indexes to which bit i

belongs, and L
(ℓ)
X corresponds to the latency at HI ℓ. The

precedence constraints impose2

L
(ℓ)
X = max

∀i

(
Sℓ

[
wG(i)

]
− Sℓ+1

[
wC(i)

]
+∆

(ℓ)
UX(i)

)
, (6)

where ∆
(ℓ)
UX(i) ≜ GUX(i) + CUX

(
Π(ℓ)(i)

)
corresponds to

the difference in delay between the time when the extrinsic
information of bit index i is generated and the time when it
is consumed between HI ℓ and ℓ+ 1.

Constraints of (6) can be relaxed since only the connection
corresponding to the largest delay ∆

(ℓ)
UX(i) sets the timing

constraint for all Λe sharing the same generation window n
and consumption window m, independently of the schedule.
Defining the set En,m = {i : wG(i) = n,wC(i) = m} as
the list of all bit indexes i that belong to generation window

2In practice, achievable latency is bounded by the processors capability to
consume Λe. This hardware constraint is omitted here.

n = wG(i) and consumption window m = wC(i) we have
∀(n,m) ∈ J0, NW − 1K2,

∆(ℓ)
n,m(Sℓ,Sℓ+1) ≜ Sℓ[n]− Sℓ+1[m] +D(ℓ)

n,m. (7)

Here, D(ℓ)
n,m is the local delay between generation window n

and consumption window m. It is expressed3 as

D(ℓ)
n,m = max

∀i∈En,m

(
GUX(i)− CUX

(
Π(ℓ)(i)

))
. (8)

Finally, (6) can be rewritten as

L
(ℓ)
X = max

∀(n,m)
∆(ℓ)

n,m(Sℓ,Sℓ+1). (9)

Ideally, the window schedules must be chosen to minimize the
accumulated latency up to the last iteration, i.e. after ℓmax HIs.
This is equivalent to solving the following problem

P0 : minimize
ℓmax−1∑
ℓ=0

max
∀(n,m)

(
∆(ℓ)

n,m(Sℓ,Sℓ+1)
)
, (10)

s.t. C0 : ∀ℓ,∀(k, k′) \ k ̸= k′,Sℓ[k] ̸= Sℓ[k
′]. (11)

It can be shown that problem P0 is an integer linear program-
ming problem (ILP), and is computationally expensive to solve
for a large number of windows. In the next sub-section, we
propose to simplify P0, adapting it to more practical usages,
and we provide a simple way to find the optimal schedule.

C. Problem simplification and solution

In practice, iterative turbo decoders employ iteration control
[20]. Therefore, it is difficult to predict the target number of
HIs for solving P0. Instead, it is more practical to optimize
the scheduling of windows on a per-HI basis: The obtained
optimal schedule vector at the previous HI ℓ−1, denoted S⋆

ℓ−1,
is used as generation window schedule when optimizing the
schedule vector at the next HI ℓ. This iterative optimization
procedure can be expressed as

S⋆
ℓ = argmin

Sℓ

max
∀m

(
∆(ℓ)

m (S⋆
ℓ−1)− Sℓ[m])

)
, (12)

with ∆
(ℓ)
m (S⋆

ℓ−1) = maxn
(
Dn,m + S⋆

ℓ−1[n]
)
. In addition,

received information generally enters the decoder in natural

3To avoid mathematical inconsistency if |En,m| = 0, we extend the
definition the operator max as follows: ∀x, max∅ x = −∞

order, and thus without loss of generality, we select the first
window schedule to be S⋆

0[k] = k for all k windows. Now,
(12) corresponds to the solution of the following ILP

P1 : minimize L
(ℓ)
X , (13)

s.t. C0,C1 : ∀m,Sℓ[m] ≥ ∆(ℓ)
m (S⋆

ℓ−1)− L
(ℓ)
X . (14)

In constraint C1, ∆(ℓ)
m can be sorted by ascending order, from

the less constraining delay to the most constraining delay. The
notation −→m = argsort(∆(ℓ)

m) indicates the sorted index. If C1

is not fulfilled when using the schedule vector Sℓ[
−→m] = m,

m ∈ J0, NW − 1K, for a given latency value L
(ℓ)
X , then it is

not possible to find another schedule vector that would satisfy
C1. Indeed, if m < ∆

(ℓ)
−→m (S⋆

ℓ−1)−L
(ℓ)
X , then it is not possible

to find any m′ > m to exchange m with, since ∆
(ℓ)
−→
m′

≥ ∆
(ℓ)
−→m .

Then, the minimum latency value is determined by the most
constraining extrinsic bit index to schedule:

L
⋆(ℓ)
X = max

m∈J0,NW−1K

(
∆

(ℓ)
−→m −m

)
. (15)

Note that both problems P0 and P1 can be easily solved
if 1) Π is designed to achieve full overlap and 2) all gen-
eration windows are connected to all consumption windows
(|En,m| = N2

W). There, we have Dn,m = 0 ∀(n,m), and
maxn,m(Sℓ[n] − Sℓ+1[m]) = NW − 1 and thus, the latency
would always be ℓmax(NW − 1), independent of schedule.

D. Adaptability to different architecture parameters

In order to find an optimal schedule when considering
variable architectural choices, the problem formulation needs
to be adapted. We give the following examples: First, for
XMAP decoders that implement 2r-radix computation units
[7], [14], bit index i is consumed at CUX(i, r) = ⌊CUX(i)/r⌋
and generated at GUX(i, r) = ⌊GUX(i)/r⌋. In problem P1,
this only affects the computation of ∆

(ℓ)
m , and the proposed

method to find the optimal schedule is the same as the
one proposed in Section III-C. Furthermore, it is possible to
instantiate Q XMAP processors in parallel to speed up the
extrinsic computation. This implies that Q times more extrinsic
information can be pipelined at each clock cycle, with a total
of NQ = ⌈NW /Q⌉ windows computed per processor and per
HI. The achievable latency can be reduced to a minimum of
NQ clock-cycles. Each processor can be scheduled differently,
with S⋆

ℓ,q ∈ J0, NQ−1KNQ being the window schedule vector
associated to processor q. These schedules can be derived from
the optimal windows schedule S⋆

ℓ obtained by solving P1,
in such a way that concatenating each S⋆

ℓ,q reproduces S⋆
ℓ .

The corresponding concatenation procedure can be described
through the following equation

S⋆
ℓ,p[m] =

⌊
1

Q
S⋆
ℓ [m+Qp]

⌋
. (16)

IV. LATENCY EVALUATION

We evaluate the achievable latency reduction through the
proposed IOL for several hardware architectures in comparison

0 1000 2000 3000 4000 5000 6000
Frame length (K)

0

10

20

30

40

50

60

La
te

nc
y

ef
fic

ie
nc

y
R L

 (%
)

WS = 16, IP = 1
WS = 32, IP = 1
WS = 64, IP = 1
WS = 128, IP = 1

WS = 16, IP = 0
WS = 32, IP = 0
WS = 64, IP = 0
WS = 128, IP = 0

Figure 4: IOL latency efficiency for the 188 LTE frame lengths
and WS ∈ {16, 32, 64, 128} (radix-2 MAP).

to the baseline scheme (without overlap). We consider the QPP
interleavers defined in the LTE standard for the 188 frame
lengths, from K = 40 to K = 6144 bits [2].

The total latency LDEC for decoding up to ℓmax HIs is
the contribution of two latency terms, LPROC and LEXCH. The
first term LPROC = ℓmax

⌊
WS/(2r)

⌋
+LI/O+ACQ represents the

processing delay of XMAP processors that includes the delays
incurred by the input/output interface and initial acquisitions
denoted by LI/O+ACQ [17]. In general, the latency LI/O is
comparatively small and the acquisition may be replaced by
next-iteration initialization (NII) [21]. Therefore we neglect
its effect for simplicity (LI/O+ACQ = 0). The second term
LEXCH corresponds to the accumulated delay when extrinsic
information is exchanged between successive HIs. For both
baseline and IOL cases, it can be expressed as

LEXCH[baseline] = ℓmax

(⌈WS

2r

⌉
+NQ

)
, (17)

LEXCH[IOL] =
ℓmax−1∑
ℓ=0

max
(
L
⋆(ℓ)
X , (1− IP)NQ

)
, (18)

where IP = 1 for architectures that allow iteration level
parallelism such as UXMAP, otherwise IP = 0. We evaluate
the latency efficiency RL defined as the latency reduction
achieved by IOL when compared to the baseline case by

RL = 1− LEXCH[IOL] + LPROC

LEXCH[baseline] + LPROC
. (19)

Fig. 4 shows the obtained RL values for the 188 LTE frame
lengths and 4 different window sizes WS ∈ {16, 32, 64, 128}
when considering one radix-2 XMAP instance with and with-
out HI parallelism. The number of HIs is fixed to ℓmax = 16.
IP = 1 implies that IOL can be fully exploited to improve
RL. The achieved values of RL tend to converge to around
20% − 25% for the largest frame sizes (K > 2000) and
most window sizes. It can be observed that RL variance
is significantly larger for small WS values, with a peak of

0.0 0.2 0.4 0.6 0.8 1.0
Parallelism degree (QWS/K)

0

5

10

15

20

25

30

35

40
La

te
nc

y
ef

fic
ie

nc
y

R L
 (%

)
WS = 16, r = 1 (K = 4608)
WS = 16, r = 2 (K = 4608)

WS = 64, r = 1 (K = 1984)
WS = 64, r = 2 (K = 1984)

Figure 5: RL vs. no. of XMAP Q (K = 4608,WS = 16).

RL = 62% at K = 4608 bits. Indeed, a smaller WS

increases the connection sparsity between windows, allowing
more degrees of freedom during schedule optimization.

Without HI parallelism (IP = 0), the latency efficiency is
noticeably limited for the largest frame sizes when the smallest
WS are used. This problem can be alleviated by increasing
the number of XMAP processors Q and the radix order r.
The corresponding effect was evaluated in Fig. 5. This latter
plots RL for several Q and r values and for two of the best
latency efficiency achieving sets of parameters (interleaver
lengths K = 4864 and K = 1984 bits with WS = 16 and
WS = 64) in Fig. 4. The x-axis of Figure 5 is the parallelism
degree defined as the number of processed bits in parallel and
normalized by the frame length (QWS/K). For both frame
lengths, the latency efficiency is further improved when using
radix-4 MAP (r = 2), particularly for small window sizes.
Increasing the number of processors improves RL up to an
optimal point Q⋆. Passed this threshold, RL decreases since
the parallelism level tends to the full parallel case where the
precedence constraints of the interleaver supersede the sched-
ule choice to become the only limiting factor for minimizing
the latency. For the cases where WS = 16, the maximum
latency efficiency is obtained at Q⋆ = 34 (RL = 28%) for
radix-2 and Q⋆ = 96 (RL = 32.38%) for radix-4.

V. CONCLUSION

We proposed in this paper an iteration overlap technique to
reduce the latency of turbo decoders that fully mitigates the
drawbacks of classical shuffled decoding. We formalized the
window schedule optimization problem for minimizing latency
as well as a method to find the best window schedule when
considering practical simplifications. Results show that large
latency reductions are obtained for several LTE interleavers
without added hardware complexity. Furthermore, it is ex-
pected that latency can be further reduced if the interleaver
is carefully designed to exploit the proposed iteration overlap
technique.

ACKNOWLEDGMENT

This work was partially funded by the French National
Research Agency TurboLEAP project (ANR-20-CE25-0007).

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo-codes,” in IEEE Int. Conf. on
Commun. (ICC), vol. 2, May 1993, pp. 1064–1070 vol.2.

[2] Third Generation Partnership Project, LTE; Evolved Universal Terres-
trial Radio Access (E-UTRA); Multiplexing and channel coding (3GPP
TS 36.212 version 17.1.0 Release 17) , Apr. 2022.

[3] ETSI, Digital Video Broadcasting (DVB); Second Generation DVB
Interactive Satellite System (DVB-RCS2); Part 2: Lower Layers for
Satellite standard (ETSI EN 301 545-2 V1.3.1 (2020-07)), Apr. 2020.

[4] R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard, “Protograph-
based interleavers for punctured turbo codes,” IEEE Trans. on Commun.,
vol. 66, no. 5, pp. 1833–1844, May 2018.

[5] V. Le, C. A. Nour, E. Boutillon, and C. Douillard, “Revisiting the Max-
Log-Map algorithm with SOVA update rules: new simplifications for
high-radix SISO decoders,” IEEE Trans. Commun., vol. 68, no. 4, pp.
1991–2004, 2020.

[6] S. Weithoffer, C. Abdel Nour, N. Wehn, C. Douillard, and C. Berrou,
“25 Years of Turbo Codes: From Mb/s to beyond 100 Gb/s,” in Int.
Symp. on Turbo codes and iter. proc. (ISTC), Dec 2018, pp. 1–6.

[7] S. Weithoffer, R. Klaimi, C. Abdel Nour, N. Wehn, and C. Douillard,
“Low-complexity computational units for the local-SOVA decoding
algorithm,” in IEEE 31st Int. Symp. Personal, Indoor and Mobile Radio
Commun. (PIMRC), London, UK, Sept. 2020.

[8] P. Schulz et al., “Latency critical IoT applications in 5G: Perspective on
the design of radio interface and network architecture,” IEEE Commu-
nications Magazine, vol. 55, no. 2, pp. 70–78, 2017.

[9] J. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE
Trans. on Commun., vol. 53, no. 2, pp. 209–213, Feb 2005.

[10] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing
levels for convolutional turbo decoding,” in 2nd Int. Conf. on Info. &
Commun. Tech., vol. 2, 2006, pp. 2353–2358.

[11] S. W. O. Griebel, R. Klaimi, C. A. Nour, and N. Wehn, “Advanced
Hardware Architectures for Turbo Code Decoding Beyond 100 Gb/s,”
in IEEE Wireless Commun. and Networking Conf. (WCNC 2020), Seoul,
Korea (South), May 2019.

[12] P. Radosavljevic, A. de Baynast, and J. Cavallaro, “Optimized Message
Passing Schedules for LDPC Decoding,” in 39th Asilomar Conf. on
Signals, Systems and Comp., 2005.

[13] V. P. L., M. M. Marković, D. M. E. Mezeni, L. V. Saranovac, and
A. Radošević, “Flexible High Throughput QC-LDPC Decoder With Per-
fect Pipeline Conflicts Resolution and Efficient Hardware Utilization,”
IEEE Trans. on Circ. and Syst. I, vol. 67, no. 12, pp. 5454–5467, 2020.

[14] Z. Yuping and K. K. Parhi, “High-Throughput Radix-4 logMAP Turbo
Decoder Architecture,” in Proc. Fortieth Asilomar Conference on Sig-
nals, Systems and Computers ACSSC ’06, Oct. 2006, pp. 1711–1715.

[15] R. G. Maunder, “A Fully-Parallel Turbo Decoding Algorithm,” IEEE
Trans. on Commun., vol. 63, no. 8, pp. 2762–2775, Aug 2015.

[16] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE
Turbo code decoder,” in Design, Autom.and Test in Eu. Conf. (DATE),
March 2010, pp. 1420–1425.

[17] S. Weithoffer, F. Pohl, and N. Wehn, “On the applicability of trellis
compression to Turbo-Code decoder hardware architectures,” in Int.
Symp. on Turbo Codes and iter. proc. (ISTC), Sep. 2016, pp. 61–65.

[18] J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using per-
mutation polynomials over integer rings,” IEEE Trans. on Inf. Theory,
vol. 51, no. 1, pp. 101–119, Jan. 2005.

[19] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel,
“Designing good permutations for turbo codes: towards a single model,”
in IEEE Int. Conf. on Commun. (ICC), June 2004, pp. 341–345.

[20] F. Gilbert, F. Kienle, and N. Wehn, “Low complexity stopping criteria
for UMTS turbo-decoders,” in 57th IEEE Vehi. Tech. Conf. VTC Spring,
vol. 4, 2003, pp. 2376–2380.

[21] J. Dielissen and J. Huiskens, “State Vector Reduction for Initialization
of Sliding Windows MAP,” in Int. Symp. on Turbo codes and iter. proc.
(ISTC), Brest, France, Sep. 2000, pp. 387–390.

