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Uncoordinated Communication Systems with NOMA
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Abstract—The number of Internet of Things (IoT) applications
and devices has been continuously increasing and is expected to
continue to do so in the upcoming years. In this context, we
study the uplink uncoordinated spectrum and power allocation
problems in a non-orthogonal multiple access (NOMA) IoT
network while minimizing the age of information (AoI). Power-
limited IoT devices aim at auto-organizing their transmissions on
available resources, i.e., the subband-power level pairs, without
any coordination between them. To enhance spectral efficiency,
full-duplex relays are deployed with queuing capabilities. To solve
the problem of minimizing the AoI in both the coordinated and
uncoordinated communication settings, we propose algorithms
based on matching theory and the multi-armed bandit (MAB)
framework respectively. Simulation results show that the proposed
uncoordinated MAB-based solution achieves full rate satisfaction
for the users. Moreover, it reveals to be very efficient in minimizing
the system AoI, transmit power and overhead compared to the
coordinated solution.

Index Terms—Non-orthogonal multiple access, uncoordinated
system, relays, full duplex, power allocation, age of information,
matching theory, multi-armed bandits.

I. INTRODUCTION

THE Internet of Things (IoT) has become a major driving
use case in the evolution of wireless communication

networks. In fact, IoT devices are expected to make up most
of the mobile traffic exchanged in fifth generation (5G) and
beyond 5G (B5G) networks. They are being deployed to
enable different applications spanning various sectors such as
e-health, smart agriculture, autonomous cars. With the large
diversity of target IoT applications, the characteristics and
requirements of the generated mobile traffic are becoming
increasingly heterogeneous. Indeed, depending on the appli-
cation, the traffic can be continuous, periodic or sporadic.
In addition, with massive device deployment scenarios, the
number of transmitted IoT packets may induce unacceptable
latency. Therefore, the network should adopt topologies and
resource allocation strategies designed to meet the low-latency
and low-complexity requirements of target applications and
pave the way for scalable and self-configurable massive IoT
systems [1], [2]. These constraints necessitate the design of
appropriate novel frameworks to optimize the performance of
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modern wireless communication systems, since classical cen-
tralized optimization techniques fail to address the scalability
requirement and the continual evolution of IoT networks.

To enhance the capacity of the system, non-orthogonal
multiple access (NOMA) has been introduced as a promising
multiple access technique to accommodate a larger number
of devices. Specifically, power-domain NOMA (PD-NOMA)
consists of scheduling multiple users on the same resource
block by multiplexing them in the power domain [3]–[6].
Therefore, NOMA can achieve a higher spectral efficiency
and higher data rates when compared to orthogonal multiple
access (OMA) schemes [7]. To decode signals at the receiver
level, successive interference cancellation (SIC) is employed.
Most of the early works studying NOMA focused on downlink
scenarios. While some work studied the maximization of the
average achieved throughput [3], others focused on minimizing
the average downlink transmission power while satisfying user
rate requirements [4], [6]. In [5], the authors showed an
enhancement of the spectral efficiency using novel mutual SIC
techniques. To ensure successful decoding at the receiver side
in a NOMA system, power allocation is key. Hence, a variety of
power allocation schemes were proposed in the literature. While
some are based on a back-off step between power levels [8] to
safely decode signals, others focus on an allocation scheme
that aims at guaranteeing the minimum user rate requirements
[9]. As for uplink communication systems, the authors in [10]
addressed the challenge of maximizing the minimum user rate
by jointly optimizing the transmit powers and decoding order.
Others showed that adding a new precoding block before the
subcarrier mapping may help in reducing peak to average power
ratio (PAPR) [11]. Moreover, many studies showed that NOMA
applied whether in uplink or downlink communication systems
ensures low latency communication and massive connectivity
[12], rendering it a promising technique to support IoT network
communications [2]. In this paper, we consider NOMA for an
uplink IoT network communication system.

In the case of NOMA coordinated communication systems,
matching theory has been commonly applied to solve opti-
mization problems [13]. In fact, matching theory is an eco-
nomic mathematical framework [14] that aims to facilitate the
formation of mutually beneficial relationships. It is employed
to address assignment problems between two distinct sets of
players. The fundamental challenge of the matching problem
is to assign resources from players of one set to those of the
other set in an optimal manner. To achieve this, each player



builds a preference list based on a utility function, in order to
rank players of the opposing set. In the context of this paper,
the first set of players corresponds to the devices, while the
other corresponds to the available network resources [15].

Added to NOMA, relaying can be quite useful in massive
communication settings to reduce network congestion at the
central base station (BS) level, extend cellular coverage and
increase achieved rates. Mobile relays that can be deployed in
a quick manner, such as unmanned aerial vehicles, can also re-
store communication in damaged networks infrastructure [16],
[17]. In order to achieve high data rates, reduce latency and en-
hance spectral efficiency, full-duplex relays can be considered.
By allowing the simultaneous transmission and reception of
messages on the same frequency resource, full-duplex relays
achieve a lower communication latency but suffer from self
interference [17]. The joint use of NOMA and full-duplex
relay techniques allows for enhanced spectrum efficiency and
massive connectivity through multiple transmissions on the
same resource block [18]. Furthermore, to prevent data loss in
case of system congestion, relays can be equipped with queuing
capabilities. Queuing was mostly considered in the literature in
coordinated spectrum access settings, where users receive, in
addition to their messages, information about the relay buffer
size [19]. On the other hand, few works have considered
queuing in an uncoordinated manner, where no information
about the relay buffer state is communicated to users. However,
whether applied in a coordinated or uncoordinated setting,
queuing has the drawback of increasing the age of information
(AoI) [20]. AoI is a metric referring to the degree of freshness
of the information that quantifies the time elapsed from the
source generation of the message till its reception [21]. AoI can
vary depending on network congestion, transmission delays,
and the efficiency of information processing and delivery
mechanisms. It is usually measured at the receiver end, but
can also be measured at the transmitter if the latter receives
acknowledgments from the former. The higher the AoI, the
older the information and the less useful it is [22]. Several
works studied the optimization of AoI in downlink systems
[23], others studied the optimization of a queue depending on
its size and packet replacement [24]. Moreover, many studies
have compared the AoI for different types of queues, e. g., for
first-come first-served (FCFS), last-come first-served (LCFS)
with or without preemption, or proportional fair (PF) queues
[25]. In [26], the average AoI was analyzed and optimized for
update rates in simple queuing systems like M/M/1, M/D/1,
and D/M/1. This analysis sparked further research on both
peak and average AoI in various queuing systems [24], [27]–
[31]. Many of these studies focused on optimizing peak and
average AoI by adjusting the update service rates. Addition-
ally, researchers investigated queue scheduling disciplines and
packet management strategies to minimize AoI. The benefits of
employing parallel servers to improve AoI were demonstrated
in [32]. Furthermore, improvements in AoI were observed by
reducing buffer sizes and introducing packet deadlines, where
a packet deletes itself after exceeding its deadline, as shown

in [27], [24] and [28], respectively. The consideration of AoI
in updates traversing a network of queues was addressed in
[33]. It was found that the LCFS queue scheduling discipline,
with preemptive service, is age-optimal when the service times
follow an exponential distribution. In this paper, we use AoI as
a design criterion, especially for latency-sensitive applications.

On a different note, enabling scalable networks that can
accommodate a variable numbers of devices and traffic types is
crucial for unleashing the full potential of IoT. Uncoordinated
or grant-free spectrum access strategies can be well-suited
to this context. Indeed, uncoordinated strategies gained great
interest in recent literature [34], [35] motivated by their ability
to reduce signaling overhead and latency in communication
networks. However, most of the available literature on uplink
NOMA considered fully coordinated spectrum access. Only few
works considered either partial or full uncoordinated spectrum
access [36], [37]. Dealing with uncoordinated spectrum access
requires novel techniques such as reinforcement learning or
game theory to allocate available resources, since information
sharing is restricted. Several studies adopted reinforcement
learning [38]–[40], and more specifically the multi-armed ban-
dit (MAB) framework, to allow users to auto-organize their
transmissions on the available channels [38]. In the MAB
framework, the users, referred to as players, compete to find
the actions, i.e., resources called arms, that maximize their
expected reward or welfare, usually their rate [41]. Arm re-
wards are unknown beforehand at the player level, hence an
exploration phase is needed to estimate them. Then, the system
can proceed to the exploitation phase where the particular arms
that maximize the achieved rewards are continuously played
by users. Multiple algorithms have been proposed to solve
the MAB problem. They include the 𝜖-greedy, 𝜖-decreasing
and upper confidence bound (UCB) algorithms [39]. These
algorithms have already been used to solve the allocation
problem in cognitive radio systems [42] for an uncoordinated
spectrum access [38]. In our work, we use the MAB framework
to optimize the allocation of resources.

To summarize, to the best of our knowledge, no previous
work has considered the use of full-duplex relays in an un-
coordinated uplink NOMA system with transmit power limits
and AoI constraints for the devices with mixed traffic types.
Hence, in this paper, we study an uplink uncoordinated NOMA
transmission system, where multiple full-duplex relays with
LCFS queues are deployed. IoT devices aim at auto-organizing
their communications with the available relays using the MAB
framework and without communicating with each other. Relays
then forward the received signals to the BS, resulting in a
two-hop communication system. IoT devices being deployed
for multiple use cases with varying traffic characteristics and
requirements, we consider a mixed traffic system consisting
of continuous, sporadic and periodic transmissions. Moreover,
each IoT device has a limited power budget. We propose a
multi-step algorithm based on the MAB framework where we
conduct the power-subband allocation while guaranteeing the
transmit power constraints and minimizing the AoI for the



devices in an uncoordinated manner. The main contribution of
this paper concerns the proposal of an efficient method to:

• allocate the available spectrum and power resources to
devices with mixed traffic types in an uncoordinated
system,

• minimize the transmit power at the devices and relays
while maximizing the achieved rates,

• minimize the AoI for the IoT devices using the MAB
framework.

The proposed MAB-based uncoordinated method is compared
to a benchmark consisting of a coordinated spectrum and power
allocation technique based on matching theory that minimizes
AoI.

The rest of the paper is organized as follows: In section II, the
system model is described while the considered optimization
problem is formulated in section III. Section IV provides
the foundations of the proposed MAB-based uncoordinated
framework, while the details are given in section V. The
coordinated system based on matching theory for efficient
resource allocation and taken as a reference is developed
in section VI. The proposed algorithms are evaluated using
numerical simulations whose results are provided in section
VII and conclusions are drawn in section VIII.

II. SYSTEM MODEL

Consider a hexagonal cell with one BS located at the
cell center, 𝑅 relays and 𝑁 IoT devices. Grouped in a set
R = {𝑟1, 𝑟2, . . . , 𝑟𝑅}, the relays are distributed on a circle at
mid-distance between the BS and the cell edges. Let Dcont =

{𝑑𝑐𝑜𝑛𝑡1 , 𝑑𝑐𝑜𝑛𝑡2 , . . . , 𝑑𝑐𝑜𝑛𝑡𝑛1 }, Dper = {𝑑 𝑝𝑒𝑟1 , 𝑑
𝑝𝑒𝑟

2 , . . . , 𝑑
𝑝𝑒𝑟
𝑛2 } and

Dspo = {𝑑𝑠𝑝𝑜1 , 𝑑
𝑠𝑝𝑜

2 , . . . , 𝑑
𝑠𝑝𝑜
𝑛3 }, where 𝑛1 + 𝑛2 + 𝑛3 = 𝑁 , denote

the sets of devices having continuous, periodic and sporadic
traffic types, respectively. The set of all IoT devices is denoted
by D = {Dper ,Dspo ,Dcont }. For devices with a sporadic traffic,
the probability of successful spectrum access is represented
by 𝑝𝑎

𝑑
𝑠𝑝𝑜

𝑖

. For the devices with a periodic traffic, the period
between two consecutive transmissions is 𝑇𝑜𝑛

𝑑
𝑝𝑒𝑟

𝑖

. They can be,
for example, sensors for medical use.

Due to possible large distances between the BS and the
power-limited IoT devices, we assume that the latter can
not transmit their signals directly to the BS. Hence, a two-
hop communication network is considered where the devices
transmit their signals to relays that forward them to the BS,
as shown in Figure 1. A grant-free or uncoordinated up-
link communication system is studied where IoT devices aim
at organizing their transmissions without any communication
between them. During each time slot, every IoT device is
allowed to communicate only with one relay over one subband.
The relays operate in a full-duplex mode, i.e., simultaneously
receive the signals from IoT devices and forward them to the BS
on the same frequency resource. Therefore, relays suffer from
self-interference, possibly impeding the successful decoding
of the received signals. Each relay is assigned a frequency
subband and conventional OMA is implemented between the

Figure 1: System model with one BS, one relay and devices
with different traffic types.

relays and the BS. Thereby, relays do not suffer from inter-
relay interference. Moreover, by selecting a subband, a device
automatically selects the corresponding relay. For multiple
access, NOMA is considered between the devices and the
relays.

A. Power Allocation Scheme

In this paper, the uplink NOMA power allocation scheme
proposed in [9] and [6] is generalized to the case of full-duplex
transmissions and the consideration of multiple collisions.

Consider 𝐿 available received power levels per channel at
the relay. Let Γ𝑙,𝑟𝑒𝑞 be the minimum signal-to-interference-
plus-noise ratio (SINR) required to correctly decode the signal
of each IoT device. Inspired by [9], it can be shown that the
𝑙𝑡ℎ received power level at the relay, 𝑣𝑙 , 𝑙 = 1, ..., 𝐿, such that
𝑣1 > 𝑣2 > ... > 𝑣𝐿 , guarantees the target SINR when facing
𝑀𝑙 supported collisions at each power level lower than 𝑙 if and
only if:

𝑣𝑙 =

(
𝜎2 + 𝐶𝑆𝐼 × 𝑃𝑚𝑎𝑥𝑟,𝑐

)
× Γ𝑙,𝑟𝑒𝑞

𝐿∏
𝑘=𝑙+1

(𝑀𝑘Γ𝑘,𝑟𝑒𝑞 + 1). (1)

In (1), 𝜎2 is the additive Gaussian noise power, 𝐶𝑆𝐼 the residual
self-interference factor, and 𝑃𝑚𝑎𝑥𝑟,𝑐 the maximum transmit power
of relay 𝑟 on each of its channel 𝑐. Hence, 𝐶𝑆𝐼 × 𝑃𝑚𝑎𝑥𝑟,𝑐 is the
maximum self-interference power experienced at the relay.

For successful SIC decoding at the relays, the signals of
devices transmitting on the same channel should be received
with different power levels. In other words, if two or more
users have chosen the same power level 𝑣𝑙 on the same subband
of a certain relay, a collision occurs, rendering their signals
non-decodable. In uplink NOMA, SIC is performed in the
decreasing order of channel gains. Therefore, when a collision
occurs at level 𝑙, the signals of devices having chosen lower
received power levels are also non-decodable. Nevertheless,
upper-level signals remain decodable as long as the number



of colliding signals at each lower level is less than or equal to
𝑀𝑙 .

In the considered system, IoT devices with periodic and
sporadic traffic are allowed to transmit only at the lowest power
level. The reason for this choice is to ensure that the signals
of the top 𝐿 − 1 levels are not lost, in the case where two
or more but less than 𝑀𝐿 + 1 devices with non-continuous
transmissions collide. This means that devices with continuous
transmission are given a higher priority than the others. Perfect
channel estimation is considered in this work. Channel gains
account for large-scale fading, i.e., path loss and shadowing. In
order to guarantee the received power level 𝑣𝑙 at the 𝑟 𝑡ℎ relay,
each device 𝑑𝑖 sets its transmit power according to:

𝑃𝑡𝑑𝑖 ,𝑙 =
𝑣𝑙

ℎ2
𝑑𝑖 ,𝑟

, (2)

where ℎ𝑑𝑖 ,𝑟 is the channel gain between user 𝑑𝑖 and relay 𝑟.

B. Uncoordinated Joint Channel and Power Allocation

In a system with uncoordinated spectrum access, the devices
aim at auto-organizing their transmissions without any external
intervention. To solve the problem of joint subband and power
allocation, a multi-player MAB framework with zero-reward
on collision is adopted [41]. Let Dactive = {Dcont ,Dspo

active ,D
per
active}

be the combined set of active IoT devices, where Dspo
active and

Dper
active are the active devices with sporadic and periodic traffic

respectively. Note that Dactive ⊂ D. The set of arms is the
set of available subband-power level pairs. Having different
traffic types and a transmit power budget 𝑃𝑚𝑎𝑥

𝑑𝑖
, each device 𝑑𝑖

builds its action space A𝑑𝑖 , accounting for the subband-power
level pairs on which it can transmit without violating its power
budget. Let A𝑑𝑖={𝑎1, 𝑎2, ... , 𝑎𝐾𝑑𝑖

}, where 𝐾𝑑𝑖 represents the
available number of arms for user 𝑑𝑖 .

When choosing an action, each device 𝑑𝑖 receives a reward
from the relay. In this work, the reward is considered equal
to the achieved rate at the relay level, given by the Shannon
formula [43]:

𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑎𝑘 = 𝐵𝑐 log2 (1 + Γ𝑑𝑖 ,𝑎𝑘 ), (3)

with 𝐵𝑐 being the channel bandwidth and Γ𝑑𝑖 ,𝑎𝑘 the achieved
SINR of device 𝑑𝑖 , given by:

Γ𝑑𝑖 ,𝑎𝑘 =
𝑣𝑙 (𝑎𝑘)∑𝐿

𝑗=𝑙+1 𝑣 𝑗 + 𝐶𝑆𝐼𝑃𝑡𝑟 + 𝜎2
. (4)

In (4), 𝑣𝑙 is the power level chosen in action 𝑎𝑘 .
∑𝐿
𝑗=𝑙+1 𝑣 𝑗

is the residual NOMA interference not canceled by SIC, and
𝑃𝑡𝑟 the transmit power of relay 𝑟 per subband at timeslot
𝑡. Hence, 𝐶𝑆𝐼𝑃𝑡𝑟 represents the instantaneous self-interference
experienced by the relay.

If two or more devices select the same subband-power level
pair, a collision occurs, causing the decoding of the involved
users’ signals to fail. Hence, the reward achieved by the

concerned users is equal to 0. Let 𝜂𝑑𝑖 represent the collision
indicator for device 𝑑𝑖 on arm 𝑎𝑘 , i.e.:

𝜂𝑑𝑖 ,𝑎𝑘 =

{
0, in case of a collision,
1, otherwise.

(5)

Hence, the reward or utility received by device 𝑑𝑖 when
selecting arm 𝑎𝑘 , 𝑈𝑑𝑖 ,𝑎𝑘 , can be expressed as:

𝑈𝑑𝑖 ,𝑎𝑘 = 𝜂𝑑𝑖 ,𝑎𝑘 × 𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑎𝑘 . (6)

Due to the absence of communication between IoT devices,
each device only observes its own list of actions and its
corresponding list of rewards. Since the rewards are unknown
beforehand at the device level, there is the need for an explo-
ration phase during which the devices learn the rewards. To
enhance system performance, the objective of this work is to
maximize the welfare of all IoT devices, given by:

𝑤 =

𝑛1∑︁
𝑖=1
𝑈𝑑𝑐𝑜𝑛𝑡

𝑖
,𝑎𝑘

+
𝑛2∑︁
𝑖=1
𝑈𝑑𝑝𝑒𝑟

𝑖
,𝑎𝑘

+
𝑛3∑︁
𝑖=1
𝑈𝑑𝑠𝑝𝑜

𝑖
,𝑎𝑘
, (7)

where each sum represents the welfare of the devices having
continuous, periodic and sporadic traffic, respectively.

C. Relay-BS Communication

As previously stated, relays are equipped with full-duplex
communication capabilities. To satisfy the quality of service
(QoS) requirements of devices when forwarding their messages
to the BS, the transmit power of each relay must be optimized.

Let 𝑋 𝑡𝑟 ,𝑐𝑜𝑛𝑡 and 𝑋 𝑡𝑟 ,𝑛𝑐𝑜𝑛𝑡 be the number of continuous and
non-continuous signals correctly decoded by relay 𝑟 at timeslot
𝑡. The minimum rate required for the relay to be able to transmit
all successfully decoded signals to the BS is equal to:

𝑅𝑎𝑡𝑒𝑟 ,𝑟𝑒𝑞 = 𝑋 𝑡𝑟 ,𝑐𝑜𝑛𝑡 × 𝑅𝑎𝑡𝑒𝑐𝑜𝑛𝑡,𝑟𝑒𝑞 + 𝑋 𝑡𝑟 ,𝑛𝑐𝑜𝑛𝑡 × 𝑅𝑎𝑡𝑒𝑛𝑐𝑜𝑛𝑡,𝑟𝑒𝑞 ,
(8)

where 𝑅𝑎𝑡𝑒𝑐𝑜𝑛𝑡,𝑟𝑒𝑞 and 𝑅𝑎𝑡𝑒𝑛𝑐𝑜𝑛𝑡,𝑟𝑒𝑞 are the required rates
for devices with continuous and non-continuous transmission,
respectively.

Each relay transmits its data over 𝐶 subbands. Moreover, as
already mentioned, we assume orthogonal channel allocation
between different relays, i.e., different relays do not share the
same subband. Thus, the rate achieved by relay 𝑟 on channel
𝑐 is given by:

𝑅𝑎𝑡𝑒𝑟 ,𝑐 = 𝐵𝑐 × log2

(
1 +

ℎ2
𝑟 ,𝐵𝑆

𝑃𝑡𝑟

𝜎2

)
, (9)

where ℎ𝑟 ,𝐵𝑆 is the channel gain between relay 𝑟 and the BS.
Assuming an equal rate repartition among the 𝐶 subbands, to
meet the rate requirement in (8), the transmit power of the relay
𝑟 on a subband 𝑐 should satisfy:

𝑃𝑡𝑟 ,𝑐 = 𝑚𝑖𝑛

{
𝜎2

ℎ2
𝑟 ,𝐵𝑆

(
2

𝑅𝑎𝑡𝑒𝑟,𝑟𝑒𝑞

𝐶×𝐵𝑐 − 1
)
, 𝑃𝑚𝑎𝑥𝑟,𝑐

}
. (10)

When the transmit power needed by the relay exceeds its
budget, an overflow scenario is expected. In case of an overflow



due to continuous traffic, the system becomes unstable. To
avoid this, a solution based on the application of a timeout
period can be considered, in which the devices having con-
tinuous traffic are invited, through the value of their received
rewards, to connect to another relay following the mechanism
described in [6]. This solution guarantees that continuous traffic
is transmitted to the BS during the first timeslot after the
timeout period. It is motivated by the sensitivity to latency of
the underlying application for continuous devices. Therefore,
the devices having continuous traffic would not suffer from
high values of AoI.

D. Sources of AoI

Let Δ1 (𝑑𝑖 , 𝑡) denote the AoI related to the first link, i.e.,
device-to-relay communication, and Δ2 (𝑑𝑖 , 𝑡) denote the AoI
related to the second link, i.e., relay-to-BS communication,
measured at timeslot 𝑡. Both Δ1 (𝑑𝑖 , 𝑡) and Δ2 (𝑑𝑖 , 𝑡) are mea-
sured at the relay level since the latter is able to identify the
timeslot of each message transmitted by users as well as the
timeslot it can retransmit the signal to the BS. The total AoI
for a device 𝑑𝑖 is equal to:

Δ(𝑑𝑖 , 𝑡) = Δ1 (𝑑𝑖 , 𝑡) + Δ2 (𝑑𝑖 , 𝑡). (11)

Δ1 (𝑑𝑖 , 𝑡) depends on the number of collisions the signal un-
dergoes before being successfully received at the relay. Hence,
optimizing the subband-power level allocation can reduce the
AoI of the first link, Δ1 (𝑑𝑖 , 𝑡), by minimizing the number of
signal collisions.

On the other hand, Δ2 (𝑑𝑖 , 𝑡) depends on the state of the
data buffer at the relay. This state represents the number of
timeslots that a packet has to wait in the buffer of the relay
before being forwarded to the BS. Considering the variable
throughput at the relay level due to the nature of the traffic,
this buffer is introduced for the cases where the capacity of
the relay-to-BS link is lower than the aggregated throughput
of the device-to-relay links. Equivalently, this corresponds to
situations where the power required to forward the received
device signals exceeds the relay power budget i.e.:

𝑃𝑡𝑟 ,𝑐 ≥ 𝑃𝑚𝑎𝑥𝑟,𝑐 . (12)

While being beneficial to avoid data loss, buffering at the relay
level increases the AoI for the devices. Eq. (10) and (12) are
now modified to include a new parameter 𝑋0,𝑟 that represents
the maximum number of received signals that a relay can
forward per timeslot to the BS without the need for buffering.
Using Shannon’s formula, parameter 𝑋0,𝑟 can be formulated
as:

𝑋0,𝑟 =
𝐵𝑐 × 𝐶

𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑟𝑒𝑞
log2

(
1 +

𝑃𝑚𝑎𝑥𝑟,𝑐 ℎ2
𝑟 ,𝐵𝑆

𝜎2

)
. (13)

𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑟𝑒𝑞 is the rate required by user 𝑑𝑖 and is either equal to
𝑅𝑎𝑡𝑒𝑐𝑜𝑛𝑡,𝑟𝑒𝑞 or 𝑅𝑎𝑡𝑒𝑛𝑐𝑜𝑛𝑡,𝑟𝑒𝑞 depending on the traffic type of
the device. Note that when the number of correctly decoded
signals at the relay, 𝑋 𝑡𝑟 , exceeds 𝑋0,𝑟 , Δ2 (𝑑𝑖 , 𝑡) increases,
leading to an increase of the total AoI Δ(𝑑𝑖 , 𝑡).

E. AoI Computation

We consider that the IoT devices submit new messages at
timeslots 𝑡1, 𝑡2, . . . and that these messages are successfully
received at the relay at timeslots 𝑡′1, 𝑡

′
2, . . ., respectively. The

instantaneous AoI for device 𝑑𝑖 Δ1 (𝑑𝑖 , 𝑡) is given by:

Δ1 (𝑑𝑖 , 𝑡) = 𝑡′𝑗 − 𝑡 𝑗 , 𝑗 = 1, 2, . . . (14)

As for Δ2 (𝑑𝑖 , 𝑡), it is given by:

Δ2 (𝑑𝑖 , 𝑡) = 𝑡′′𝑗 − 𝑡′𝑗 , (15)

where 𝑡′′
𝑗

is the timeslot where the signal is correctly received
at the BS. The average AoI is given by:

Δ𝑑𝑖 =
1
𝑇

∫ 𝑇

0
Δ(𝑑𝑖 , 𝑡) 𝑑𝑡, (16)

where 𝑇 is the time horizon of the allocation.

III. PROBLEM FORMULATION

The main purpose of this study is to minimize the AoI of IoT
devices and relays while satisfying their rate requirements and
minimizing their transmit power. The optimization problem is
formulated as:

max
𝑃𝑡
𝑑𝑖
,𝑃𝑡

𝑟,𝑐 ,𝑧𝑑𝑖 ,𝑐

−
(
𝑛2∑︁
𝑖=1

Δ𝑑𝑝𝑒𝑟

𝑖
+
𝑛3∑︁
𝑖=1

Δ𝑑𝑠𝑝𝑜
𝑖

)
, (17)

such that: ∑︁
𝑐

𝑧𝑑𝑖 ,𝑐𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑐 ≥ 𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑟𝑒𝑞 ,∀𝑑𝑖 ∈ D (17a)

𝑛1∑︁
𝑖=1

∑︁
𝑐

𝑧𝑑𝑐𝑜𝑛𝑡
𝑖

,𝑐𝑅𝑎𝑡𝑒𝑑𝑐𝑜𝑛𝑡
𝑖

,𝑐 ≤
∑︁
𝑐

𝑅𝑎𝑡𝑒𝑟 ,𝑐, (17b)∑︁
𝑐

𝑧𝑑𝑖 ,𝑐𝑃
𝑡
𝑑𝑖 ,𝑙

≤ 𝑃𝑚𝑎𝑥𝑑𝑖
, (17c)

𝑃𝑡𝑟 ,𝑐 ≤ 𝑃𝑚𝑎𝑥𝑟,𝑐 . (17d)

In (17), 𝑧𝑑𝑖 ,𝑐 = 1 if device 𝑑𝑖 transmits using subband 𝑐, and
0 otherwise. Δ𝑑𝑝𝑒𝑟

𝑖
and Δ𝑑𝑠𝑝𝑜

𝑖
represent the average AoI for

periodic and sporadic traffic devices respectively. (17a) is the
rate requirement constraint per IoT device, whereas (17b) is the
rate constraint for avoiding overflow scenarios while serving
continuous traffic devices. (17c) and (17d) are the transmit
power constraints for devices and relays, respectively.

Problem (17) consists in minimizing the AoI by optimizing
the power and subband allocations. To solve this problem, a
multi-step algorithm is proposed. For each device, it starts by
assigning a subband-power level pair while satisfying their rate
requirements. Then, it checks for overloaded relays where the
non-continuous traffic devices suffer from AoI and proceeds to
address the latency issue.



IV. SUBBAND POWER-LEVEL ASSIGNMENT

We first propose a solution for the channel-power level
assignment problem. As previously mentioned, IoT devices
are energy-limited and need to minimize their transmit power.
To satisfy this goal, the UCB algorithm is used to find the
allocation of subband-power level pairs while accounting for
the power budget of communicating devices.

The objective is to satisfy the rate requirement of each
device while minimizing its transmit power. Hence, two system
parameters are considered: the rate achieved by device 𝑑𝑖 ,
denoted by 𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑎𝑘 , and its transmit power 𝑃𝑡

𝑑𝑖 ,𝑙
. As shown

in (2), a device 𝑑𝑖 can minimize its transmit power 𝑃𝑡
𝑑𝑖 ,𝑙

by
communicating on subbands with higher channel gains. Since
each device is power-limited, it is not able to transmit at power
levels exceeding its power budget. Moreover, it may happen
that one subband-power level pair may be optimal for multiple
users, resulting in a collision if all those devices transmit using
that level. Therefore, the assignment of arms, i.e., of subband-
power level pairs, to devices should be designed to maximize
system welfare 𝑤. In the following, this assignment is discussed
based on the traffic type of the devices.

For devices with continuous traffic, the UCB algorithm of [6]
is used. This algorithm is divided into two phases: exploration
and exploitation. In the exploration phase, the devices learn the
arms and their rewards before the exploitation phase where they
select the best arm. In our situation, each IoT device is allowed
to choose its arm in a way to achieve a trade-off between
minimizing its transmit power and maximizing its achieved
rate. In fact, instead of choosing only the arm that maximizes
the achieved rate, the user takes also into consideration the
used transmit power. For this purpose, weight 𝛽 is introduced
to influence the decision function with the achieved rates and
the power budgets. The impact of weight value 𝛽 is discussed
in Section VII.

For devices with sporadic traffic, a different approach is
considered. Depending on its access probability, a device may
not be active for all available timeslots. Hence, we define 𝑇𝑜𝑛
as the total number of timeslots where a device is transmitting.
Note that this type of device may successfully transmit on an
arm at a timeslot 𝑡𝑜𝑛 and fail to do so at a timeslot 𝑡′𝑜𝑛 using
the same arm. Note that 𝑡𝑜𝑛, 𝑡′𝑜𝑛 ∈ {1, . . . , 𝑇𝑜𝑛}. In addition, a
weight function 𝑓 (𝑊, 𝑡𝑜𝑛) of window size 𝑊 representing the
weight of the last 𝑊 rewards at the device level is introduced.
We define 𝑓 (𝑊, 𝑡𝑜𝑛) as an increasing linear function based on
the last 𝑊 active timeslots [𝑡𝑜𝑛 −𝑊, 𝑡𝑜𝑛], 𝑡𝑜𝑛 ∈ {1, . . . , 𝑇𝑜𝑛}
such that:

𝑓 (𝑊, 𝑡𝑜𝑛) =


0, for 𝜏 = 𝑡𝑜𝑛 −𝑊 ,
𝜏
𝑊
, for 𝑡𝑜𝑛 −𝑊 < 𝜏 < 𝑡𝑜𝑛,

1, for 𝜏 = 𝑡𝑜𝑛.
(18)

The device with sporadic traffic calculates the achieved
rewards in the last 𝑊 active timeslots by multiplying the re-
wards with 𝑓 (𝑊, 𝑡𝑜𝑛). Consequently, the choice of the sporadic
devices only depends on the achieved rewards in the last 𝑊
active allocation choices. For such devices, there is always a

need to minimize the transmit power while meeting the rate
requirements. Therefore, sporadic IoT devices also choose the
arms that maximize their decision function:

𝑎∗𝑖 = argmax
𝑎𝑘 ∈A𝑑𝑖

(
(1 − 𝛽)

𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑎𝑘

𝑅𝑎𝑡𝑒𝑚𝑎𝑥
− 𝛽

𝑃𝑡
𝐷𝑖 ,𝑘

𝑃𝑚𝑎𝑥
𝐷𝑖

)
, (19)

where 𝑅𝑎𝑡𝑒𝑚𝑎𝑥 = 𝐵𝑐 log2 (1 + 𝑣𝐿
𝜎2 ) is the maximum rate

achievable by a device with sporadic traffic. Inspired by [6], the
proposed technique to solve the subband and power allocation
problem for sporadic devices is summarized in Algorithm 1
where 𝑛𝑑𝑖 (𝑎𝑘 , 𝑡𝑜𝑛) is the number of times arm 𝑎𝑘 is played by
device 𝑑𝑖 during the 𝑡𝑜𝑛 active timeslots. Note that in case of

Algorithm 1: UCB subband-power level assignment for
devices with sporadic traffic

Initialization: Each device 𝑑𝑠𝑝𝑜
𝑖

generates its action
profile set A𝑑𝑖 depending on its power budget and
channel gains. These devices only transmit on the
lowest power level of each subband.

for t=1:T do
for i=1:𝑛3 do

// If 𝑡 is an active timeslot:
𝑡𝑜𝑛 = 𝑡𝑜𝑛 + 1
// Utility function sent by the relay:
𝑈𝑑𝑖 ,𝑎𝑖∗ (𝑡) = 𝜂𝑑𝑖 ,𝑎𝑘 × 𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑎𝑘
// Best arm identification:
𝑎∗
𝑖
=

argmax
𝑎𝑘 ∈A𝑑𝑖

©­«(1 − 𝛽)
𝑄 (𝑑𝑖 ,𝑎𝑘 )+

√︂
2 log(𝑡𝑜𝑛 )

𝑛𝑑𝑖
(𝑎𝑘 ,𝑡𝑜𝑛)

𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑟𝑒𝑞
− 𝛽

𝑃𝑡
𝑑𝑖 ,𝑘

𝑃𝑚𝑎𝑥
𝑑𝑖

ª®¬
// Parameters update:
𝑠𝑖 (𝑎∗𝑖 , 𝑡𝑜𝑛 −𝑊 : 𝑡𝑜𝑛) = 𝑈𝑑𝑖 ,𝑎∗𝑖 (𝑡𝑜𝑛 −𝑊 : 𝑡𝑜𝑛)
𝑛𝑖 (𝑎∗𝑖 , 𝑡𝑜𝑛 + 1) = 𝑛𝑖 (𝑎∗𝑖 , 𝑡𝑜𝑛) + 1
𝑄(𝑖, 𝑎∗

𝑖
) = 𝑓 (𝑊, 𝑡𝑜𝑛). ∗ 𝑠𝑖 (𝑎∗𝑖 , 𝑡𝑜𝑛 −𝑊 : 𝑡𝑜𝑛)

end
end

collision between two sporadic devices, they retransmit their
signals in the next timeslot.

For each IoT device 𝑑𝑖 with periodic transmission, the solu-
tion for devices having continuous traffic is applied in its active
period 𝑇𝑜𝑛

𝑑
𝑝𝑒𝑟

𝑖

. However, since sporadic and periodic devices
share the same power levels on the subbands, collisions may
occur. In this case, the IoT device with periodic transmission
goes into a pseudo-sporadic mode with an increasing access
probability value in order to prioritize the sporadic traffic device
competing for the same arm. In other words, the corresponding
periodic traffic device retransmits its message at a later stage
in order to free the arm it occupies. When the pseudo-sporadic
device retransmits successfully its signal, it returns to the initial
state, i.e., to the periodic mode.

The complexity of this assignment technique is given by
the complexity of the UCB algorithm. Hence, it amounts to
𝑂 (𝑙𝑜𝑔(𝑁)), 𝑁 being the number of devices.



V. PROPOSED SOLUTION FOR AOI MINIMIZATION

Being in an uncoordinated spectrum access setting, the
problem of AoI minimization is solved using the MAB frame-
work with zero-reward for unsent messages. In fact, when the
messages from the IoT devices successfully reach the relay with
queuing capabilities, the relay transmits all the traffic from the
continuous devices and schedules the messages of the sporadic
ones with respect to the following priority:

𝑃𝑟 (𝑑𝑖 , 𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑟𝑟 (𝑑𝑖)
𝑛𝑢𝑚𝑏𝑒𝑟𝑠𝑒𝑛𝑡 (𝑑𝑖)

× 𝑡

𝑡 − Δ1 (𝑑𝑖 , 𝑡)
. (20)

In (20), 𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑟𝑟 and 𝑛𝑢𝑚𝑏𝑒𝑟𝑠𝑒𝑛𝑡 stand for the number of
messages arriving at the relay and the number of messages sent
by the relay for a given device 𝑑𝑖 , respectively. This priority
metric ensures that the less the sporadic device is served by the
relay, the higher its priority. Eq. (20) also avoids the dominance
of the first type of AoI Δ1 (𝑑𝑖). Indeed, in the case where
Δ1 (𝑑𝑖 , 𝑡) is large, 𝑡−Δ1 (𝑑𝑖 , 𝑡) is small, hence the sporadic device
𝑑𝑖 is prioritized.

In order to minimize the overall AoI, we consider a new
reward 𝑈𝑑𝑖 ,𝑎𝑘+ received by all the devices from the relay. It
accounts not only for the rate achieved by the devices but also
for the AoI induced by link 2. 𝑈𝑑𝑖 ,𝑎𝑘+ is given by:

𝑈𝑑𝑖 ,𝑎𝑖+ =
𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑎𝑘

𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑚𝑎𝑥
× 1
Δ2 (𝑑𝑖 , 𝑡)

. (21)

In (21), 𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑚𝑎𝑥 stands for the maximum rate a device with
non-continuous traffic can achieve. It is given by 𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑚𝑎𝑥 =
𝐵𝑐 log2

(
1 + 𝑣𝐿

𝜎2

)
and is taken equal to the rate required by the

device, 𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑟𝑒𝑞 . Thus, the first fraction is a binary function
equal to either 0 in case of collision or 1 otherwise. Hence the
reward function can be expressed as:

𝑈𝑑𝑖 ,𝑎𝑖+ = 𝜂𝑑𝑖 ,𝑎𝑘 ×
1

Δ2 (𝑑𝑖 , 𝑡)
. (22)

In case of a collision, a zero-reward is maintained. As a result,
the first type of AoI Δ1 (𝑑𝑖 , 𝑡) is the dominant part in the AoI
expression, which can be directly determined by the device
itself. Moreover, the utility function is inversely proportional
to the second AoI type. Therefore, if the information reaches
the relay successfully but its forwarding to the BS is delayed,
the utility function of the arms belonging to the given relay
becomes smaller. In that case, the device 𝑑𝑖 is encouraged to a
new exploration phase where it finds a temporary gateway to
transmit its messages to the BS. The same approach is applied
for devices with periodic traffic. The technique is summarized
in Algorithm 2.

The complexity of the proposed technique is also dominated
by the complexity of the UCB algorithm, i.e., in the order of
𝑂 (𝑙𝑜𝑔(𝑁)). Note that in case of overflow due to continuous
traffic, it is recommended to use the timeout period method
proposed in [6]. By doing so, the continuous traffic is guaran-
teed to be forwarded to the BS in the same timeslot.

Further improvements in AoI can be achieved by predicting
the corresponding impact of the number of active devices with
sporadic traffic in upcoming timeslots. In fact, in Algorithm 2,

Algorithm 2: UCB AoI minimization for devices with
non-continuous traffic
Initialization: Run Algorithm 1 to adapt for every

device its channel-power level pair while minimizing
its transmit power for T timeslots.

for t=T:2T do
for i=1:𝑛2 + 𝑛3 do

// If 𝑡 is an active timeslot:
𝑡𝑜𝑛 = 𝑡𝑜𝑛 + 1
// Utility function sent by the relay:
𝑈𝑑𝑖 ,𝑎𝑖+ = 𝜂𝑑𝑖 ,𝑎𝑘 × 1

Δ2 (𝑑𝑖 ,𝑡 )
// Best arm identification:
𝑎+
𝑖
=

argmax
𝑎𝑘 ∈A𝑑𝑖

©­«(1 − 𝛽)
𝑄 (𝑑𝑖 ,𝑎+𝑘 )+

√︂
2 log(𝑡 )

𝑛𝑑𝑖
(𝑎𝑘 ,𝑡 )

𝑅𝑎𝑡𝑒𝑑𝑖 ,𝑟𝑒𝑞
− 𝛽

𝑃𝑡
𝑑𝑖 ,𝑘

𝑃𝑚𝑎𝑥
𝑑𝑖

ª®¬
// Parameters update:
𝑠𝑖 (𝑎+𝑖 , 𝑡𝑜𝑛 −𝑊 : 𝑡𝑜𝑛) = 𝑈𝑑𝑖 ,𝑎+𝑖 (𝑡𝑜𝑛 −𝑊 : 𝑡𝑜𝑛)
𝑛𝑖 (𝑎+𝑖 , 𝑡𝑜𝑛 + 1) = 𝑛𝑖 (𝑎+𝑖 , 𝑡𝑜𝑛) + 1
𝑄(𝑖, 𝑎+

𝑖
) = 𝑓 (𝑊, 𝑡𝑜𝑛). ∗ 𝑠𝑖 (𝑎+𝑖 , 𝑡𝑜𝑛 −𝑊 : 𝑡𝑜𝑛)

end
end

the relay replies with the current AoI Δ2 (𝑑𝑖 , 𝑡) depending on the
current state of its queue whatever the value of the next state. In
other words, a congested relay may be able to clear its queue in
the next timeslot if the number of received messages allows for
it. Consequently, it will be able to accept new messages from
the IoT devices instead of encouraging them to go through
another relay by replying with low rewards. In such a case, the
predictive AoI Δ2 (𝑑𝑖 , 𝑡+1)∗ is low, but the current one Δ2 (𝑑𝑖 , 𝑡)
is high.

The predicted number of active sporadic IoT devices follows
a simple probabilistic calculation. Let 𝑌 be a discrete random
variable representing the number of potential active sporadic
devices at timeslot 𝑡 and taking values in {0, ..., 𝑛𝑐3} with 𝑛𝑐3
being the non-collided devices with sporadic traffic at timeslot
𝑡 −1. Note that we do not consider the collided sporadic traffic
devices at 𝑡 − 1 since they surely retransmit their signals at
timeslot 𝑡. The probability of having 𝑘 active sporadic devices
among the uncertain ones is given by:

𝑝𝑟 (𝑌 = 𝑘) =
(
1 − 𝑝𝑎

𝑑
𝑠𝑝𝑜

𝑖

)𝑛𝑐3 −𝑘 × (
𝑝𝑎
𝑑
𝑠𝑝𝑜

𝑖

) 𝑘
×

(
𝑛𝑐3
𝑘

)
. (23)

Let:

𝑘∗ = argmax
𝑘

𝑝𝑟 (𝑌 = 𝑘) (24)

be the number of messages having the largest probability.
Hence, the number of estimated sporadic messages will be
equal to 𝑘∗ + 𝑛3 − 𝑛𝑐3 . By relying on the estimated number of
messages, the relay performs the scheduling of the next timeslot



and estimates the corresponding AoI. Then, it replies with the
estimated AoI Δ∗

2 (𝑑𝑖 , 𝑡 + 1). The reward is then expressed as:

𝑈𝑑𝑖 ,𝑎𝑖+ = 𝜂𝑑𝑖 ,𝑎𝑘 ×
1

Δ∗
2 (𝑑𝑖 , 𝑡 + 1) . (25)

The approach then follows the algorithm described earlier by
just modifying the utility function.

VI. RESOURCE ALLOCATION USING COORDINATED
MATCHING

This section describes the coordinated allocation alternative
based on the matching framework [13] introduced to bench-
mark the proposed uncoordinated MAB-based method.

Starting from a fully coordinated system, the BS is assumed
to have full knowledge of the power budget and user traffic
types, as well as the power budget, the buffer size and the
current state of the queues at the relays.

The subband allocation problem is modeled as a one-to-
one matching game. In this model, the set of arms and the
set of devices form two independent sets depending on their
preferences. In this scenario, each arm can be allocated with
just one device and each device can transmit on just one
arm per timeslot. Hence, each device sorts the channels in
a descending order with respect to their gains. By doing so,
when all devices are matched with different arms, the rate
requirements are satisfied while tending to consume the least
amount of transmit power possible. Also, since only large-scale
fading is considered in this paper, the channel preference of
a device is equivalent to a relay preference (i.e. choosing a
channel results in choosing a particular relay). Consider the
preference relation of device 𝑑𝑖 to be given by:

𝑓1 = ℎ2
𝑑𝑖 ,𝑟

(𝑟, 𝑑𝑖). (26)

The matching preference of the arms depends on the queue
state of all the relays, the channel conditions and the trans-
mission power and activity of the devices. Thus, the arms
preference function is modeled as follows:

𝑓2 =

ℎ𝑟,𝐵𝑆

max𝑟 ℎ𝑟,𝐵𝑆

𝑄𝑢𝑒𝑢𝑒𝑟 (𝑡 )
𝐵𝑢𝑟

× 𝜓(𝑑𝑖)
. (27)

In (27), 𝑄𝑢𝑒𝑢𝑒𝑟 (𝑡) stands for the number of packets currently
in the queue of the relay 𝑟, 𝐵𝑢𝑟 is its buffer size and 𝜓(𝑑𝑖) is
a function defined according to the traffic type of each user:

𝜓(𝑑𝑖) =
{

1 if the traffic is continuous or periodic,
1 − 𝑝𝑎

𝑑
𝑠𝑝𝑜

𝑖

otherwise.

(28)

The arms preference function is designed to be an inversely
proportional function to the occupancy of the relay queue. In
other words, a congested relay is less likely to admit devices.
Also, this preference relation ensures that a higher access
probability of a non-continuous traffic device results in a lower
𝜓(𝑑𝑖). Hence, the sporadic traffic devices having high access
probability are mostly matched with non-congested relays. The
problem is then solved using the Gale-Shapley algorithm [14]
at the BS level.

VII. SIMULATION RESULTS

Extensive simulations were performed to validate the perfor-
mance of the proposed algorithms. We first consider an uplink
communication system with one BS at the cell center, one relay
and 𝑁 = 60 IoT devices divided among 𝑛1 = 36 continuous
traffic devices, 𝑛2 = 12 periodic traffic devices and 𝑛3 = 12
sporadic traffic devices with an access probability equal to 0.3.
The periodic traffic devices are further divided into 4 groups
of 3 devices each, transmitting in subsequent periods so that
they do not interfere with each other. The cell radius is equal to
250 m. The number of available subbands and power levels are
given respectively by 𝐶 = 9 and 𝐿 = 5. Hence, the maximum
number of available resources is given by 𝐶 × 𝐿 = 45. IoT
devices are distributed around the relay according to a Poisson
distribution [44]. Signals undergo a distance-dependent path
loss with a decay factor of 3.76, and a zero-mean log-normal
shadowing with an 8 dB variance. The noise power spectral
density is equal to 𝑁0 = 4 × 10−21 W/Hz. The system is
then evaluated with two relays. Other system parameters are
summarized in Table I.

Table I: Design parameters values

𝑅𝑎𝑡𝑒𝑐𝑜𝑛𝑡,𝑟𝑒𝑞 0.75 Mbps 𝑃𝑚𝑎𝑥
𝐷𝑖

23 dBm

𝑅𝑎𝑡𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐,𝑟𝑒𝑞 0.3 Mbps 𝑅𝑎𝑡𝑒𝑠𝑝𝑜𝑟𝑎𝑑𝑖𝑐,𝑟𝑒𝑞 0.3 Mbps

𝐶 × 𝑃𝑚𝑎𝑥
𝑟 5W 𝐶𝑆𝐼 -120 dB

𝐵𝑐 156 kHz 𝑊 10

𝑝𝑎
𝑑
𝑠𝑝𝑜
𝑖

0.3 𝛽 0.5

The performance of the proposed algorithms with and with-
out AoI estimation, as described in Algorithm 2, is evaluated for
𝑇 = 1, 000 timeslots. Moreover, comparisons are made against
two uncoordinated methods:

• the random access NOMA method (called RA-NOMA
in the figure captions), where devices choose their arms
randomly,

• an allocation technique where the devices solely allocate
their arms using Algorithm 1 without taking AoI into
consideration (Algorithm 1 - no AoI),

and against the benchmark coordinated method based on the
matching theory. The latter applies a centralized setting which
assumes that the BS has full knowledge of the channel gains
between devices and relays, and those between relays and
BS, as well as the queue status of the relays, and performs
resource allocation accordingly. This method is referred to as
“Coordinated MT”.

A. Performance of the Arm Assignment Technique

The assignment of arms is evaluated in Figure 2, where the
instantaneous successful transmission percentage is plotted as
a function of time. Figure 2 shows that the proposed UCB
technique based on Algorithm 1 reaches convergence with
100% satisfaction, hence the exploitation phase, within 80
timeslots for all IoT devices. During the first 80 timeslots,
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Figure 2: Instantaneous successful transmission percentage as
a function of time.
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Figure 3: Average transmit power for a varying requested rate.

the devices explore the different arms to learn their rewards.
Then, each device selects the arm that maximizes its decision
function. Since the matching technique is fully coordinated by
the BS, convergence to the full satisfaction state is reached
within the very first timeslots. However, RA-NOMA cannot
reach a successful rate better than 40% with an average of
28%.

The average transmission power per device as a function
of the requested rate is evaluated in Figure 3. By varying
weight 𝛽, we observe that 𝛽 = 0.5 is the best choice for
minimizing the power consumption. Moreover, for the same
average transmit power, the proposed UCB-based method with
𝛽 = 0.5 is within 0.2 Mbps from the coordinated solution.
In Figure 4, we evaluate the method proposed to estimate the
number of active devices in the next timeslot. We observe that
the proposed probabilistic approach provides estimates close to
the actual numbers of active devices, leading to a slightly better
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Figure 4: Estimation of active IoT devices.
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performance when estimating the AoI Δ2 (𝑑𝑖 , 𝑡) for a device 𝑑𝑖 ,
as it will be shown in the subsequent results in Figures 5, 6, 7
and 8.

B. Performance Assessment of the Proposed Solution

We consider now a system having two relays and we assume
that one of the relays is congested and cannot transmit all the
signals of the sporadic devices with the continuous ones to
the BS. In Figure 5, we show that application of Algorithm 1
only leads to a large AoI value, especially due to the increase
in Δ2 (𝑑𝑖 , 𝑡), since it does not account for Δ2 (𝑑𝑖 , 𝑡). Thus, the
devices always transmit to the same relay without taking into
account the state and occupation of the relay. Consequently,
they do not consider switching to another less congested
relay. By using the proposed UCB-based technique for AoI
minimization, we see a considerable decrease in the achieved
AoI. Moreover, predicting the future number of active devices
brings an additional non-negligible benefit. The choice of the
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adopted method depends on the complexity the relay can afford.
Also note that the performance of both UCB-based techniques
is close to the centralized technique based on matching theory.

In Figures 6 and 7, we show the average AoI while varying
the total number of sporadic players and the access probability,
respectively. The different variants of the proposed approach
significantly outperform basic random access approaches.

In Figure 8, the average peak AoI is plotted while keeping
the product of access probability and total number of sporadic
devices constant and equal to 6. It is observed that the proposed
UCB algorithm presents an inflection point around an access
probability of 0.2 after which it becomes more efficient in
decreasing the AoI.
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Figure 8: Average AoI in the particular case where
𝑝𝑎
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𝑖

× 𝑛3 = 6.

VIII. CONCLUSION

In this paper, the uncoordinated joint channel and power al-
location problem was studied in a mixed-traffic NOMA uplink
system, with the aim of minimizing the AoI. The problem was
formulated using the MAB framework with zero-reward on col-
lisions. An algorithm based on the UCB was proposed to assign
devices with different traffic types to the available subband-
power level pairs, and to minimize the AoI of non-prioritized
users, i.e., users with a non-continuous traffic. The efficiency of
this technique in terms AoI minimization and device transmit
power, as well as achieved rates maximization, was shown to
outperform competing techniques and to approach closely a
centralized approach with a perfect knowledge of system and
channel state parameters. Future work will involve extending
this study to better estimate the number of active devices using
neural networks. Also, the scalability of the method needs to
be further explored to cover a larger number of devices while
meeting their QoS requirements and power constraints. The
robustness of the proposed framework to imperfect or partial
channel state information is another important study item to be
investigated.
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