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Approximating a continuously stratified hydrostatic
system by the multi-layer shallow water system

Mahieddine Adim ∗

July 21, 2023

Abstract

In this article we consider the multi-layer shallow water system for the propagation of
gravity waves in density-stratified flows, with additional terms introduced by the oceanog-
raphers Gent and McWilliams [14] in order to take into account large-scale isopycnal
diffusivity induced by small-scale unresolved eddies. We establish a bridge between the
multi-layer shallow water system and the corresponding system for continuously stratified
flows, that is the incompressible Euler equations with eddy-induced diffusivity under the
hydrostatic approximation.

Specifically we prove that, under an assumption of stable stratification, sufficiently
regular solutions to the incompressible Euler equations can be approximated by solutions
to multi-layer shallow water systems as the number of layers, N , increases. Moreover, we
provide a convergence rate of order 1/N2.

A key ingredient in the proof is a stability estimate for the multi-layer system which re-
lies on suitable energy estimates mimicking the ones recently established by Bianchini and
Duchêne [8] on the continuously stratified system. This requires to compile a dictionary
that translates continuous operations (differentiation, integration, etc.) into corresponding
discrete operations.

1 Introduction
Equations at stake This work is concerned with the multi-layer shallow water system

∂tHi + ∂x((H i +Hi)(U i + Ui)) = κ∂2xHi

∂tUi +
(
U i + Ui − κ ∂xHi

Hi+Hi

)
∂xUi + g

N∑
j=1

1
N

min(ρi,ρj)

ρi
∂xHj = 0,

∀i ∈ {1, · · · , N} (1.1)

as an approximation to the continuously stratified system{
∂th+ ∂x((h+ h)(u+ u)) = κ∂2xh,

∂tu+
(
u+ u− κ ∂xh

h+h

)
∂xu+

g
ϱ
∂xψ = 0,

(1.2)

where ∂xψ(t, x, ϱ) = ρsurf
ρbott∫
ρsurf

∂xh(t, x, ϱ
′)dϱ′ +

ϱ∫
ρsurf

ρbott∫
ϱ′

∂xh(t, x, ϱ
′′)dϱ′′dϱ′.

When κ = 0, system (1.2) is a reformulation of the incompressible Euler equation with
hydrostatic approximation using isopycnal coordinates. Such reformulation is possible when
the fluid is stratified, by which we mean that sheets of equal densities realize a foliation of
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the fluid domain; see e.g. [15, 8]. When the stratification is stable, that is the density is
increasing with depth for all horizontal space locations x ∈ R, the reformulation with isopycnal
coordinates makes use of the inverse of the density function z 7→ ρ(·, z), which we denote
ϱ 7→ η(·, ϱ) for ϱ ∈ (ρsurf , ρbott) where ρsurf is the (constant) density at the free surface and
ρbott is the (constant) density at the rigid flat bottom. Since the graph of η(·, ϱ) represents in
Eulerian coordinates the isopycnal sheet of density ϱ, the function defined as h+h := −∂ϱη is the
infinitesimal depth of this isopycnal sheet. Then, u+ u is the horizontal velocity component of
fluid particles at the isopycnal sheet. We decompose the depth and horizontal velocities as h+h
and u+ u where (h, u) represent the background shear flow and are given functions depending
only on the density variable ϱ ∈ (ρsurf , ρbott), and (h, u) are the unknowns representing the
deviations from the equilibrium and depending on time t, horizontal space x ∈ R, and density
variable ϱ ∈ (ρsurf , ρbott). Finally, g is the constant gravity acceleration and ψ is the so-called
Montgomery potential. It is responsible for the interaction between isopycnal sheets.

Still with κ = 0, the system (1.1) corresponds to a situation of N layers of immiscible
fluids with constant densities ρi, i ∈ {1, · · · , N}. Applying the hydrostatic approximation and
columnar assumption, we arrive (see e.g. [23, 4]) at the multi-layer shallow water system (1.1)
where H i + Hi represents the depth of the ith layer (H i being the depth at rest and Hi the
deviation) and U i + Ui being the layer-averaged horizontal velocity (U i being the background
velocity and Ui the deviation).

In (1.1) (respectively (1.2)), the terms proportional to κ have been introduced by Gent
and McWilliams [14] so as to represent the large-scale contribution of unresolved eddies. They
appear as additional effective velocities U⋆

i := −κ ∂xHi

Hi+Hi
(respectively u⋆ := −κ ∂xh

h+h
) and act as

diffusivity contributions in the mass conservation equations. Interestingly, similar terms have
been introduced in the work of Duran, Vila, and Baraille [13] so as to control the discrete energy
of a semi-implicit numerical scheme for the multilayer system (1.1). From the mathematical
viewpoint, as discussed below, the regularizing effect of diffusivity contributions is essential to
our analysis as it provides appropriate stability estimates, and we shall always assume κ > 0.

Stability aspects In the situation κ = 0, system (1.1) is a system of conservation equations
and the well-posedness theory of the initial-value problem (and more generally stability prop-
erties) relies on hyperbolicity conditions; see [7]. Yet as soon as N ≥ 2, explicit formula for
the hyperbolic domain of the system become out of reach [28, 5, 33]. In [12, 26], the authors
provide sufficient conditions for strong hyperbolicity when the fluid is stably stratified (that
is ρ1 < ρ2 < · · · < ρN) but these conditions are obtained using perturbative arguments with
respect to the situation without shear velocities and degenerate as N → ∞ to{

(H i +Hi, U i + Ui) ∈ R2N : H i +Hi > 0, U1 + U1 = U2 + U2 = · · · = UN + UN

}
,

preventing any study at the nonlinear level or including shear velocities. We let the reader refer
to the interesting discussion in [29, §5] concerning stability results for the multi-layer systems
when increasing the number of layers, in relation with stability results for the continuously
stratified system. It is recalled therein the celebrated stability criterion of Miles [25] and
Howard [16], preventing normal mode instability of continuously stratified shear flows if the
local Richardson number is everywhere greater than 1/4. Its is also clarified that this notion
of stability (as well as other results, obtained by Holm and Long [15] and Arbanel et al. [1]) is
too weak to imply the control of deviations from equilibria in particular at the nonlinear level.

Consistently, the well-posedness of the initial-value problem in finite-regularity spaces for
the continuously stratified system (1.2) in the absence of diffusivity (κ = 0) is an open problem.
We let the reader refer to the work of Kukavica et al. [21] for the existence and uniqueness of
a solution in spaces of analytical functions (in the rigid-lid setting), and to Cao, Li & Titi [9]

2



among many other works (see [24] for a recent account) for the situation with horizontal vis-
cosity and diffusivity contributions. While the aforementioned works deal with the hydrostatic
Euler equations written with Eulerian coordinates and do not rely on the stable stratification
assumption, the work of Bianchini and Duchêne [8] is closer to our setting as it specifically deals
with the system in isopycnal coordinates with the additional terms of Gent and McWillams,
that is (1.2). They show that sufficiently regular initial data satisfying the non-cavitation as-
sumption (h+h)|t=0 ≥ h∗ > 0 (which in fact represents a stable stratification assumption) gives
rise to a unique solution on a time interval [0, T ] with T−1 ≲ 1 + κ−1(|u′|2L2((ρsurf ,ρbott))

+M2
0 )

where M0 is the size of the initial deviations from the equilibrium.

Main results Our first main result is the analogous conclusion for the multi-layer system,
namely that under natural hypotheses and in particular the stable stratification assumption
(in fact we assume for simplicity that densities are equidistributed, i.e. ρi+1 − ρi =

ρbott−ρsurf
N

)
and the non-cavitation assumption (H i + Hi)|t=0 ≥ h∗ > 0, the solutions to (1.1) are unique
and exist on a time interval analogous to the one of the continuously stratified system, which
in particular is uniform with respect to N .

Our second main result states that for any sufficiently regular solution to the continuously
stratified system (1.2) satisfying the non-cavitation assumption and appropriate bounds, the
solutions to the multi-layer systems (1.1) with suitably chosen densities ρi, reference depths
H i, background velocities U i and initial deviation (Hi, Ui)|t=0 are at a distance O(1/N2) to the
continuously stratified solution.

In order to achieve these goals, we rely mostly on two ingredients:

1. a consistency result, stating that sufficiently regular solutions to the continuously stratified
system may be projected into N -dimensional valued functions satisfying the multi-layer
shallow water systems up to a remainder term of size O(1/N2);

2. a suitable stability estimate on the linearized multi-layer shallow water systems, which is
uniform with respect to N .

The consistency result amounts to controlling the difference between the N -dimensional pro-
jection of the contribution of the Montgomery potential, 1

ϱ
∂xψ in (1.2), and the corresponding

contribution in (1.1) when (Hi)i∈{1,··· ,N} is the N -dimensional projection of h. The O(1/N2)
estimate is obtained by exploiting Taylor expansions at suitable values of densities ρi in the
spirit of the midpoint rule in numerical quadratures.

The stability estimate on (1.1) relies on the energy method, for a carefully constructed
energy functional. In order to obtain suitable bounds on the correct time scale, we make
use of a partial symmetric structure of the hyperbolic system (when κ = 0) and rely on the
regularization effect of diffusivity only when necessary. This partial symmetric structure and
the construction of the associated energy functional relies on a decomposition of the linear
operator

ΓN : (Hi)i∈{1,··· ,N} 7→
( N∑

j=1

1

N

min(ρi,ρj)

ρi

Hj

)
i∈{1,··· ,N}

which echoes directly an analogous decomposition of continuous operator

M : h 7→ 1

ϱ

ρsurf ρbott∫
ρsurf

h(ϱ′)dϱ′ +

ϱ∫
ρsurf

ρbott∫
ϱ′

h(ϱ′′)dϱ′′dϱ′
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and which is a key ingredient in the study of Bianchini and Duchêne. More generally, our
energy estimates mirrors the ones in [8] after introducing a dictionnary between continuous
operators and analogous discrete operators, with several adaptations to fit our framework.

Related works To the best of our knowledge, this is the first time that the convergence
between solutions to multi-layer systems and continuously stratified equations is rigorously
proved (while formal connections are discussed for instance in the pioneering works of Ben-
ton [6], Su [30], Killworth [20]), with the notable exception of the work of Chen and Walsh [10].
In the latter work, the authors consider the framework of periodic traveling waves without the
hydrostatic approximation (and without diffusivity contributions). They prove that for suffi-
ciently small periodic traveling wave solutions to the continuously stratified equations satisfying
natural assumptions (in particular that the stratification is stable, sufficient regularity of the
streamline density, and the absence of stagnation points), there exist corresponding traveling
wave solutions associated with any piecewise smooth streamline density function (hence in
particular solutions to multi-layer systems which correspond to piecewise constant streamline
density functions, the velocity field being irrotational within each layer) in an L∞ neighbor-
hood, and that the mapping from streamline density functions to the corresponding traveling
wave is Lipschitz continuous in suitable functional spaces, the distance between two streamline
densities being measured through the L∞ norm.

This result, which is quite strong and versatile, does not directly compare with ours. Most
importantly, the framework of traveling waves is of course very different from our framework
allowing non-trivial dynamics. Roughly speaking, the traveling wave problem can be recast
into a problem of elliptic nature, while our systems of equations are hyperbolic/parabolic.
Consistently the tools used in our work, with the exception of a semi-Lagrangian change of
coordinates to fix the fluid domain (called the Dubreil-Jacotin transformation in the context of
traveling waves, which is equivalent to the isopycnal change of coordinates) are very different
from the tools used in [10]. Moreover, the hydrostatic approximation also modifies the nature of
the problem, as it discards dispersive effects. As such, nonlinear traveling waves are inexistent
within the hydrostatic approximation framework, and could be replaced —if one desires to study
simplified dynamics— with simple waves [11, 27]. It would be very natural and interesting to
extend our results to the non-hydrostatic framework. Let us notice however that multi-layer
equations without the hydrostatic approximation suffer from Kelvin–Helmholtz instabilities,
and hence require a regularizing mechanism (possibly offered by the Gent and McWilliams
contributions) to allow for solutions in larger functional spaces than analytical functions [31,
17, 19, 22].

Finally, as discussed in [10], the “reverse” limit consisting in approaching a bi-layer (or
multi-layer) situation with continuously stratified problems has been studied (in the framework
of traveling waves) in particular by James [18], after Turner and Amick [32, 2]. This limit is
only apparently related to the limit considered here. Let us mention in particular that negative
lower and upper bounds on the vertical derivative of the density function (through the non-
cavitation assumption) are crucially used in our analysis as well as in [8]. We leave the study
of this interesting problem to a later work.

Outline of the paper In section 2 we introduce all the notations and conventions used
throughout this work. In section 3 we provide preliminary results, including detailed product
and commutators estimates that will be used in the proofs of our main results. Section 4 is
dedicated to the proof of our first main result, namely the local well-posedness of our multi-
layer systems on a time interval independent of the number of layers, N . We first provide a
preliminary well-posedness result on a short time interval (depending on N) in Proposition
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4.1. The next step is to extract the quasilinear structure of the equations (Section 4.1) and to
provide energy estimates associated with the extracted linear equations (Section 4.2). Finally,
in Section 4.3, we prove of our large-time well-posedness result, Theorem 4.5. In section 5 we
prove our second main result, Theorem 5.5, stating that solutions to the multi-layer system
(1.1) converge towards sufficiently regular solutions to the continuously stratified hydrostatic
system (1.2) satisfying the non-cavitation assumption, with a O(1/N2) convergence rate. As
already mentioned, this results relies in part on a consistency result, obtained in Section 5.1,
and on the other part on stability estimates which we collect in Section 5.2.

2 Notations and conventions
In what follows, we use as convention that g = 1 and ρbott − ρsurf = 1. This choice can be
enforced without loss of generality through a suitable rescaling of the variables and unknowns.
We also set (ρi)i∈{1,··· ,N} as

∀i ∈ {1, · · · , N}, ρi = ρsurf + (i− 1
2
)
ρbott − ρsurf

N
.

Again this choice does not convey a restriction on admissible density profiles but only that we
decide to discretize a continuous streamline density with a piecewise constant function with
equidistributed values; see Figure 1. Notice however that the upper and lower bound assumption
we later on impose on the depth variables do express negative lower and upper bounds on the
vertical derivative of the density profiles we can consider.

Figure 1: A density profile and its piecewise constant approximation

We shall use matrix and vector formulations when dealing with the multi-layer system
(1.1). We then use capital letters without indices for N -dimensional vectors, sans serif fonts
for N -by-N matrices, and indices to denote each components.

For F = (F1, · · · , FN)
t, G = (G1, · · · , GN)

t two vectors, we define the product FG :=
(F1G1, · · · , FNGN)

t, and for a function φ : R → R, φ(F ) := (φ(F1), · · · , φ(FN))
t.
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With these conventions, (1.1) reads{
∂tH + (U + U)∂xH + (H +H)∂xU = κ∂2xH,

∂tU +
(
U + U − κ ∂xH

H+H

)
∂xU + Γ∂xH = 0,

(2.1)

with H = (H1, · · · , HN)
t, U = (U1, · · · , UN)

t, H = (H1, H2, · · · , HN)
t, U = (U1, U2, · · · , UN)

t,
and Γi,j :=

1
N

min(ρi,ρj)

ρi
, for all 1 ≤ i, j ≤ N .

We now introduce matrix operations which will be used in our proofs.

• Denote Id ∈ MN(R) the identity matrix, P := Diag(1, 0, · · · , 0) ∈ MN(R) the projection
onto the first component, and C = Id− P.

• We define the operator T :=
√
NP ∈ MN(R) which can be interpreted as the discrete

analogue of the trace operator on the surface (acting on the density variable in the con-
tinuously stratified case).

• Let S ∈MN(R) be the discrete integration operator defined as

S :=
1

N


1 1 · · · 1

0
. . . . . . ...

... . . . . . . 1
0 · · · 0 1


We also define S0 ∈MN,N−1(R) to be the matrix S without the last column.

• Let Dρ ∈MN−1,N(R) be the discrete differentiation operator defined as

Dρ := N


1 −1 0 · · · 0

0 1 −1
. . . ...

... . . . . . . . . . 0
0 · · · 0 1 −1

 .

With an abuse of notation we will write D2
ρ = D̃ρDρ ∈MN−2,N(R), where D̃ρ is the matrix

Dρ without the last line and last column. Moreover we will use the convention D0
ρ = Id.

• Let M ∈MN−1,N(R) be defined as

M :=
1

2


1 1 0 · · · 0

0 1 1
. . . ...

... . . . . . . . . . 0
0 · · · 0 1 1

 .

With an abuse of notation we will write M2 = M̃M ∈MN−2,N(R), where M̃ is the matrix
M without the last line and last column, hence it is in the matrix space MN−2,N−1(R).
Moreover we will use the convention M0 = Id.

• Finally, we denote Ru,Rd ∈MN−1,N(R) the upwards and downwards reduction operators
defined for F = (F1, · · · , FN)

t ∈ RN , by

RuF = (F2, · · · , FN)
t and RdF = (F1, · · · , FN−1)

t.
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We shall map functions defined on [ρsurf , ρbott] (associated with the continuously stratified
framework) to N -dimensional vectors (associated with the multi-layer framework) with the
following operator:

PN :
C([ρsurf , ρbott]) → RN

f 7→ (f(ρi))1≤i≤N

Let us now describe some functional spaces we use in this work.

• In order to describe tensored functional spaces for functions with variables in the strip
Ω := R×(ρsurf , ρbott), we use the equivalent notations Hs(R) = Hs

x (the usual L2-based
Sobolev space on R) and W k,∞(R) = W k,∞

x (the L∞-based Sobolev space on R), and
similarly L2((ρsurf , ρbott)) = L2

ϱ and W k,∞((ρsurf , ρbott)) = W k,∞
ϱ . We denote for instance

L2
ϱL

∞
x = L2(ρsurf , ρbott;L

∞(R)) = {f : ess supx∈R | f(x, ·) | ∈ L2((ρsurf , ρbott))}.

Notice L2
ϱL

2
x = L2

xL
2
ϱ = L2(Ω) and L∞

ϱ L
∞
x = L∞

x L
∞
ϱ = L∞(Ω).

• Let s ∈ R, k ∈ N, where k ≤ s, we define the functional space

X∞,s,k(Ω) = X∞,s,k
ϱ,x =

{
f : Ω −→ R; ∀j ∈ N, j ≤ k, ∂jϱf ∈ L∞

ϱ (Hs−j(R))
}
,

endowed with the topology of the norm

∥ f ∥2∞,s,k =
k∑

j=0

∥ ∂jϱf ∥
2
L∞
ϱ (Hs−j

x ) .

• For any q ≥ 1 we define endow RN with the following normalized lq norms:

|F |lq :=

(
N∑
i=1

|Fi |q
) 1

q

N
1
q

and |F |l∞ := sup
i∈{1,··· ,N}

|Fi |

Moreover for p, q ≥ 1, we introduce the following functional spaces

Lp
x(l

q) = {F = (F1, · · · , FN) ∈ (Lp(Rd))N ; ∥ |F |lq ∥Lp
x
<∞}

lq(Lp
x) = {F = (F1, · · · , FN) ∈ (Lp(Rd))N ; |

(
∥Fi ∥Lp

x

)
1≤i≤N

|lq <∞}

endowed with the following norms ∥F ∥Lp
x(lq)

:= ∥ |F |lq ∥Lp
x
and ∥F ∥lq(Lp

x)
:= |

(
∥Fi ∥Lp

x

)
1≤i≤N

|lq .
Notice that ∥F ∥L2

x(l
2) = ∥F ∥l2(L2

x)
.

• Let
〈
·, ·
〉
L2
xl

2 be the scalar product of the Hilbert space l2(L2
x(R)) such that for F,G ∈

l2(L2
x(R)) we have

〈
F,G

〉
L2
xl

2 :=

∫
R

< F (x), G(x) >l2 dx =
1

N

N∑
i=1

∫
R

Fi(x)Gi(x)dx.

• For F ∈ RN and for k ∈ {0, 1, 2} we define the following norm |F |wk,∞ :=
k∑

l=0

|Dl
ρF |l∞ .
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• Let s ∈ R, k ∈ {0, 1, 2}, where k ≤ s, we define the functional space

Hs,k(R) =
{
F : R −→ RN ; ∀j ∈ N, j ≤ k, Dj

ρF ∈ Hs−j(R)N
}
,

endowed with the topology of the norm

∥F ∥2Hs,k =
k∑

j=0

∥Dj
ρF ∥2l2(Hs−j

x ) .

• We use standard notations for functions depending on time. For instance, for k ∈ N and
X a Banach space as above, Ck([0, T ];X) is the space of functions with values in X which
are continuously differentiable up to order k, and Lp(0, T ;X) the p-integrable X valued
functions. All these spaces are endowed with their natural norms.

We conclude with a few additional notations.

• For any a, b ∈ R, we use the notation a ≲ b if there exists C > 0, independent of relevant
parameters, such that a ≤ Cb.

• We generically denote by C(· · · ) some positive function that has a non decreasing depen-
dence on its arguments.

• We set

⟨Ba⟩a>b =

{
0 if a ≤ b,
Ba otherwise,

• We denote Λ = (Id− ∂2x)
1/2, so that for all s ≥ 0, Hs(R) = {f ∈ L2(R); Λsf ∈ L2(R)}.

• Let A = (Aij)1≤i,j≤N and U = (U1, · · · , UN)
t where Aij, Ui are in a suitable functional

spaces such that the linear operator P is well defined on that space (most of the time
P = Λs with s ≥ 0 or P = ∂αx with α ∈ N) we define the commutators

[P,A]U := P(AU)− AP(U)
[P;A, U ] := P(AU)− AP(U)− P(A)U.

We conclude by introducing a new type of commutator adapted to the Leibnitz formula
displayed in Lemma 3.1 below.

Definition 2.1. Let A,B ∈ RN , j ∈ {0, 1, 2}, we define, the following commutators:

J∂αxD
j
ρ, AKB := ∂αx (D

j
ρ(AB))− (MjA)(∂αxD

j
ρB),

J∂αxD
j
ρ;A,BK := ∂αx (D

j
ρ(AB))− (MjA)(∂αxD

j
ρB)− (MjB)(∂αxD

j
ρA).

Recalling the convention that M0 = Id, we have

J∂αxD
0
ρ, AKB = [∂αx , A]B,

J∂αxD
0
ρ;A,BK = [∂αx ;A,B].
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3 Technical tools
In this section we provide several preliminary results that will be used throughout this pa-
per. In particular, we provide embeddings, product and commutator estimates adapted to our
functional framework, and which mostly follow from standard estimates in Sobolev spaces.

Lemma 3.1. Let N ∈ N∗, F,G ∈ RN , we have the following identities:

1. (Abel’s summation)
S(FG) = F (SG)− S0((DρF )(RuSG)).

2. (first order Leibnitz formula)

Dρ(FG) = (DρF )(MG) + (MF )(DρG).

3. (second order Leibnitz formula)

D2
ρ(FG) = (D2

ρF )(M
2G) + (M2F )(D2

ρG) + 2(MDρF )(MDρG).

Proof. 1. Let F = (F1, · · · , FN)
t ∈ RN , G = (G1, · · · , GN)

t ∈ RN , the identity results from
the fact that

N∑
j=i

FjGj − Fi

N∑
k=i

Gk = −
N−1∑
j=i

(Fj − Fj+1)
N∑

k=j+1

Gk, ∀i ∈ {1, · · · , N − 1}.

2. It results from the fact that

(FG)i+1 − (FG)i =

(
Fi + Fi+1

2

)
(Gi+1 −Gi) +

(
Gi +Gi+1

2

)
(Fi+1 − Fi).

3. It results directly from multiplying the first order Leibnitz formula by D̃ρ and reapplying
this formula a second time using the fact that D̃ρM = MDρ.

Lemma 3.2. Let N ∈ N∗, F ∈ RN . For any p, q ∈ [1,∞] the following estimates hold true:

|F |lp ≤ |F |lq , when p ≤ q.

∥T ∥l∞→l2 ≤ 1; ∥ S ∥lp→lq ≤ 1.

The same continuity estimates hold for S0 instead of S.

Lemma 3.3. Let N ∈ N∗, s ∈ R, F ∈ Hs+ 1
2
,1(R). There exists C > 0 independent of N such

that
∥ΛsF ∥l∞(L2

x)
≤ C ∥F ∥

Hs+1
2 ,1 .

Proof. Let us assume that N is even, and define ϕ := (

N
2︷ ︸︸ ︷

1, · · · , 1, N−2
N
, · · · , 4

N
, 2
N
, 0)t ∈ RN , hence

Dρ(ϕ) = N(

N
2
−1︷ ︸︸ ︷

0, · · · , 0, 2
N
, · · · , 2

N
)t. Furthermore we notice that

|ϕ |l∞ ≤ 1, |Dρ(ϕ) |l∞ ≤ 2.
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Let i ∈
{
1, · · · , N

2

}
. Using Lemma 3.2 with Parseval equality we have

∥ΛsFi ∥2L2
x
=

∫
R
|ΛsFi |2

=

∫
R

(
S0

(
Dρ(ϕ(Λ

sF )2)
))

i

=

∫
R

(
S0

(
(Mϕ)(Dρ((Λ

sF )2)
))

i
+

∫
R

(
S0

(
(M(ΛsF )2)(Dρ(ϕ))

))
i

= 2

∫
R

(
S0

(
(Mϕ)(Λs− 1

2Dρ(F ))(MΛs+ 1
2F )

))
i
+

∫
R

(
S0

(
(M(ΛsF )2)(Dρ(ϕ))

))
i

≤ 2 |ϕ |l∞
∫
R
|(Λs− 1

2 (Dρ(F )))(Λ
s+ 1

2F ) |l1 +
∫
R
|M(ΛsF )2 |l1 |Dρ(ϕ) |l∞

≲ ∥F ∥2
Hs+1

2 ,1 .

Let F̃i := FN−i+1 for i ∈ {1, · · · , N} and from what proceeds and for i ∈
{
1, · · · , N

2

}
we

have

∥ΛsF̃i ∥2L2
x
≲ ∥Λs+ 1

2 F̃ ∥2l2(L2
x)
+ ∥Λs− 1

2 (DρF̃ ) ∥2l2(L2
x)
.

Hence the result follows immediately since ∥Λs− 1
2 (DρF̃ ) ∥l2(L2

x)
= ∥Λs− 1

2 (DρF ) ∥l2(L2
x)

and
∥Λs+ 1

2 F̃ ∥l2(L2
x)
= ∥Λs+ 1

2F ∥l2(L2
x)

. We can easily adapt this proof when N is odd.

Lemma 3.4. Let N ∈ N∗, F ∈ RN , h∗ > 0 and H ∈ RN such that inf
i∈{1,··· ,N}

H i ≥ h∗. Then

there exists C(h−1
∗ ) independent of N such that

1. | Dρ

N
F |l2 ≤ 2 |F |l2 and | D2

ρ

N
F |l2 ≤ 2 |DρF |l2.

2. |D2
ρ
1
H
|l∞ ≤ C(h−1

∗ )
(
|D2

ρH |l∞ + |DρH |2l∞
)
.

Proof. 1. It follows immediately from the fact that Dρ

N
F = (F1 − F2, · · · , FN−1 − FN)

t and
that D2

ρ

N
F = N(F1 − 2F2 + F3, · · · , FN−2 − 2FN−1 + FN)

t.

2. We have for i ∈ {1, · · · , N − 2}(
D2

ρ

1

H

)
i

= N2

(
1

H i

− 2

H i+1

+
1

H i+2

)
= N2

(
2(H i+2 −H i+1)(H i+1 −H i)−H i+1(H i+2 − 2H i+1 +H i)

H iH i+1H i+2

)
and the result follows immediately.

Lemma 3.5. Let N ∈ N∗, t0 > 1
2
.

1. For any s, s1, s2 ∈ R such that s1 ≥ s, s2 ≥ s, s1 + s2 ≥ 0 and s1 + s2 ≥ s + t0, there
exists C > 0 independent of N such that for any (p, q) ∈ {(2,∞), (∞, 2)} and any F =

(F1, · · · , FN)
t ∈

(
Hs1(Rd)

)N and G = (G1, · · · , GN)
t ∈

(
Hs2(Rd)

)N , FG ∈ l2(Hs(Rd))
and

∥FG ∥l2(Hs) ≤ C ∥F ∥lp(Hs1
x ) ∥G ∥lq(Hs2

x ) ≤


C ∥F ∥

Hs1+
1
2 ,1 ∥G ∥Hs2,0

or
C ∥F ∥Hs1,0 ∥G ∥

Hs2+
1
2 ,1

10



2. For any s ≥ −t0, there exists C > 0 independent of N such that for any (p, q), (p̃, q̃) ∈
{(2,∞), (∞, 2)} and any F = (F1, · · · , FN)

t ∈
(
Hs(Rd)

)N and G = (G1, · · · , GN)
t ∈(

Hs(Rd)
)N ∩

(
H t0(Rd)

)N , FG ∈ l2(Hs(Rd)) and

∥FG ∥l2(Hs
x)
≤ C ∥F ∥

lp(H
t0
x )

∥G ∥lq(Hs
x)
+C

〈
∥F ∥lp̃(Hs

x)
∥G ∥

lq̃(H
t0
x )

〉
s>t0

≤ C


∥F ∥

Hmax(t0,s)+
1
2 ,1 ∥G ∥Hs,0

or
∥F ∥

Hmax(t0+
1
2 ,s),1 ∥G ∥

Hmax(t0+
1
2 ,s),1

3. For any s ∈ R and s1, s2 ∈ R such that s1 ≥ s, s2 ≥ s − 1 and s1 + s2 ≥ s + t0,
there exists C > 0 independent of N such that for any (p, q) ∈ {(2,∞), (∞, 2)} and any
F = (F1, · · · , FN)

t ∈
(
Hs1(Rd)

)N and G = (G1, · · · , GN)
t ∈

(
Hs2(Rd)

)N , [Λs, F ]G ∈(
L2(Rd)

)N and

∥[Λs, F ]G ∥l2(L2
x)
≤ C ∥Λs1F ∥lp(L2

x)
∥Λs2G ∥lq(L2

x)
≤


C ∥F ∥

Hs1+
1
2 ,1 ∥G ∥Hs2,0

or
C ∥F ∥Hs1,0 ∥G ∥

Hs2+
1
2 ,1

4. For any s ≥ 0, there exists C > 0 independent of N such that for any (p, q), (p̃, q̃) ∈
{(2,∞), (∞, 2)} and any G = (G1, · · · , GN)

t ∈
(
Hs−1(Rd)

)N and any F = (F1, · · · , FN)
t ∈(

L∞(Rd)
)N with ∂xFi ∈ Hs−1(Rd) ∩H t0(Rd), one has [Λs, F ]G ∈

(
L2(Rd)

)N , and

∥ |[Λs, F ]G |l2 ∥L2
x
≤ C ∥Λt0(∂xF ) ∥lp(L2

x)
∥Λs−1G ∥lq(L2

x)

+ C
〈
∥Λs−1(∂xF ) ∥lp̃(L2

x)
∥Λt0G ∥lq̃(L2

x)

〉
s>t0+1

≤ C


∥ ∂xF ∥

Hmax(t0+
1
2 ,s− 1

2 ),1 ∥G ∥Hs−1,0

or
∥ ∂xF ∥

Hmax(t0+
1
2 ,s−1),1 ∥G ∥

Hmax(s−1,t0+
1
2 ),1

5. For any s ≥ 0, there exists C > 0 independent of N such that for any (p, q), (p̃, q̃) ∈
{(2,∞), (∞, 2)} and for any F = (F1, · · · , FN)

t, G = (G1, · · · , GN)
t with Fi, Gi ∈

Hs(Rd) ∩H t0+1(Rd) for all i ∈ {1, · · · , N}, one has [Λs;F,G] ∈
(
L2(Rd)

)N and

∥ |[Λs;F,G] |l2 ∥L2
x
≤ C ∥Λt0+1F ∥lp(L2

x)
∥Λs−1G ∥lq(L2

x)
+ ∥Λs−1F ∥lp̃(L2

x)
∥Λt0+1G ∥lq̃(L2

x)

≤ C


∥F ∥

Hmax(t0+
3
2 ,s− 1

2 ),1 ∥G ∥Hmax(s−1,t0+1),0

or
∥F ∥

Hmax(t0+
3
2 ,s−1),1 ∥G ∥

Hmax(t0+
3
2 ,s−1),1

The result holds true if we replace Λs by ∂αx for 0 ≤ α ≤ s.

Proof. 1. The proof results immediately from the following classical product estimate in
Sobolev spaces for scalar function f, g

∥ fg ∥Hs
x
≤ C ∥ f ∥Hs1

x
∥ g ∥Hs2

x
, (3.1)

then conclude with Lemma 3.3.
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2. The proof results immediately from the following classical tame estimate for products in
Sobolev spaces and for scalar function f, g

∥ fg ∥Hs
x
≤ C ∥ f ∥

H
t0
x
∥ g ∥Hs

x
+C

〈
∥ f ∥Hs

x
∥ g ∥

H
t0
x

〉
s>t0

, (3.2)

then conclude with Lemma 3.3.

3. We fix (p, q) ∈ {(2,∞), (∞, 2)} and we have [Λs;F ]G = ([Λs, Fi]Gi)i, hence the proof
results immediately using the following classical commutator estimate in Sobolev spaces
for scalar functions f, g

∥[Λs, f ]g ∥L2
x
≲ ∥Λs1f ∥L2

x
∥Λs2g ∥L2

x
, (3.3)

then conclude with Lemma 3.3.

4. The proof results immediately from using the following classical tame estimate for com-
mutators in Sobolev spaces for scalar functions f, g

∥[Λs, f ]g ∥L2
x
≤ C ∥Λt0(∂xf) ∥L2

x
∥Λs−1g ∥L2

x
+C

〈
∥Λs−1(∂xf) ∥L2

x
∥Λt0g ∥L2

x

〉
s>t0+1

,

(3.4)
then conclude with Lemma 3.3.

5. We have [Λs;F,G] = (Λs(FiGi)− Λs(Fi)Gi − FiΛ
s(Gi))i, the result follows immediately

by using the following classical estimate for the symmetric commutator and for scalar
functions f, g, where [Λs; f, g] := Λs(fg)− fΛsg − gΛsf ∈ L2(R)

∥[Λs; f, g] ∥L2
x
≤ C ∥ f ∥

H
t0+1
x

∥ g ∥Hs−1
x

+C ∥ f ∥Hs−1
x

∥ g ∥
H

t0+1
x

, (3.5)

then conclude by Lemma 3.3.

Lemma 3.6. Let N ∈ N∗, t0 > 1
2

then we have the following

1. Let s ∈ N such that s ≥ t0 +
1
2
, then there exists C independent of N such that for any

F,G ∈ Hs,k, k ∈ {1, 2} we have

∥FG ∥Hs,k ≤ C ∥F ∥Hs,k ∥G ∥Hs,k .

2. Let s ∈ N such that s ≥ t0 +
3
2
, then there exists C independent of N such that for any

F,G ∈ Hs,2 it holds

∥FG ∥Hs,2 ≤ C (∥F ∥Hs,2 ∥G ∥Hs−1,1 + ∥F ∥Hs−1,1 ∥G ∥Hs,2) .

Proof. 1. Let F,G ∈ Hs,1 then by Lemma 3.1

∥FG ∥2Hs,1 = ∥Λs(FG) ∥2l2(L2
x)
+ ∥Λs−1(Dρ(FG)) ∥2l2(L2

x)

≲ ∥Λs(FG) ∥2l2(L2
x)
+ ∥Λs−1 ((MF )(DρG)) ∥2l2(L2

x)
+ ∥Λs−1 ((MG)(DρF )) ∥2l2(L2

x)
.

Since s ≥ t0 +
1
2
, and using Lemma 3.5 (2) we have

∥Λs(FG) ∥l2(L2
x)
≲ ∥F ∥Hs,1 ∥G ∥Hs,1 ,
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and

∥Λs−1((MF )DρG) ∥l2(L2
x)
≲ ∥F ∥Hs,1 ∥G ∥Hs,1 .

Symmetrically ∥Λs−1((MG)(DρF ) ∥l2(L2
x)
≲ ∥F ∥Hs,1 ∥G ∥Hs,1 . Consequently Hs,1 is a Ba-

nach algebra.

Let F,G ∈ Hs,2 then ∥FG ∥2Hs,2 = ∥FG ∥2Hs,1 + ∥Λs−2(D2
ρ(FG)) ∥

2
l2(L2). Using the fact

that Hs,1 is a Banach algebra we have

∥FG ∥Hs,1 ≲ ∥F ∥Hs,2 ∥G ∥Hs,2 .

By Lemma 3.1

D2
ρ(FG) = (M2F )(D2

ρG) + (M2G)(D2
ρF ) + 2(MDρF )(MDρG).

Then by Lemma 3.5 (2)

∥Λs−2((M2F )(D2
ρG)) ∥l2(L2

x)
≲ ∥F ∥Hs,1 ∥G ∥Hs,2 .

Symmetrically we deduce that ∥Λs−2((M2G)(D2
ρF )) ∥l2(L2

x)
≲ ∥F ∥Hs,2 ∥G ∥Hs,1 . Moreover

by Lemma 3.5 (1) we have

∥Λs−2((MDρG)(MDρF )) ∥l2(L2
x)
≲ ∥F ∥Hs,2 ∥G ∥Hs,2 .

2. The proof follows the steps seen previously in 1 with this time using Lemma 3.3 and
Lemma 3.5 and choosing the convenient values of p, q, p̃, q̃, in addition relying on the
fact that s ≥ t0 +

3
2

when estimating.

Lemma 3.7. Let N ∈ N∗, t0 > 1
2
, then the following holds

1. Let s ∈ N with s ≥ t0 +
3
2
, then there exists C > 0 independent of N such that

• For any α ∈ N, with 0 ≤ α ≤ s

∥[∂αx , F ]G ∥l2(L2
x)
≤ C ∥F ∥Hs,2 ∥G ∥Hs−1,1 .

The result holds true if we replace ∂αx by Λs.

• For any j ∈ {1, 2} and α ∈ N such that 0 ≤ α ≤ s− j

∥J∂αxDj
ρ, F KG ∥l2(L2

x)
≤ C ∥F ∥Hs,2 ∥G ∥Hs−1,j .

The result holds true if we replace ∂αx by Λs−j.

2. Let s ∈ N with s > 2 + 1
2
, then there exists C > 0 independent of N such that for α ∈ N

with 0 ≤ α ≤ s− 2 we have

∥J∂αxDρ, F KG ∥l2(L2
x)
≤ C ∥F ∥Hs,2 ∥G ∥Hs−2,1 .

The result holds true if we replace ∂αx by Λs−2.
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3. Let s ∈ N with s ≥ t0 +
5
2
, then there exists C > 0 independent of N such that for any

j ∈ {1, 2} and α ∈ N such that 0 ≤ α ≤ s− j then

∥J∂αxDj
ρ, F,GK ∥l2(L2

x)
≤ C ∥F ∥Hs−1,2 ∥G ∥Hs−1,2 .

The result holds true if we replace ∂αx by Λs−j.

Proof.

1. Using Lemma 3.5 (4) we have

∥[∂αx , F ]G ∥l2(L2
x)
≤ C

(
∥ ∂xF ∥

Ht0+
1
2 ,1 ∥G ∥Hs−1,0 + ∥ ∂xF ∥Hs−1,0 ∥G ∥

Ht0+
1
2 ,1

)
.

For j = 1 and 0 ≤ α ≤ s− 1, we have by Lemma 3.1 and Lemma 3.5 ((2) and (4))

J∂αxDρ, F KG = ∂αx (Dρ(FG))− (MF )(∂αx (DρG))

= ∂αx ((MF )(DρG) + (MG)(DρF ))− (MF )(∂αx (DρG))

= [∂αx ,MF ]DρG+ ∂αx ((MG)(DρF ))

≲ ∥ ∂xMF ∥
Hmax(t0+

1
2 ,s− 3

2 ),1 ∥DρG ∥Hs−2,0 + ∥DρF ∥
Hmax(t0+

1
2 ,s−1),1 ∥MG ∥

Hmax(t0+
1
2 ,s−1),1 .

For j = 2 and 0 ≤ α ≤ s− 2, we have by Lemma 3.1 we have by Lemma 3.1 and Lemma
3.5 ((2) and (4))

J∂αxD
2
ρ, F KG = ∂αx (D

2
ρ(FG))− (M2F )(∂αx (D

2
ρG))

= [∂αx ,M
2F ]D2

ρG+ 2∂αx ((MDρG)(MDρF )) + ∂αx
(
(D2

ρF )(M
2G)
)

≲ ∥ ∂xM2F ∥
Hmax(t0+

1
2 ,s− 5

2 ),1 ∥D2
ρG ∥Hs−3,0 + ∥MDρF ∥

Hmax(t0,s−2)+1
2 ,1 ∥MDρG ∥Hs−2,0

+ ∥D2
ρF ∥Hs−2,0 ∥M2G ∥

Hmax(t0,s−2)+1
2 ,1 .

2. The result follows from the fact that

J∂αxDρ, F KG = [∂αx ,MF ]DρG+ ∂αx ((MG)(DρF )) ,

and using Lemma 3.5 (2) and (4) and choosing the corresponding (p, q) ∈ {2,∞} with
t0 = s− 3

2
, then using Lemma 3.3.

3. For j = 1 and 0 ≤ α ≤ s− 1,we have by Lemma 3.1 and Lemma 3.5 (4)

J∂αxDρ;F,GK = ∂αx (Dρ(FG))− (MF )(∂αxDρG))− (MG)(∂αxDρF )

= ∂αx ((MF )(DρG)) + ∂αx ((MG)(DρF ))− (MF )(∂αxDρG)− (MG)(∂αxDρF )

= [∂αx ,MF ]DρG+ [∂αx ,MG]DρF

≲ ∥ ∂xMF ∥
Hmax(t0+

1
2 ,s−2),1 ∥DρG ∥

Hmax(t0+
1
2 ,s−2),1

+ ∥ ∂xMG ∥
Hmax(t0+

1
2 ,s−2),1 ∥DρF ∥

Hmax(t0+
1
2 ,s−2),1 .

For j = 2 and 0 ≤ α ≤ s− 2, we have by Lemma 3.1 and Lemma 3.5 ((2) and (4))

J∂αxD
2
ρ;F,GK = ∂αx (D

2
ρ(FG))− (M2F )(∂αxD

2
ρG)− (M2G)(∂αxD

2
ρF )

= ∂αx
(
(D2

ρF )(M
2G) + (D2

ρG)(M
2F ) + 2(MDρF )(MDρG)

)
− (M2F )(∂αxD

2
ρG)− (M2G)(∂αxD

2
ρF )

= [∂αx ,M
2G]D2

ρF + [∂αx ,M
2F ]D2

ρG+ 2∂αx ((MDρF )(MDρG))

≲ ∥ ∂xM2G ∥
Hmax(t0+

1
2 ,s−3),1 ∥D2

ρF ∥Hs−3,0 + ∥ ∂xM2F ∥
Hmax(t0+

1
2 ,s−3),1 ∥D2

ρG ∥Hs−3,0

+ ∥MDρF ∥
Hmax(t0+

1
2 ,s−2),1 ∥MDρG ∥

Hmax(t0+
1
2 ,s−2),1 .
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This concludes the proof.

Lemma 3.8. Let h∗,M,M∗ > 0, t0 > 1
2

and s ∈ N such that s ≥ t0 + 3
2
, there exists

C(h−1
∗ ,M,M∗) > 0, such that for any N ∈ N∗ and any H ∈ w2,∞, H ∈ Hs,2(R), satisfying

|H |w2,∞ ≤M ; ∥H ∥Hs−1,1 ≤M∗,

inf
(x,i)∈R×{1,··· ,N}

H i +Hi(x) ≥ h∗,

the following holds ∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs,2

≤ C(h−1
∗ ,M,M∗) ∥H ∥Hs,2 . (3.6)∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs−1,1

≤ C(h−1
∗ ,M,M∗) ∥H ∥Hs−1,1 . (3.7)

Proof. For i ∈ {1, · · · , N} fixed, since s is sufficiently large we notice by Sobolev injection that
Hi vanishes at infinity as a consequence we have H i ≥ h∗. Let

(
1

H+H
− 1

H

)
i
= 1

Hi+Hi
− 1

Hi
=

φi(Hi), where φi ∈ C∞(R;R) such that φi(x) =
1

Hi+x
− 1

Hi
when H i+x ≥ h∗, moreover we notice

that there exists C(α, h−1
∗ )(independent of i) such that ∥φ(α)

i ∥L∞([h∗−Hi,+∞[) ≤ C(α, h−1
∗ ), using

the fact that H ∈ w2,∞ we can choose φi in such a way that there exists C(α, h−1
∗ ) (independent

of i) such that ∥φ(α)
i ∥L∞(]−∞,h∗−Hi))

≤ C(α, h−1
∗ ). Hence using the composition Lemma in

Sobolev spaces (see Lemma A.4 in [8]) and Lemma 3.3 we have∥∥∥∥Λs

(
1

H +H
− 1

H

)∥∥∥∥
l2(L2

x)

≤ C(h−1
∗ , ∥H ∥

l∞(H
t0
x )
) ∥H ∥Hs,0 . (3.8)∥∥∥∥Λs−1

(
1

H +H
− 1

H

)∥∥∥∥
l2(L2

x)

≤ C(h−1
∗ , ∥H ∥

l∞(H
t0
x )
) ∥H ∥Hs−1,0 . (3.9)

By Lemma 3.1 and Lemma 3.4 we find that∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs,2

≤ C(h−1
∗ , |H |w2,∞)

∥∥∥∥ H

H +H

∥∥∥∥
Hs,2

.∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs−1,1

≤ C(h−1
∗ , |H |w1,∞)

∥∥∥∥ H

H +H

∥∥∥∥
Hs−1,1

.

We have for i ∈ {1, · · · , N − 1}(
Dρ

(
H

H +H

))
i

=

[
−N(H i −H i+1)

(
Hi +Hi+1

2

)
+N(Hi −Hi+1)

(
H i +H i+1

2

)]
× 1

(H i +Hi)(H i+1 +Hi+1)
.

then

Dρ

(
H

H +H

)
= [−(DρH)(MH) + (DρH)(MH)]Rd

(
1

H +H

)
Ru

(
1

H +H

)
.

We have for i ∈ {1, · · · , N − 2}(
Dρ

(
Rd

(
1

H +H

)
Ru

(
1

H +H

)))
i

=
−2 (MDρ(H +H))i

(H i +Hi)(H i+1 +Hi+1)(H i+2 +Hi+2)
.
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and hence

D2
ρ

(
H

H +H

)
=

[
− (D2

ρH)(M2H) + (D2
ρH)(M2H)

]
M

(
Rd

(
1

H +H

)
Ru

(
1

H +H

))
− 2 [−M((DρH)(MH)) +M((DρH)(MH))] (MDρ(H +H))

× RdRd

(
1

H +H

)
RdRu

(
1

H +H

)
RuRu

(
1

H +H

)
.

Using the previous equalities and the following arguments

• The spatial derivatives commute with the operators Rd, Ru, , M, Dρ, D
2
ρ.

• The operators Rd, Ru, M are bounded in l2 and l∞.

• Lemma 3.6 and estimates (3.8) and (3.9).

We obtain ∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs,2

≤ C(h−1
∗ , |H |w2,∞ , ∥H ∥Hs−1,1) ∥H ∥Hs,2 .∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs−1,1

≤ C(h−1
∗ , |H |w1,∞ , ∥H ∥Hs−1,1) ∥H ∥Hs−1,1 .

Hence the proof is then completed since the constant C is increasing in its arguments.

We conclude this section by collecting continuity estimates on the operator PN defined by

PN :
C([ρsurf , ρbott]) → RN

f 7→ (f(ρi))1≤i≤N

Lemma 3.9. Let s ∈ N, s ≥ 2 there exists C > 0 such that for any N ∈ N∗ and any
f ∈ X∞,s,2(Ω) the following holds

∥PNf ∥Hs,0 ≤ C ∥ f ∥∞,s,0; ∥PNf ∥Hs,1 ≤ C ∥ f ∥∞,s,1 ∥PNf ∥Hs,2 ≤ C ∥ f ∥∞,s,2 .

Proof. It is immediate that
∥PNf ∥2Hs,0 ≤ ∥ f ∥2L∞

ϱ (Hs
x)
.

For i ∈ {1, · · ·N}, using the mean value theorem∫
R
|N(Λs−1f(x,ρi)− Λs−1f(x,ρi+1) |

2 dx ≤ ∥ ∂ϱf ∥2L∞
ϱ (Hs−1

x ),

hence ∥Λs−1DρPNf ∥l2(L2
x)
≲ ∥ ∂ϱf ∥L∞

ϱ (Hs−1
x ), and ∥PNf ∥Hs,1 ≲ (∥ f ∥L∞

ϱ (Hs
x)
+ ∥ ∂ϱf ∥L∞

ϱ (Hs−1
x )).

Using the Taylor expansion for the map ϱ 7−→ Λs−2f(·, ϱ) we have∫
R
|N2(Λs−2f(x,ρi)− 2Λs−2f(x,ρi+1) + Λs−2f(x,ρi+2)) |

2 dx ≤ 2 ∥ ∂2ϱΛs−2f ∥2L∞
ϱ (L2

x)
,

consequently,

∥Λs−2D2
ρPNf ∥l2(L2

x)
≤ 2 ∥ ∂2ϱΛs−2f ∥L∞

ϱ (L2
x)
.

This concludes the proof.
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4 Large-time well-posedness
This section is dedicated to the proof of our first main result, Theorem 4.5, concerning the well-
posedness of the initial-value problem for the multilayer system (1.1). Let us for convenience
rewrite the system here, using conventions and notations introduced in Section 2.{

∂tH + (U + U)∂xH + (H +H)∂xU = κ∂2xH,

∂tU +
(
U + U − κ ∂xH

H+H

)
∂xU + Γ∂xH = 0,

(4.1)

where we recall that for all i ∈ {1, · · · , N − 1}, ρi+1 − ρi =
1
N

and Γi,j =
1
N

min(ρi,ρj)

ρi
.

We first state in Proposition 4.1 below the easy-to-prove local well-posedness of multi-layer
system on a “short” period of time, that is a priori vanishing as the number of considered layers
N goes to infinity. The goal in this section is to improve this result by obtaining a time of
existence uniform with respect to N . In order to achieve this goal we shall rely on the energy
method. We extract the quasilinear structure of the equations in Section 4.1 and provide useful
estimates on the extracted linearized equations in Section 4.2, while the completion of the proof
of Theorem 4.5 is achieved in Section 4.3.

A crucial ingredient in our energy estimates, dictating our choice of the energy functional,
is the following decomposition

ρΓ = ρ1(TS)
tTS+ StCS (4.2)

(recall Section 2 for the definition of the matrices C, S and T). This decomposition mimics an
analogous one of the operator

ϱM : h 7→ ρsurf

ρbott∫
ρsurf

h(ϱ′)dϱ′ +

ϱ∫
ρsurf

ρbott∫
ϱ′

h(ϱ′′)dϱ′′dϱ′,

used by Bianchini and Duchêne in [8] to obtain the analogous well-posedness result for the
continously stratified system (1.2).

The following result concerns the well-posedness of the shallow water multi-layer with the
κ regularization system (4.1), where the time existence of the solution depends on the number
of layers N . The strategy of the proof is fairly standard, and we only sketch the main steps.

Proposition 4.1. Let N ∈ N∗, 0 < κ ≤ 1, s > 1 + 1
2
, 0 < h∗ < 1, M0 > 0. There exists

TN > 0 such that for all (H0, U0) ∈ (Hs(R))N × (Hs(R))N such that ∥H0∥Hs,0 + ∥U0∥Hs,0 ≤M0

and H0 + H ≥ h∗, there exists a unique (H,U) solution to (4.1) with (H0, U0)|t=0 = (H0, U0)
such that

H ∈ C([0, TN ];H
s(R)N) ∩ L2([0, TN ];H

s+1(R)N), U ∈ C([0, TN ];H
s(R)N)

and satisfying
inf

i∈{1,··· ,N}
Hi +H i ≥ h∗/2 on [0, TN ]× R. (4.3)

Sketch of the proof. The solution can be constructed through a Picard’s iterative scheme, con-
sidering (4.1) as transport diffusions equations (on the variable H) and transport equations (on
the variable U), coupled through order-zero terms. Specifically, we define inductively (Hn, Un)
for n ∈ N as the solutions to the decoupled equations on each i−th layer for i ∈ {1, · · · , N} as
follows

∂tH
n+1
i + (Un

i + Un
i )∂xH

n+1
i − κ∂2xH

n+1
i = fi, fi = −(Hn

i +Hn
i )∂xU

n
i ,

∂tU
n+1
i +

(
Un

i + Un
i − κ

∂xHn
i

Hn
i +Hn

i

)
∂xU

n+1
i = gi, gi = −

N∑
j=1

Γi,j∂xH
n
j ,

Hn+1
i |t=0 = Hi,0

Un+1
i |t=0 = Ui,0.

(4.4)
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One can find a corresponding time TN , depending on s,N, κ, h∗ and M0 but not on n such
that the sequence (Hn, Un) is uniquely defined on [0, TN ] by (4.4), remains in a ball (in the
functional space corresponding to the regularity of (H,U) displayed in the theorem endowed
with its natural topology) and satisfies the non cavitation assumption (4.3). Moreover one
shows that it is actually a Cauchy sequence in a weaker functional space, hence using weak
convergence and interpolation in Sobolev spaces we can pass to the limit n → ∞ in the
equations and obtain the solution (H,U) to (4.1). We infer consequently the continuity in
time with respect to the strong topology, as well as uniqueness of solutions at this level of
regularity. All these steps are justified using the well-posedness theory of both transport and
transport diffusion equations (see for instance chapter 3 of [3]), relying in particular on the
energy estimates which are displayed in the forthcoming Lemma 4.3.

4.1 Quasilinearization

In this subsection we focus on linearizing system (4.1), this is done by applying the operators
S, T, ∂x, Dρ to the equations so as to obtain linear equations satisfied by the derivatives of our
unknowns H,U .

Lemma 4.2. Let s ∈ N such that s > 2+1
2
, and M,M, h∗ > 0. There exists C = C(s,M,M, h∗) > 0,

such that for any N ∈ N∗, κ > 0 and any (H,U) ∈ w2,∞ such that

|ρ |l∞ + |ρ−1 |l∞ + |H |w2,∞ + |DρU |w1,∞ ≤M,

and any (H,U) ∈ C([0, T ];Hs,2(R)) solution to (4.1) with some T > 0 and satisfying

∥H(t, ·) ∥Hs−1,1 + ∥ SH(t, ·) ∥Hs,1 + ∥TSH(t, ·) ∥Hs,0 + ∥U(t, ·) ∥Hs,2 +κ
1
2 ∥H(t, ·) ∥Hs,2 ≤M

for all t ∈ [0, T ] and

inf
(t,x,i)∈(0,T )×R×{1,··· ,N}

H i +Hi(t, x) ≥ h∗, the following holds.

• For all α ∈ N, j ∈ {0, 1} with 0 ≤ α ≤ s− 1− j , we have

∂t∂
α
xD

j
ρH + (Mj(U + U))∂x∂

α
xD

j
ρH = κ∂2x∂

α
xD

j
ρH +Rα,j

where for every t ∈ [0, T ], Rα,j(t, ·) ∈ l2(L2(R)) and

∥Rα,j(t, ·) ∥l2(L2
x)
≤ CM.

• For all α ∈ N with 0 ≤ α ≤ s, we have

∂t∂
α
xH + (U + U)∂x∂

α
xH + (H +H)∂x∂

α
xU = κ∂2x∂

α
xH +Rα,0

∂t∂
α
xU + Γ∂x∂

α
xH +

(
U + U − κ

∂xH

H +H

)
∂x∂

α
xU = Rα,0

where for every t ∈ [0, T ], (SRα,0(t, ·),TSRα,0(t, ·),Rα,0(t, ·)) ∈ l2(L2(R))2×l2(L2(R)) and

∥ SRα,0(t, ·) ∥l2(L2
x)
+ ∥TSRα,0(t, ·) ∥l2(L2

x)
+ ∥Rα,0(t, ·) ∥l2(L2

x)
≤ CM(1 + κ ∥ ∂xH ∥Hs,2).

• For any α ∈ N, j ∈ {1, 2}, such that 0 ≤ α ≤ s− j, it holds

∂tD
j
ρS∂

α
xH + Rd(M

j−1(U + U))∂x
(
Dj

ρS∂
α
xH
)
= κ∂2x(D

j
ρS∂

α
xH) +Rα,j

∂tD
j
ρ∂

α
xU +

(
Mj

(
U + U − κ

∂xH

H +H

))
∂x(D

j
ρ∂

α
xU) = Rα,j

where for every t ∈ [0, T ], (Rα,j(t, ·),Rα,j(t, ·)) ∈ l2(L2(R))× l2(L2(R)) and

∥Rα,j(t, ·) ∥l2(L2
x)
+ ∥Rα,j(t, ·) ∥l2(L2

x)
≤ CM(1 + κ ∥ ∂xH ∥Hs,2).
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• For any α ∈ N, j ∈ {0, 1, 2}, 0 ≤ α ≤ s− j , it holds

∂tD
j
ρ∂

α
xH +

(
Mj(U + U)

)
∂x(D

j
ρ∂

α
xH) = κ∂2x(D

j
ρ∂

α
xH) + rα,j + ∂xrα,j

where for every t ∈ [0, T ], (rα,j(t, ·), rα,j(t, ·)) ∈ l2(L2(R))× l2(L2(R)) and

κ
1
2 ∥ rα,j(t, ·) ∥l2(L2

x)
+ ∥ rα,j(t, ·) ∥l2(L2

x)
≤ CM.

Proof.

Estimates for Rα,0 = −[∂αx , U + U ]∂xH − ∂αx ((H +H)∂xU), with 0 ≤ α ≤ s− 1.

Since s− 1 > 1
2
+ 1

2
, and using Lemma 3.5 ((2) and (3)) and Lemma 3.3 we have

∥ ∂αx (H ∂xU) ∥l2(L2
x)
≲ ∥H ∥Hs−1,0 ∥U ∥Hs,1 + ∥H ∥Hs−1,1 ∥U ∥Hs,0 ,

and

∥[∂αx , U ]∂xH ∥L2(L2
x)
≲ ∥U ∥Hs,1 ∥H ∥Hs−1,0 ,

moreover

∥ ∂αx (H ∂xU) ∥l2(L2
x)
≲ |H |l∞ ∥U ∥Hs,0 .

Hence

∥Rα,0 ∥l2(L2
x)
≲ (|H |l∞ + ∥H ∥Hs−1,1) ∥U ∥Hs,1 . (4.5)

Estimates for Rα,1 = −J∂αxDρ, U + UK∂xH − ∂αxDρ((H +H)∂xU), with 0 ≤ α ≤ s− 2.

By Lemma 3.1 we have

∂αxDρ((H +H)∂xU) =∂
α
x ((DρH) (M∂xU)) + ∂αx ((DρH) (M∂xU)) + ∂αx ((MH) (Dρ∂xU))

+ ∂αx ((MH) (Dρ∂xU)) .

Using Lemma 3.5 (1) and since s− 2 > 1
2

we have

∥ ∂αx ((DρH) (M∂xU)) ∥l2(L2
x)
≲ ∥DρH ∥Hs−2,0 ∥M∂xU ∥

Hs− 3
2 ,1

≲ ∥H ∥Hs−1,1 ∥U ∥Hs,1 ,

and

∥ ∂αx ((MH) (Dρ∂xU)) ∥l2(L2
x)
≲ ∥MH ∥

Hs− 3
2 ,1 ∥Dρ∂xU ∥Hs−2,0

≲ ∥H ∥Hs−1,1 ∥U ∥Hs,1 .

Using Lemma 3.7 (2) and since s− 2 > 1
2

we have

∥J∂αxDρ, UK∂xH ∥l2(L2
x)
≲ ∥U ∥Hs,2 ∥H ∥Hs−1,1 ,

once again with Lemma 3.1

∥J∂αxDρ, UK∂xH ∥l2(L2
x)
= ∥ ∂αx ((DρU)(M∂xH) ∥l2(L2

x)
≤ |DρU |l∞ ∥H ∥Hs−1,0 .
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We immediately have

∥ ∂αx ((DρH) (M∂xU)) ∥l2(L2
x)
≤ |DρH |l∞ ∥U ∥Hs−1,0 ,

and

∥ ∂αx ((MH) (Dρ∂xU)) ∥l2(L2
x)
≤ |H |l∞ ∥U ∥Hs,1 .

Hence

∥Rα,1 ∥l2(L2
x)
≲ (|H |w1,∞ + ∥H ∥Hs−1,1) ∥U ∥Hs,2 + |DρU |l∞ ∥H ∥Hs−1,0 . (4.6)

We have Rα,0 = −[∂αx , U ]∂xH − [∂αx , H]∂xU and Rα,0 = −
[
∂αx , U + U − κ ∂xH

H+H

]
∂xU . We

notice that

SRα,0 = −S
(
[∂αx ;U, ∂xH] + (∂αxU)(∂xH)

)
− S
(
[∂αx ;H, ∂xU ] + (∂αxH)(∂xU)

)
.

On the other hand using Lemma 3.1 and since S0, S, Ru, Dρ commute with ∂x we have

−S[∂αx ;U,∂xH] = −
(
S∂αx (U∂xH)− S(U∂x∂

α
xH)− S ((∂αxU)(∂xH))

)
= −

(
∂αx (U∂xSH)− ∂αx (S0((Dρ(U))(Ru∂xSH)))− U∂xS∂

α
xH

+ S0((Dρ(U)(Ru∂xS∂
α
xH))− (∂αxU)(∂xSH) + S0((Dρ(∂

α
xU))(Ru∂xSH))

)
= −[∂αx ;U, ∂xSH] + S0[∂

α
x ;Dρ(U),Ru∂xSH]

and

−S((∂αxH)(∂xU)) = −
(
(∂xU)(S∂

α
xH)− S0

(
(Dρ(∂xU))(Ru(S∂

α
xH)

))
,

and finally we find

SRα,0 = −[∂αx ;U, ∂xSH]− (∂xU)(S∂
α
xH) + S0

(
[∂αx ;Dρ(U),Ru∂xSH] + (Dρ(∂xU))(RuS∂

α
xH)

)
− S

(
(∂αxU)(∂xH) + [∂αx ;H, ∂xU ]

)
.

Since
√
NP[∂αx ;U, ∂xSH] = [∂αx ;U, ∂xTSH], we immediately recover a similar equation for

the trace case

TSRα,0 = −[∂αx ;U, ∂xTSH]− (∂xU)(TS∂
α
xH) + TS0

(
[∂αx ;Dρ(U),Ru∂xSH] + (Dρ(∂xU))(RuS∂

α
xH)

)
− TS

(
(∂αxU)(∂xH) + [∂αx ;H, ∂xU ]

)
.

Estimates for SRα,0, TSRα,0 with 0 ≤ α ≤ s .

Using Lemma 3.3 and since s > 1
2
+ 3

2
, we have

∥(∂xU)(S∂αxH) ∥l2(L2
x)
≤ ∥ ∂xU ∥l∞(L∞

x ) ∥ SΛ
sH ∥l2(L2

x)
≲ ∥ SH ∥Hs,0 ∥U ∥Hs,1 ,
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and

∥(∂xU)(TS∂αxH) ∥l2(L2
x)
≤ ∥ ∂xU ∥l∞(L∞

x ) ∥TSΛ
sH ∥l2(L2

x)
≲ ∥TSH ∥Hs,0 ∥U ∥Hs,1 .

Using Lemma 3.5 (6) and since s− 2 > 1
2

we obtain

∥[∂αx ;U, ∂xSH] ∥l2(L2
x)
≲ ∥U ∥

Hmax(s−2+3
2 ,s− 1

2 ),1 ∥ ∂xSH ∥Hmax(s−1,s−2+1),0

≲ ∥U ∥Hs,1 ∥ SH ∥Hs,0 ,

and

∥[∂αx ;U, ∂xTSH] ∥l2(L2
x)
≲ ∥U ∥

Hmax(s−2+3
2 ,s− 1

2 ),1 ∥ ∂xTSH ∥Hmax(s−1,s−2+1),0

≲ ∥U ∥Hs,1 ∥TSH ∥Hs,0 .

Moreover using Lemma 3.2, and estimate (3.5) and since s− 1 > 1
2
+ 1 we have

∥ |[∂αx ;Dρ(U),Ru∂xSH] |l1 ∥L2
x
≲ ∥Λs−1(Dρ(U)) ∥l2(L2

x)
∥Λs−2+1(∂xSH) ∥l2(L2

x)

+ ∥Λs−2+1(Dρ(U)) ∥l2(L2
x)
∥Λs−1(∂xSH) ∥l2(L2

x)

≲ ∥U ∥Hs,1 ∥ SH ∥Hs,0 ,

and

∥ |[∂αx ;H, ∂xU ] |l1 ∥L2
x
≲ ∥Λs−1H ∥l2(L2

x)
∥Λs−2+1 (∂xU) ∥l2(L2

x)

+ ∥Λs−1 (∂xU) ∥l2(L2
x)
∥Λs−2+1H ∥l2(L2

x)

≲ ∥H ∥Hs−1,0 ∥U ∥Hs,0 .

Using Lemma 3.2 and classical product estimates in Sobolev spaces and the fact that and since
s− 1 > 1

2
+ 1 we have

∥ |(∂αxU)(∂xH) |l1 ∥L2
x
≲ ∥Λs (U) ∥l2(L2

x)
∥Λs−2 (∂xH) ∥l2(L2

x)

≲ ∥U ∥Hs,0 ∥H ∥Hs−1,0 ,

and

∥ |(Dρ(∂xU))(RuS∂
α
xH) |l1 ∥L2

x
≲ ∥Λs−2+1(DρU) ∥l2(L2

x)
∥ΛsSH ∥l2(L2

x)

≲ ∥U ∥Hs,1 ∥ SH ∥Hs,0 .

Using the fact that ∥ S0 ∥l1→l2 ≤ 1, ∥TS0 ∥l1→l2 ≤ 1, ∥ S ∥l1→l2 ≤ 1 (Lemma 3.2) we can
deduce estimates of the remaining terms of TSRα,0 follow directly from the previous estimates
and moreover we have

∥ SRα,0 ∥l2(L2
x)
+ ∥TSRα,0 ∥l2(L2

x)
≤ (∥H ∥Hs−1,0 + ∥ SH ∥Hs,0 + ∥TSH ∥Hs,0) ∥U ∥Hs,1 . (4.7)

Estimate for Rα,0 with 0 ≤ α ≤ s.

Rα,0 = −[∂αx , U ]∂xU + κ
1

H +H
[∂αx , ∂xH]∂xU + κ

[
∂αx ,

1

H +H

]
(∂xH)(∂xU).
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Using Lemma 3.5 (4) and since s− 3
2
> 1

2
, we have

∥[∂αx , U ]∂xU ∥l2(L2
x)
≲ ∥ ∂xU ∥Hs−1,1 ∥ ∂xU ∥Hs−1,1

≲ ∥U ∥2Hs,1 .

Using Lemma 3.5 (4) and since s− 3
2
> 1

2
, we have∥∥∥∥κ [∂αx , 1

H +H

]
(∂xH)(∂xU)

∥∥∥∥
l2(L2

x)

≲ κ

(∥∥∥∥Λs− 3
2

(
∂x

1

H +H

)∥∥∥∥
l∞(L2

x)

∥Λs−1((∂xH)(∂xU)) ∥l2(L2
x)

+ ∥Λs− 3
2 ((∂xH)(∂xU)) ∥l∞(L2

x)

∥∥∥∥Λs−1

(
∂x

1

H +H

)∥∥∥∥
l2(L2

x)

)
.

Moreover one has for any s0 >
1
2
, σ ≥ 0 and any i ∈ {1, · · · , N}, using classical product

estimates and composition estimates in Sobolev spaces we have∣∣∣∣∂x 1

H i +Hi

∣∣∣∣
Hσ

x

=

∣∣∣∣ ∂xHi

(H i +Hi)2

∣∣∣∣
Hσ

x

≤
∣∣∣∣∂xHi

H2
i

∣∣∣∣
Hσ

x

+

∣∣∣∣( 1

H2
i

− 1

(H i +Hi)2

)
∂xHi

∣∣∣∣
Hσ

x

≲ (h−1
∗ )2 |∂xHi|Hσ

x
+

∣∣∣∣( 1

H2
i

− 1

(H i +Hi)2

)∣∣∣∣
H

s0
x

|∂xHi|Hσ
x

+

〈∣∣∣∣( 1

H2
i

− 1

(H i +Hi)2

)∣∣∣∣
Hσ

x

|∂xHi|Hs0
x

〉
σ>s0

≤ C
(
h−1
∗ , ∥Hi ∥Hs0

x

)
∥ ∂xHi ∥Hσ

x
,

and therefore∥∥∥∥Λs− 3
2

(
∂x

1

H +H

)∥∥∥∥
l∞(L2

x)

≲ C
(
h−1
∗ , ∥Λs− 3

2H ∥l∞(L2
x)

)
∥Λs− 3

2∂xH ∥l∞(L2
x)
,

and ∥∥∥∥Λs−1

(
∂x

1

H +H

)∥∥∥∥
l2(L2

x)

≲ C
(
h−1
∗ , ∥Λs− 3

2H ∥l∞(L2
x)

)
∥Λs−1∂xH ∥l2(L2

x)
.

Using classical product estimates in Sobolev spaces we have

∥Λs− 3
2 ((∂xH)(∂xU)) ∥l∞(L2

x)
≲ ∥ ∂xΛs− 3

2H ∥l∞(L2
x)
∥Λs− 3

2∂xU ∥l∞(L2
x)
≲ ∥H ∥Hs,1 ∥U ∥Hs,1 .

By Lemma 3.5 ((2) and (4)) and since s− 1 > 1
2
+ 1

2

∥Λs−1((∂xH)(∂xU)) ∥l2(L2
x)
≲ ∥H ∥Hs,1 ∥U ∥Hs,1 .

and ∥∥∥∥κ 1

H +H
[∂αx , ∂xH]∂xU

∥∥∥∥
l2(L2

x)

≲ κh−1
∗
(
∥ ∂2xH ∥Hs−1,1 ∥ ∂xU ∥Hs−1,1

)
≲ κh−1

∗ (∥ ∂xH ∥Hs,1 ∥U ∥Hs,1) .

Consequently, using Lemma 3.3,

∥Rα,0 ∥l2(L2
x)
≲ ∥U ∥2Hs,1 +κC(h

−1
∗ , ∥H ∥Hs−1,1)

(
∥H ∥2Hs,1 + ∥ ∂xH ∥Hs,1

)
∥U ∥Hs,1 . (4.8)
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Estimates for Rα,j for j ∈ {1, 2}, with 0 ≤ α ≤ s− j .

For j = 1 using the fact that DρS = Rd, we have

Rα,1 = Rd

(
−[∂α+1

x , U ]H − ∂αx ((H)(∂xU))
)
.

Using Lemma 3.5 (4) and since s− 1 > 1
2
+ 1 we have

∥[∂α+1
x , U ]H ∥l2(L2

x)
≲ ∥ ∂xU ∥Hs−1,1 ∥H ∥Hs−1,1

≲ ∥U ∥Hs,1 ∥H ∥Hs−1,1 .

and

∥ ∂αx ((H)(∂xU)) ∥l2(L2
x)
≤ |H |l∞ ∥U ∥Hs,0 .

For j = 2, using Lemma 3.1 and the fact that D2
ρS = RdDρ, we have

Rα,2 =Rd

(
− J∂αxDρ, U + UK∂xH − ∂αxDρ ((H +H)∂xU))

)
.

Using Lemma 3.7 (2), Lemma 3.6 (1) and since s− 2 > 1
2
, we have

∥J∂αxDρ, UK∂xH ∥l2(L2
x)
≲ ∥U ∥Hs,2 ∥H ∥Hs−1,1 ,

and

∥ ∂αxDρ ((H)(∂xU)) ∥l2(L2
x)
≲ ∥H ∥Hs−1,1 ∥U ∥Hs,1 .

Moreover we have

∥J∂αxDρ, UK∂xH ∥l2(L2
x)
≤ |DρU |l∞ ∥H ∥Hs−1,0 ,

and

∥ ∂αxDρ ((H)(∂xU)) ∥l2(L2
x)
≲ |H |w1,∞ ∥U ∥Hs,1 .

Hence

∥Rα,j ∥l2(L2
x)
≲ (∥H ∥Hs−1,1 + |H |w1,∞ + |DρU |l∞)(∥U ∥Hs,2 + ∥H ∥Hs−1,0). (4.9)

Estimates for Rα,j = −
r
∂αxD

j
ρ, U + U − κ ∂xH

H+H

z
∂xU − ∂αx

(
Dj

ρ (Γ∂xH)
)
, with j ∈ {1, 2} and

0 ≤ α ≤ s− j.

By means of Lemma 3.1 and Lemma 3.4, we easily infer∥∥∥∥∂xHH
∥∥∥∥
Hs,2

≤ C(h−1
∗ , |DρH |l∞ , |D

2
ρH |l∞) ∥ ∂xH ∥Hs,2 .

Since s > 3
2
+ 1

2
, by Lemma 3.7 we have

∥J∂αxDj
ρ, UK∂xU ∥l2(L2

x)
≲ ∥U ∥Hs,2 ∥ ∂xU ∥Hs−1,2 .

By Lemma 3.1, we have

∥J∂αxDj
ρ, UK∂xU ∥l2(L2

x)
≲
(
|DρU |l∞ + |D2

ρU |l∞
)
∥U ∥Hs,1 .
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Moreover using Lemma 3.7, Lemma 3.6 (2) and Lemma 3.8 it follows that

κ

∥∥∥∥s
∂αxD

j
ρ,

∂xH

H +H

{
∂xU

∥∥∥∥
l2(L2

x)

≲ κ

∥∥∥∥ ∂xH

H +H

∥∥∥∥
Hs,2

∥ ∂xU ∥Hs−1,2

≲ κ

∥∥∥∥∂xHH
∥∥∥∥
Hs,2

∥U ∥Hs,2 +κ ∥U ∥Hs,2 ∥ ∂xH ∥Hs,2

∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs−1,1

+ κ ∥U ∥Hs,2 ∥ ∂xH ∥Hs−1,1

∥∥∥∥ 1

H +H
− 1

H

∥∥∥∥
Hs,2

≲ κC(h−1
∗ , |DρH |w1,∞) ∥ ∂xH ∥Hs,2 ∥U ∥Hs,2

+ κ ∥U ∥Hs,2 ∥ ∂xH ∥Hs,2 C(h
−1
∗ ,M,M) ∥H ∥Hs−1,1

+ κ ∥U ∥Hs,2 ∥H ∥Hs,2 C(h
−1
∗ ,M,M) ∥H ∥Hs,2 .

Using (4.2) we have

∂αx
(
Dj

ρ (Γ∂xH)
)
= ∂αx

(
Dj

ρ

(
ρ1ρ

−1(TS)t∂xTSH
))

+ ∂αx
(
Dj

ρ

(
ρ−1StC∂xSH

))
,

consequently using Lemma 3.1 and the fact that Dρρ = −(1 · · · , 1)t, D2
ρρ = (0, · · · , 0)t,

Dρ(TS)
t(TS) = 0 and DρS = Rd, DρS

t = −Ru, one has∥∥∂αx (Dj
ρ

(
ρ1ρ

−1(TS)t∂xTSH
))∥∥

l2(L2
x)
≲ ρ1C

(∣∣ρ−1
∣∣
l∞

)
∥ ∂α+1

x TSH ∥l2(L2
x)

≲ ρ1C
(∣∣ρ−1

∣∣
l∞

)
∥TSH ∥Hs,0

and ∥∥∂αx (Dj
ρ

(
ρ−1StC∂xSH

))∥∥
l2(L2

x)
≲ C

(∣∣ρ−1
∣∣
l∞

)
∥ ∂α+1

x SH ∥l2(L2
x)

≲ C
(∣∣ρ−1

∣∣
l∞

)
∥ SH ∥Hs,1 .

Hence

∥Rα,j ∥l2(L2
x)
≲ C

(
ρ1,
∣∣ρ−1

∣∣
l∞

)
(∥TSH ∥Hs,0 + ∥ SH ∥Hs,0) + (|DρU |w1,∞ + ∥U ∥Hs,2) ∥U ∥Hs,2

+ κC(h−1
∗ , |H |w2,∞ , ∥H ∥Hs−1,1)

(
∥H ∥2Hs,2 + ∥ ∂xH ∥Hs,2

)
∥U ∥Hs,2 . (4.10)

Estimates for rα,0 = −[∂α+1
x ;U,H]+ (∂αxU) (∂xH), rα,0 = −(∂αxU)(H)−∂αx (HU), with 0 ≤ α ≤

s.

Using Lemma 3.5 with Lemma 3.3 and since s− 3
2
> 1

2
we have

∥[∂α+1
x ;U,H] ∥l2(L2

x)
≲ ∥H ∥Hs,1 ∥U ∥Hs,1 ,

and

∥ (∂αxU) (∂xH) ∥l2(L2
x)
≲ ∥H ∥Hs,1 ∥U ∥Hs,0 ,

and

∥(∂αxU)(H) ∥l2(L2
x)
≲ ∥H ∥Hs−1,1 ∥U ∥Hs,0 .

Finally,

∥ ∂αx (HU) ∥l2(L2
x)
≲ |H |l∞ ∥U ∥Hs,0 .
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Estimates for rα,j, rα,j for j ∈ {1, 2} such that 0 ≤ α ≤ s− j.

We have

rα,j = −J∂α+1
x Dj

ρ;U,HK + (∂αxD
j
ρU)(M

j∂xH),

rα,j = −JDj
ρ, UK∂αxH − ∂αx

(
Dj

ρ(HU)
)
− (∂αxD

j
ρU)(M

jH).

Using Lemma 3.1, we have

∥JDj
ρ, UK∂αxH ∥l2(L2

x)
≲ |DρU |l∞ ∥H ∥Hs−1,1 + |D2

ρU |l∞ ∥H ∥Hs−2,0 ,

and

∥ ∂αx
(
Dj

ρ(HU)
)
∥l2(L2

x)
≲ |H |l∞ ∥U ∥Hs,2 + |DρH |l∞ ∥U ∥Hs−1,1 + |D2

ρH |l∞ ∥U ∥Hs−2,0 .

Moreover using Lemma 3.3 and since s > 3
2
+ 1

2
we have

∥(∂αxDj
ρU)(M

jH) ∥l2(L2
x)
≲ ∥H ∥Hs−1,1 ∥U ∥Hs,2 ,

and

∥(∂αxDj
ρU)(M

j∂xH) ∥l2(L2
x)
≲ ∥H ∥Hs,1 ∥U ∥Hs,2 .

Since α + 1 ≤ s+ 1− j and s+ 1 ≥ 2, s+ 1 > 5
2
+ 1

2
then by Lemma 3.7 (3).

∥J∂α+1
x Dj

ρ;U,HK ∥l2(L2
x)
≲ ∥U ∥Hs,2 ∥H ∥Hs,2 .

Hence for j ∈ {0, 1, 2} such that 0 ≤ α ≤ s− j

∥ rα,j ∥l2(L2
x)
≲ ∥H ∥Hs,2 ∥U ∥Hs,2 , (4.11)

∥ rα,j ∥l2(L2
x)
≲ (|H |w2,∞ + |DρU |w1,∞ + ∥H ∥Hs−1,1)(∥U ∥Hs,2 + ∥H ∥Hs−1,1).

Collecting estimates (4.5)− (4.11) the lemma is proved.

4.2 Energy estimates

In this section we give some energy estimates of linear equations arising in Lemma 4.2. We
first recall some energy estimates of transport and transport diffusion equations:

∂tḢ + U̇ ∂xḢ = κ∂2xḢ +R + ∂xR. (4.12)

∂tḢ + U̇ ∂xḢ = R. (4.13)

Lemma 4.3.

1. There exists a universal constant C0 > 0 such that for any N ∈ N∗, κ > 0 and T > 0,
for any U̇ ∈ L∞(0, T ; l∞(L∞

x (R))) with ∂xU̇ ∈ L1(0, T ; l∞(L∞
x (R))), for any (R,R) ∈

L2(0, T ; l2(L2
x(R))) and for any Ḣ ∈ C0([0, T ); l2(L2

x(R))) with ∂xḢ ∈ L2(0, T ; l2(L2
x(R)))

such that (4.12) holds in L2(0, T ; (H1,0(R))′) we have

∥ Ḣ ∥L∞(0,T ;l2(L2
x))

+κ
1
2 ∥ ∂xḢ ∥L2(0,T ;l2(L2

x))

≤ C0

(
∥ Ḣ|t=0 ∥l2(L2

x)
+ ∥R ∥L1(0,T ;l2(L2

x))
+κ−

1
2 ∥R ∥L2(0,T ;l2(L2

x))

)
exp

(
C0 ∥ ∂xU̇ ∥L1(0,T ;l∞(L∞

x ))

)
. (4.14)
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2. There exists a universal constant C0 > 0 such that for any N ∈ N∗, T > 0, and any
Ḣ ∈ L∞(0, T ; l2(L2

x(R))) solution of (4.13) with initial data Ḣ|t=0 ∈ l2(L2
x), with

R ∈ L1(0, T ; l2(L2
x(R))), we have

∥ Ḣ ∥L∞(0,T ;l2(L2
x))

≤
(
∥ Ḣ|t=0 ∥l2(L2

x)
+ ∥R ∥L1(0,T ;l2(L2

x))

)
exp

(
C0 ∥ ∂xU̇ ∥L1(0,T ;l∞(L∞

x ))

)
.

(4.15)

Proof. Let i ∈ {1, · · · , N} fixed, then Ḣi satisfies the following equation

∂tḢi + U̇i ∂xḢi = κ∂2xḢi +Ri + ∂xRi.

It is standard (see Chapter 3 in [3]) that we have the estimate

∥ Ḣi ∥L∞(0,T ;L2
x)
+κ

1
2 ∥ ∂xḢi ∥L2(0,T ;L2

x)

≤ C0

(
∥ Ḣi|t=0 ∥L2

x
+ ∥Ri ∥L1(0,T ;L2

x)
+κ−

1
2 ∥Ri ∥L2(0,T ;L2

x)

)
exp

(
C0 ∥ ∂xU̇ ∥L1(0,T :l∞(L∞

x ))

)
.

Taking the l2-norm of this estimate and using triangular inequality we infer (4.14).
In the same way (4.15)) is obtained using standard energy estimates for the transport

equation (see Th. 3.14 in [3]).

We now consider system

∂tḢ + (U + U)∂xḢ + (H +H)∂xU̇ = κ∂2xḢ +R, (4.16)

∂tU̇ + Γ∂xḢ +

(
U + U − κ

∂xH

H +H

)
∂xU̇ = R, .

where we recall that Γ satisfies the decomposition (4.2).

Lemma 4.4. Let h∗,M,ρ1 > 0 . There exists C = C(M,ρ1, h∗) > 0 (independent of N) such
that for all κ > 0, N ∈ N∗ and any H,U ∈ RN and any T > 0 and (H,U) solution to the
system (4.1) on [0, T ] with (H,U) ∈ C([0, T ];Hs,2(R)2), H ∈ L2(0, T ;Hs+1,2(R)), satisfying for
almost every t ∈ [0, T ] the upper bound

∥ ∂xH(t, ·) ∥L∞
x (l2) + ∥ ∂xU(t, ·) ∥l∞(L∞

x ) ≤M,

and the lower bound
inf

(i,x)∈{1,··· ,N}×R
H i +Hi(t, x) ≥ h∗, (4.17)

and for any (Ḣ, U̇) ∈ C([0, T ]; l2(L2(R)2) with Ḣ ∈ L2(0, T ; l2(H1(R))) satisfying (4.16) with
R,R ∈ L2(0, T ; l2(L2(R))), the following estimate holds.

E
1
2 (Ḣ, U̇)(t) +

κ
1
2

2
∥ ∂xCSḢ ∥L2(0,t;l2(L2

x))
+(ρ1κ)

1
2 ∥ ∂xTSḢ ∥L2(0,t;l2(L2

x))

≤

E
1
2 (Ḣ, U̇)(0) + C

t∫
0

E
1
2 (R,R)(τ)dτ


× exp

C t∫
0

(
1 + κ−1 ∥Dρ(U + U)(τ, ·) ∥2L∞

x (l2)

)
dτ

 ,
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where we denote

E(Ḣ, U̇)(t) := 1

2
∥CSḢ ∥2l2(L2

x)
+
ρ1

2
∥TSḢ ∥2l2(L2

x)
+
1

2

∫
R

〈
U̇ ,ρ(H +H)U̇

〉
l2
.

Proof. In this proof we consider (Ḣ, U̇) to be a sufficiently regular solution to the system (4.16)
so that the following computations and integration by parts hold true. The case of (Ḣ, U̇) with
the regularity mentioned in the Lemma is then done by the classical argument of regularization
and passing to the limit.

By applying CS to (4.16)1 and then testing it against CSḢ, and using Abel’s summation of
Lemma 3.1 we obtain

1

2

d

dt
∥CSḢ ∥2l2(L2

x)
+
〈
(U + U)∂xCSḢ,CSḢ

〉
L2
xl

2 −
〈
CS0

(
(Dρ(U + U))(Ru(∂xSḢ)

)
,CSḢ

〉
L2
xl

2

+
〈
CS
(
(H +H)∂xU̇

)
,CSḢ

〉
L2
xl

2 = −κ ∥ ∂xCSḢ ∥2l2(L2
x)
+
〈
CSR,CSḢ

〉
L2
xl

2 .

In the same way by applying TS to (4.16)1 and then testing it against ρ1TSḢ and using
Abel’s summation of Lemma 3.1 we obtain

ρ1

2

d

dt
∥TSḢ ∥2l2(L2

x)
+ρ1κ ∥ ∂xTSḢ ∥2l2(L2

x)
= −ρ1

〈
T
(
(U + U)∂xSḢ

)
,TSḢ

〉
L2
xl

2 + ρ1

〈
TSR,TSḢ

〉
L2
xl

2

+ ρ1

〈
TS0

(
(Dρ(U + U))(Ru∂xSḢ)

)
,TSḢ

〉
L2
xl

2 − ρ1

〈
TS
(
(H +H)∂xU̇

)
,TSḢ

〉
L2
xl

2 .

By testing (4.16)2 against ρ(H +H)U̇ and using the identity (4.2) and the fact that (H,U)
satisfies (4.1) we have

1

2

d

dt

(〈
U̇ ,ρ(H +H)U̇

〉
L2
xl

2

)
+ ρ1

〈
TS∂xḢ,TS

(
(H +H)U̇

) 〉
L2
xl

2 +
〈
CS∂xḢ,CS

(
(H +H)U̇

) 〉
L2
xl

2

=
〈
R,ρ(H +H)U̇

〉
L2
xl

2 .

Collecting the above, E(Ḣ, U̇) satisfies the following differential equation:

d

dt
E(Ḣ, U̇)(t) + κ ∥ ∂xCSḢ ∥2l2(L2

x)
+ρ1κ ∥ ∂xTSḢ ∥2l2(L2

x)

= −
〈
(U + U)∂xCSḢ,CSḢ

〉
L2
xl

2 − ρ1

〈
T
(
(U + U)∂xSḢ

)
,TSḢ

〉
L2
xl

2 (4.18)

+
〈
CS0

(
(Dρ(U + U))(Ru(∂xSḢ)

)
,CSḢ

〉
L2
xl

2 + ρ1

〈
TS0

(
(Dρ(U + U))(Ru∂xSḢ)

)
,TSḢ

〉
L2
xl

2

(4.19)

− ρ1

〈
TS∂xḢ,TS

(
(H +H)U̇

) 〉
L2
xl

2 −
〈
CS∂xḢ,CS

(
(H +H)U̇

) 〉
L2
xl

2 (4.20)

− ρ1

〈
TS
(
(H +H)∂xU̇

)
,TSḢ

〉
L2
xl

2 −
〈
CS
(
(H +H)∂xU̇

)
,CSḢ

〉
L2
xl

2 (4.21)

+
〈
CSR,CSḢ

〉
L2xl2

+
〈
R,ρ(H +H)U̇

〉
L2
xl

2 + ρ1

〈
TSR,TSḢ

〉
L2
xl

2 . (4.22)

Before estimating all the terms in the previous equality we notice that

1

2
∥CSḢ ∥2l2(L2

x)
+
ρ1

2
∥TSḢ ∥2l2(L2

x)
+
ρ1h∗
2

∥ U̇ ∥2l2(L2
x)
≤ E(Ḣ, U̇)(t).

Hence we can now begin the estimating process to establish a differential inequality.
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We estimate the terms of (4.19) using Lemma 3.2 and Cauchy Schwarz inequality.∣∣∣∣〈CS0

(
(Dρ(U + U))(Ru(∂xSḢ)

)
,CSḢ

〉
L2
xl

2

∣∣∣∣ ≤ ∫
R
|(Dρ(U + U))(Ru(∂xCSḢ) |l1 |CSḢ |l2

≤ ∥Dρ(U + U) ∥L∞
x (l2) ∥ ∂xCSḢ ∥l2(L2

x)
∥CSḢ ∥l2(L2

x)

≤ κ

2
∥ ∂xCSḢ ∥2l2(L2

x)
+κ−1 ∥Dρ(U + U) ∥2L∞

x (l2) E(Ḣ, U̇)(t).

In the same way we have∣∣∣∣ρ1

〈
TS0

(
(Dρ(U + U))(Ru∂xSḢ)

)
,TSḢ

〉
L2
xl

2

∣∣∣∣ ≤ κ

4
∥ ∂xCSḢ ∥2l2(L2

x)

+ 2κ−1ρ1 ∥Dρ(U + U) ∥2L∞
x (l2) E(Ḣ, U̇)(t).

We estimate now the terms in (4.18). Using integration by parts, we have

−
〈
(U + U)∂xCSḢ,CSḢ

〉
L2
xl

2 =
1

2

〈
(∂xU)(CSḢ),CSḢ

〉
L2
xl

2 ,

and consequently∣∣∣∣− 〈(U + U)∂xCSḢ,CSḢ
〉
L2
xl

2

∣∣∣∣ ≤ 1

2
∥ ∂xU ∥l∞(L∞

x ) ∥CSḢ ∥2l2(L2
x)
≤ ∥ ∂xU ∥l∞(L∞

x ) E(Ḣ, U̇)(t).

In the same way∣∣∣∣− ρ1

〈
T
(
(U + U)∂xSḢ

)
,TSḢ

〉
L2
xl

2

∣∣∣∣ ≤ ρ1

2
∥ ∂xU ∥l∞(L∞

x ) ∥TSḢ ∥2l2(L2
x)
≤ ∥ ∂xU ∥l∞(L∞

x ) E(Ḣ, U̇)(t)

Let us now consider the terms (4.20) and (4.21). Integrating by parts it follows that

−
〈
CS
(
(H +H)∂xU̇

)
,CSḢ

〉
L2
xl

2 =
〈
CS
(
(∂xH)(U̇)

)
,CSḢ

〉
L2
xl

2 +
〈
CS
(
(H +H)U̇

)
, ∂xCSḢ

〉
L2
xl

2

and

−ρ1

〈
TS
(
(H +H)∂xU̇

)
,TSḢ

〉
L2
xl

2 = ρ1

〈
TS
(
(∂xH)(U̇)

)
,TSḢ

〉
L2
xl

2

+ ρ1

〈
TS
(
(H +H)U̇

)
, ∂xTSḢ

〉
L2
xl

2 .

Hence,

(4.20) + (4.21) =
〈
CS
(
(∂xH)(U̇)

)
,CSḢ

〉
L2
xl

2 + ρ1

〈
TS
(
(∂xH)(U̇)

)
,TSḢ

〉
L2
xl

2 .

Using Lemma 3.2 it follows that∣∣∣∣〈CS((∂xH)(U̇)
)
,CSḢ

〉
L2
xl

2

∣∣∣∣ ≤ ∫
R
| ∂xH |l2 | U̇ |l2 |CSḢ |l2

≤ ∥ ∂xH ∥L∞
x (l2) ∥ U̇ ∥l2(L2

x)
∥CSḢ ∥l2(L2

x)

≤ 1√
h∗ρ1

∥ ∂xH ∥L∞
x (l2) E(Ḣ, U̇)(t),

and similarly, ∣∣∣∣ρ1〈TS((∂xH)(U̇)
)
,TSḢ

〉
L2
xl

2

∣∣∣∣ ≤ ρ1

∫
R
| ∂xH |l2 | U̇ |l2 |TSḢ |l2

≤ 1√
h∗

∥ ∂xH ∥L∞
x (l2) E(Ḣ, U̇)(t).
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The terms of (4.22) are easily controlled using Cauchy-Schwarz inequality.〈
CSR,CSḢ

〉
L2
xl

2+
〈
R,ρ(H +H)U̇

〉
L2
xl

2 + ρ1

〈
TSR,TSḢ

〉
L2
xl

2

≤ E(Ḣ, U̇)
1
2 (t)E(R,R)

1
2 (t).

Gathering all the above estimates we have
d

dt
E(Ḣ, U̇)(t) + κ

2
∥ ∂xCSḢ ∥2l2(L2

x)
+ρ1κ ∥ ∂xTSḢ ∥2l2(L2

x)

≤
(
2(1 + ρ1)κ

−1 ∥Dρ(U + U) ∥2L∞
x (l2) +2 ∥ ∂xU ∥l∞(L∞

x ) +(
1√
h∗

+
1

h∗ρ1

) ∥ ∂xH ∥L∞
x (l2)

)
E(Ḣ, U̇)(t)

+ E(Ḣ, U̇)
1
2 (t)E(R,R)

1
2 (t),

and hence there exists C = C(h−1
∗ ,ρ1,M) such that

d

dt
E(Ḣ, U̇)(t)+κ

2
∥ ∂xCSḢ ∥2l2(L2

x)
+ρ1κ ∥ ∂xTSḢ ∥2l2(L2

x)

≤ C
(
1 + κ−1 ∥Dρ(U + U) ∥2L∞

x (l2)

)
E(Ḣ, U̇)(t) + CE(Ḣ, U̇)

1
2 (t)E(R,R)

1
2 (t).

We conclude by using Gronwall’s inequality.

4.3 Large time well-posedness of the multi-layer system

In this subsection we state and prove our first main result, concerning the well-posedness of
system (4.1) with a time of existence uniform with respect to the number of layers N .

Theorem 4.5. Let s ∈ N be such that s > 2 + 1
2
, and M,M∗, h∗, h

∗ > 0. Then, there exists
C > 0 such that for any N ∈ N∗ and any κ > 0,

• for any (ρ, H, U) ∈ R3N such that

|ρ |l∞ + |ρ−1 |l∞ + |H |w2,∞ + |U |w2,∞ ≤M,

• for any initial data (H0, U0) ∈ Hs,2 with

M0 := ∥H0 ∥Hs−1,1 + ∥ SH0 ∥Hs,2 + ∥TSH0 ∥Hs,0 + ∥U0 ∥Hs,2 +κ
1
2 ∥H0 ∥Hs,2 ≤M∗

and
inf

(x,i)∈R×{1,··· ,N}
H i + (H0)i(x) ≥ h∗, sup

(x,i)R×{1,··· ,N}
H i + (H0)i(x) ≤ h∗,

the following holds. Denoting

T−1 = C
(
1 + κ−1

(
∥DρU ∥2l2 +M

2
0

))
, (4.23)

there exists a unique strong solution (H,U) ∈ C([0, T ];Hs,2(R)2) to (4.1) and initial data
(H,U)|t=0 = (H0, U0). Moreover, H ∈ L2(0, T ;Hs+1,2(R)) and one has, for any t ∈ [0, T ], the
lower and upper bounds

inf
(i,x)∈{1,··· ,N}×Rd

H i +Hi(t, x) ≥
h∗
2
, sup

(i,x)∈{1,··· ,N}×Rd

H i +Hi(t, x) ≤ 2h∗,

and the estimate
∥(H,U)∥s(t) ≤ CM0,

where we define

∥(H,U)∥s(t) := ∥H(t, ·) ∥Hs−1,1 + ∥ SH(t, ·) ∥Hs,2 + ∥TSH(t, ·) ∥Hs,0 + ∥U(t, ·) ∥Hs,2 +κ
1
2 ∥H(t, ·) ∥Hs,2

+ κ
1
2 ∥ ∂xH ∥L2(0,t;Hs−1,1) +κ

1
2 ∥ ∂xSH ∥L2(0,t;Hs,2)+κ

1
2 ∥ ∂xTSH ∥L2(0,t;Hs,0) +κ ∥ ∂xH ∥L2(0,t;Hs,2) .
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Proof. Let us denote T ∗ ∈ (0,+∞] the maximal time of existence and uniqueness of (H,U) ∈
C([0, T ∗);Hs,2(R)2), H ∈ L2(0, T ∗;Hs+1,2(R)) as provided by Proposition 4.1, and

T∗ = sup

{
0 < T < T ∗ : ∀t ∈ (0, T ],

h∗
2

≤ H i +Hi(t, x) ≤ 2h∗ and ∥(H,U)∥s(t) ≤ c0M0

}
,

where c0 > 1 will be determined later on. By continuity in time of the solution we deduce that
T∗ > 0. Let t ∈ (0, T∗).

By Lemma 4.2 and Lemma 4.4 and using the fact that | S |l2→l2 ≤
1√
N
|TS |l2→l2 + |CS |l2→l2 ,

we find that there exists c > 1 depending on ρ1,ρN , h∗, h
∗ and C > 0 depending additionally

on M, c0M0 such that

∥ΛsSH(t, ·) ∥l2(L2
x)
+ ∥ΛsTSH(t, ·) ∥l2(L2

x)
+ ∥ΛsU(t, ·) ∥l2(L2

x)

+ κ
1
2 ∥ ∂xSΛsH ∥L2(0,t;l2(L2

x))
+κ

1
2 ∥ ∂xΛsTSH ∥L2(0,t;l2(L2

x))

≤ c
(
∥ΛsSH0 ∥l2(L2

x)
+ ∥ΛsU0 ∥l2(L2

x)
+ ∥ΛsTSH0 ∥l2(L2

x)
+Cc0M0(t+

√
t)
)

× exp

C t∫
0

(
1 + κ−1 ∥Dρ(U + U)(τ, ·) ∥2L∞

x (l2)

)
dτ

 .

(4.24)

For all j ∈ {1, 2} and applying Lemma 4.2 and Lemma 4.3 (1) it follows that

∥Dj
ρSH(t, ·) ∥Hs−j,0 +κ

1
2 ∥ ∂xDj

ρSH ∥L2(0,t;Hs−j,0)

≤ C0

(
∥Dj

ρSH0 ∥Hs−j,0 +Cc0M0(t+
√
t)
)
exp

C0

t∫
0

∥ ∂xU(τ, ·) ∥l∞(L∞
x ) dτ

 ,

(4.25)

and moreover using Lemma 4.3 (2) we have

∥Dj
ρU(t, ·) ∥Hs−j,0 ≤

(
∥Dj

ρU0 ∥Hs−j,0 +Cc0M0(t+
√
t)
)

× exp

C0

t∫
0

∥∥∥∥∂x(U + U − κ
∂xH

H +H

)
(τ, ·)

∥∥∥∥
l∞(L∞

x )

dτ

 . (4.26)

For j ∈ {0, 1}, and using Lemma 4.2 and Lemma 4.3 (1) we have

∥Dj
ρH(t, ·) ∥Hs−1−j,0 +κ

1
2 ∥ ∂xDj

ρH ∥L2(0,t;Hs−1−j,0)

≤ C0

(
∥Dj

ρH0 ∥Hs−1−j,0 +Cc0M0t
)
exp

C0

t∫
0

∥ ∂xU(τ, ·) ∥l∞(L∞
x ) dτ

 .

Finally, for any j ∈ {0, 1, 2} using Lemma 4.2 and Lemma 4.3 (1) we have

κ
1
2 ∥Dj

ρH(t, ·) ∥Hs−j,0 +κ ∥ ∂xDj
ρH ∥L2(0,t;Hs−j,0)

≤ C0

(
κ

1
2 ∥Dj

ρH0 ∥Hs−j,0 +Cc0M0(t+
√
t)
)
exp

C0

t∫
0

∥ ∂xU(τ, ·) ∥l∞(L∞
x ) dτ

 .

(4.27)
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Since s > 2 + 1
2
, by using Lemma 3.3, and the continuous injection ∥ · ∥l∞(L∞

x ) ≤ ∥ · ∥
Hs− 3

2 ,1

and the fact that

∥ ∂xU(τ, ·) ∥l∞(L∞
x ) ≤ ∥U(τ, ·) ∥

Hs− 1
2 ,1 ,

and ∥∥∥∥∂x( ∂xH

H +H

)
(τ, ·)

∥∥∥∥
l∞(L∞

x )

≤
∥∥∥∥( ∂2xH

H +H

)
(τ, ·)

∥∥∥∥
l∞(L∞

x )

+

∥∥∥∥∥
(

∂xH

H +H

)2

(τ, ·)

∥∥∥∥∥
l∞(L∞

x )

≤ C(h−1
∗ )(∥ ∂xH(τ, ·) ∥

Hs− 1
2 ,1 + ∥ ∂xH(τ, ·) ∥2

Hs− 3
2 ,1),

we have then∥∥∥∥∂x(U + U − κ
∂xH

H +H
(τ, ·)

)∥∥∥∥
l∞(L∞

x )

≤ C(h−1
∗ )(∥U(τ, ·) ∥Hs,2 +κ ∥ ∂xH(τ, ·) ∥Hs,2 +κ ∥H(τ, ·) ∥2Hs,2).

and
∥Dρ(U + U) ∥2L∞

x (l2) ≲ ∥DρU ∥2l2 + ∥U ∥2Hs,2 ≤ ∥DρU ∥2l2 +(c0M0)
2.

Hence gathering estimates (4.24) − (4.27) we find that

∥(H,U)∥s(t) ≤ c

(
M0+Cc0M0(t+

√
t)

)
exp

C
t+√

t+

t∫
0

(
1 + κ−1(∥DρU ∥2l2 +(c0M0)

2)
)
dτ

 ,

where we recall that c > 1 depends on h∗ and h∗, and C > 0 depends on M,h∗, h
∗, c0M0. Hence

choosing c0 = 2c, we find that there exists C1 ≥ 1 depending only on M,M∗, h∗, h
∗ such that

t
(
1 + κ−1

(
∥DρU ∥2l2 +M

2
0

))
≤ C−1

1 =⇒ ∥(H,U)∥s(t) ≤
3

4
c0M0.

Moreover we notice that since for all i ∈ {1, · · · , N}

∂tHi = κ∂2xHi + gi, with gi = ∂x (HiUi +H iUi + U iHi) ,

by the positivity of the heat kernel we have

inf
(i,x)∈{1,··· ,N}×Rd

Hi(t, x) ≥ inf
(i,x)∈{1,··· ,N}×Rd

Hi(0, x)− ∥ g ∥L1(0,t;l∞(L∞)),

sup
(i,x)∈{1,··· ,N}×Rd

Hi(t, x) ≤ sup
(i,x)∈{1,··· ,N}×Rd

Hi(0, x) + ∥ g ∥L1(0,t;l∞(L∞)) .

By Lemma 3.3 and by Lemma 3.6

∥ g ∥l∞(L∞
x ) ≲ |H |w1,∞ ∥U ∥Hs,1 + |U |w1,∞ ∥H ∥Hs,1 + ∥U ∥Hs,1 ∥H ∥Hs,1

≤ C(M)(1 + κ−1M2
0 ).

Hence augmenting C1 if necessary we find that

t
(
1 + κ−1M2

0

)
≤ C−1

1 =⇒ ∀(i, x) ∈ {1, · · · , N} × Rd,
2

3
h∗ ≤ H i +Hi(t, x) ≤

3

2
h∗.

Hence by continuity in time of the solution we find that for all t ∈ (0, T∗) satisfying that
t
(
1 + κ−1

(
∥DρU ∥2l2 +M2

0

))
≤ C−1

1 , there exists δ > 0 such that [t − δ, t + δ] ⊂ (0, T∗). By a
continuity argument we deduce that T∗ >

(
C1

(
1 + κ−1

(
∥DρU ∥2l2 +M2

0

)))−1
, which completes

the proof.
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5 Convergence estimate
This section is dedicated to the proof of our second main result, Theorem 5.5. We prove that
considering a sufficiently regular solution of the hydrostatic continuously stratified system (1.2)
satisfying the non-cavitation assumption and appropriate bounds, the solutions to the multi-
layer systems (1.1) with suitably chosen densities ρi, reference depths H i, background velocities
U i and initial data (Hi, Ui)|t=0 are at a distance O(1/N2) to the continuously stratified solution.

This convergence result is deduced from a consistency result obtained in Section 5.1, and
on stability estimates derived in Section 5.2. The proof of Theorem 5.5 is then completed in
Section 5.3.

5.1 Consistency

Let ρbott > ρsurf > 0 and κ > 0. Let (h, u) and (h, u) be a sufficiently smooth solution to the
continuously stratified system

∂th+ ∂x((h+ h)(u+ u)) = κ∂2xh

∂tu+
(
u+ u− κ ∂xh

h+h

)
∂xu+

1
ϱ
M∂xh = 0

h|t=0 = h0
u|t=0 = u0,

(5.1)

where (Mη)(·, ϱ) = ρsurf
ρbott∫
ρsurf

η(·, ϱ′)dϱ′ +
ϱ∫

ρsurf

ρbott∫
ϱ′

η(·, ϱ′′)dϱ′′dϱ′.

Let N ∈ N∗ and recall (see Section 2) the definition of the linear operator PN

PN :
C([ρsurf , ρbott]) → RN

f 7→ (f(ρi))1≤i≤N

where ρi = ρsurf + (i− 1
2
)ρbott−ρsurf

N
.

Notice that PN(fg) = PN(f)PN(g). Hence applying PN to (5.1), we see that (PNh, PNu)
satisfy 

∂tPNh+ ∂x(PN(h+ h)PN(u+ u)) = κ∂2xPNh

∂tPNu+ PN

(
u+ u− κ ∂xh

h+h

)
∂xPNu+ Γ∂xPNh = RN

PNh|t=0 = PN(h0)
PNu|t=0 = PN(u0),

(5.2)

with Γi,j =
1
N

min(ρi,ρj)

ρi
and

RN = Γ∂xPNh− PN

(
1

ϱ
M∂xh

)
. (5.3)

We now estimate RN .

Lemma 5.1. For any ρbott > ρsurf > 0, there exists C > 0 such that for any N ∈ N∗, and any
sufficiently regular function h : R×(ρsurf , ρbott) → R, RN defined by (5.3) satisfies

∥RN ∥Hs,2 ≤
C

N2

(
∥ ∂ϱ∂xΛsh ∥L∞

ϱ (L2
x)
+ ∥ ∂2ϱ∂xΛsh ∥L∞

ϱ (L2
x)

)
.

Proof.
We recall that the densities ρi are defined for all i ∈ {1, 2, · · · , N} as ρi = ρsurf+

i− 1
2

N
(ρbott−ρsurf),

and in this proof we extend this definition to i ∈ {1
2
, 3
2
, · · · , N + 1

2
}. In this proof, we denote

32



by C(ρsurf , ρbott) > 0 a constant that depends only on ρsurf and ρbott and which will increase if
necessary throughout the proof. For i ∈ {1, · · · , N} fixed and for almost every (t, x) ∈ [0, T ]×R
with T the time of existence and uniqueness of the solution (h, u), integration by parts yields

(M∂xh)(x,ρi) = ρsurf

ρbott∫
ρsurf

∂xh(x, ϱ)dϱ+

ρi∫
ρsurf

ρbott∫
ϱ

∂xh(x, ϱ
′)dϱ′dϱ

=

ρi∫
ρsurf

ϱ∂xh(x, ϱ)dϱ+ ρi

ρbott∫
ρi

∂xh(x, ϱ)dϱ

=

ρbott∫
ρsurf

min(ϱ,ρi)∂xh(x, ϱ)dϱ.

This yields the following identites.
Firstly, one has

(
ρΛsRN

)
i
= −

N∑
j=1

ρ
j+1

2∫
ρ
j− 1

2

min(ϱ,ρi)∂xΛ
sh(·, ϱ)−min(ρi,ρj)∂xΛ

sh(·,ρj)dϱ

= −
i−1∑
j=1

ρ
j+1

2∫
ρ
j− 1

2

(ϱ∂xΛ
sh(·, ϱ)− ρj∂xΛ

sh(·,ρj))dϱ− ρi

N∑
j=i+1

ρ
j+1

2∫
ρ
j− 1

2

(∂xΛ
sh(·, ϱ)− ∂xΛ

sh(·,ρj))dϱ

−
ρi∫

ρ
i− 1

2

(ϱ∂xΛ
sh(·, ϱ)− ρi∂xΛ

sh(·,ρi))dϱ− ρi

ρ
i+1

2∫
ρi

(∂xΛ
sh(·, ϱ)− ∂xΛ

sh(·,ρi))dϱ.

Hence by numerical integration midpoint rule (applied to the first two terms) and the rectangle
rule (applied to the last two terms) we infer

∥ (ΛsRN)i ∥L2(Rd) ≤
C(ρsurf , ρbott)

N2

(
∥ ∂ϱ∂xΛsh(t, ·, ·) ∥L∞

ϱ (L2
x)
+ ∥ ∂2ϱ∂xΛsh(t, ·, ·) ∥L∞

ϱ (L2
x)

)
. (5.4)

Secondly, one has(
Dρ(ρΛ

s−1RN)

)
i

= N
((

ρΛs−1RN

)
i
−
(
ρΛs−1RN

)
i+1

)

= −N
N∑
j=1

ρ
j+1

2∫
ρ
j− 1

2

qi(ϱ)∂xΛ
s−1h(·, ϱ)− qi(ρj)∂xΛ

s−1h(·,ρj)dϱ
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where qi : ϱ 7→ min(ϱ,ρi)−min(ϱ,ρi+1). After simple computations we infer(
Dρ(ρΛ

s−1RN)

)
i

=−N

( ρi+1∫
ρi

(ρi − ϱ)∂xΛ
s−1h(·, ϱ)− 2N(ρi − ρi+1)∂xΛ

s−1h(·,ρi+1)dϱ

)

−N(ρi − ρi+1)

( ρ
i+3

2∫
ρi+1

∂xΛ
s−1h(·, ϱ)− ∂xΛ

s−1h(·,ρi+1)dϱ

)

−
N∑

j=i+2

( ρ
j+1

2∫
ρ
j− 1

2

∂xΛ
s−1h(·, ϱ)− ∂xΛ

s−1h(·,ρj)dϱ

)
.

Consequently, using the Taylor expansion of ϱ 7→ ∂xΛ
s−1h(·, ϱ) up to the first order in the

neighborhood of ρi+1 and up to the second order in the neighborhood of ρj for j ∈ {i +
2, · · · , N}, we obtain

∥
(
Dρ

(
ρΛs−1RN

))
i
∥L2

x
≤C(ρbott)

N2

(
∥ ∂ϱ∂xΛs−1h(t, ·, ·) ∥L∞

ϱ (L2
x)
+ ∥ ∂2ϱ∂xΛs−1h(t, ·, ·) ∥L∞

ϱ (L2
x)

)
.

Using Lemma 3.1 (2) and the fact that Dρρ = −(1, · · · , 1)t ∈ RN−1 in addition to the previous
estimate (5.4), we infer

∥
(
DρΛ

s−1RN

)
i
∥L2

x
≤C(ρsurf , ρbott)

N2

(
∥ ∂ϱ∂xΛs−1h(t, ·, ·) ∥L∞

ϱ (L2
x)
+ ∥ ∂2ϱ∂xΛs−1h(t, ·, ·) ∥L∞

ϱ (L2
x)

)
.

(5.5)

Lastly, one has(
D2

ρ(ρΛ
s−2RN)

)
i

= N
((

Dρ(ρΛ
s−2RN)

)
i
−
(
Dρ(ρΛ

s−2RN)
)
i+1

)

= −N2

N∑
j=1


ρ
j+1

2∫
ρ
j− 1

2

ki(ϱ)∂xΛ
s−2h(·, ϱ)− ki(ρj)∂xΛ

s−2h(·,ρj)dϱ

 ,

where ki : ϱ 7→ min(ϱ,ρi)− 2min(ϱ,ρi+1) + min(ϱ,ρi+2). After simple computations we infer(
D2

ρ(ρΛ
s−2RN)

)
i

=−N2

( ρi+1∫
ρi

(ρi − ϱ)∂xΛ
s−2h(·, ϱ)dϱ+

ρi+2∫
ρi+1

(ρi − 2ρi+1 + ϱ)∂xΛ
s−2h(·, ϱ)dϱ

− 1

N
(ρi − ρi+1)∂xΛ

s−2h(·,ρi+1)

)
.

Consequently, using the Taylor expansion of ϱ 7→ ∂xΛ
s−2h(·, ϱ) up to the second order in the

neighborhood of ρi+1, we obtain

∥D2
ρ(ρΛ

s−2RN)∥L2
x
≤ C(ρbott)

N2

(
∥ ∂ϱ∂xΛs−2h(t, ·, ·) ∥L∞

ϱ (L2
x)
+ ∥ ∂2ϱ∂xΛs−2h(t, ·, ·) ∥L∞

ϱ (L2
x)

)
.

Using Lemma 3.1 (3) and the fact that D2
ρρ = (0, · · · , 0)t ∈ RN−2 in addition to the previous

estimates (5.4), (5.5), we infer

∥D2
ρ(Λ

s−2RN)∥L2
x
≤ C(ρsurf , ρbott)

N2

(
∥ ∂ϱ∂xΛs−2h(t, ·, ·) ∥L∞

ϱ (L2
x)
+ ∥ ∂2ϱ∂xΛs−2h(t, ·, ·) ∥L∞

ϱ (L2
x)

)
.

The proof is complete.
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5.2 Stability

In this subsection we will provide the key ingredients towards stability estimates on the dif-
ference between the solutions to the continuously stratified system (5.1) (after applying the
projection operator PN) and the corresponding solutions to (4.1). These stability estimates are
obtained by considering the linearized system satisfied by the difference and their derivatives,
carefully estimating the remainders that result from this linearization. In the following Lemma
we estimate these remainder terms.

Lemma 5.2. Let s ∈ N, s > 2 + 1
2
, there exists C > 0, such that for any N ∈ N∗, κ > 0,

and any (H,H,U) and (h, h, u) sufficiently smooth respectively on R and Ω := (ρsurf , ρbott)×R,
setting

R′ = −(U − PNu)∂xPNh− (H − PNh)∂xPNu,

R′ = −
(
(U − PNu)− κ

(
∂xH

H +H
− PN

(
∂xh

h+ h

)))
∂xPNu,

the following estimates hold.

1.

∥R′ ∥Hs−1,1 ≤ C ∥U − PNu ∥Hs−1,1 ∥ ∂xh ∥∞,s−1,1+C ∥H − PNh ∥Hs−1,1 ∥ ∂xu ∥∞,s−1,1 .

2.

∥ SR′ ∥Hs,0 + ∥TSR′ ∥Hs,0 ≤ C ∥U − PNu ∥Hs,0 ∥ ∂xh ∥∞,s,0+C ∥ S(H − PNh) ∥Hs,0 ∥ ∂xu ∥∞,s−1,1

+C ∥TS(H − PNh) ∥Hs,0 ∥ ∂xu ∥∞,s−1,1+C ∥H − PNh ∥Hs−1,0 ∥ ∂xu ∥∞,s,0 .

3.

∥R′ ∥Hs,0 ≤ C ∥U − PNu ∥Hs,0 ∥ ∂xu ∥∞,s,0+Cκ

∥∥∥∥ ∂xH

H +H
− PN

(
∂xh

h+ h

)∥∥∥∥
Hs,0

∥ ∂xu ∥∞,s,0 .

4.

∥R′ ∥Hs,2 ≤ C ∥U − PNu ∥Hs,2 ∥ ∂xu ∥∞,s,2+Cκ

∥∥∥∥ ∂xH

H +H
− PN

(
∂xh

h+ h

)∥∥∥∥
Hs,2

∥ ∂xu ∥∞,s,2 .

Proof. The proof of 1., 3., and 4. follows immediately from Lemma 3.1, Lemma 3.5 (2) and
Lemma 3.9. For 2. we use Lemma 3.1 (1) to infer the identity valid for 0 ≤ α ≤ s

∂αxSR
′ =S∂αx

(
(U − PNu)(∂xPNh)

)
− (∂xPNu)(S∂

α
x (H − PNh))

+ S0 ((Dρ(∂xPNu))(RuS∂
α
x (H − PNh)))− S ([∂αx , ∂xPNu](H − PNh)) .

The estimate on ∥ SR′ ∥Hs,0 follows from Lemma 3.2, Lemma 3.5 (2), and Lemma 3.9. The
estimate for ∥TSR′ ∥Hs,0 follows in the same way from the analogous identity.

Lemma 5.3. Let h∗,M,Mc,M > 0, s ∈ N such that s > 2+1
2
. There exists C(h−1

∗ ,M,Mc,M) > 0
such that for any N ∈ N∗, and any h ∈ W 2,∞((ρsurf , ρbott)), H = PN(h), and any h and H
sufficiently smooth respectively on R and Ω := (ρsurf , ρbott)× R, satisfying

|H |w2,∞ ≤M, ∥H ∥Hs−1,1 ≤M, ∥h ∥∞,s−1,1 ≤Mc,
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inf
(i,x)∈{1,··· ,N}×R

H i +Hi(x) ≥ h∗, inf
(x,ϱ)∈R×(ρsurf ,ρbott)

h(ϱ) + h(x, ϱ) ≥ h∗,

one has∥∥∥∥ ∂xH

H +H
− PN

(
∂xh

h+ h

)∥∥∥∥
Hs,2

≤ C(h−1
∗ ,M,Mc,M)×(

∥ ∂x(H − PNh) ∥Hs,2 + ∥H − PNh ∥Hs,2(∥H ∥Hs,2 + ∥ ∂xh ∥∞,s−1,1)

+ ∥H − PNh ∥Hs−1,1 ∥ ∂xh ∥∞,s,2+ ∥H − PNh ∥Hs−1,1 ∥ ∂xh ∥∞,s−1,1(∥H ∥Hs,2 + ∥h ∥∞,s,2)

)
.

Proof. We notice that

∂xH

H +H
− PN

(
∂xh

h+ h

)
= ∂x(H − PNh)

(
1

H +H
− 1

H

)
+
∂x(H − PNh)

H

+
∂xPNh

H2 (PNh−H) + ∂xPNh

(
1

(H +H)(H + PNh)
− 1

H2

)
(PNh−H),

and

1

(H +H)(H + PNh)
− 1

H2 =

(
1

H +H
− 1

H

)(
1

H + PNh
− 1

H

)
+

1

H

[(
1

H +H
− 1

H

)
+

(
1

H + PNh
− 1

H

)]
.

Since s > 2 + 1
2
, using Lemma 3.6 (2), Lemma 3.8 and Lemma 3.9 we obtain the desired

estimate.

We can now collect all estimates on remainders which will be used in the proof of our second
main result, namely Theorem 5.5.

Lemma 5.4. Let ρbott > ρsurf > 0, s ∈ N, s > 2 + 1
2
, h∗,M,Mc,M > 0. Then there

exists C > 0 such that for any N ∈ N∗, κ ∈ (0, 1], and any (h, u) solution to (5.1) with
h, u ∈ W 2,∞((ρsurf , ρbott)) and (H,U) solution to (4.1) with H = PNh, U = PNu, assuming that
these solutions both exist on a time interval [0, T ) with T > 0, and that the following estimates
hold for any t ∈ [0, T )

|ρ |l∞ + |ρ−1 |l∞ + |H |w2,∞ + |U |w2,∞ + |h |W 2,∞ + |u |W 2,∞ ≤M,

∥H(t, ·) ∥Hs−1,1 + ∥U(t, ·) ∥Hs,2 +κ
1
2 ∥H(t, ·) ∥Hs,2 ≤M,

∥h(t, ·) ∥∞,s+1,2+ ∥ ∂xu(t, ·) ∥∞,s,2 ≤Mc,

inf
(i,x)∈{1,··· ,N}×R

H i +Hi(t, x) ≥ h∗, inf
(x,ϱ)∈R×[ρsurf ,ρbott]

h(ϱ) + h(t, x, ϱ) ≥ h∗,

then the following holds.

• For all α ∈ N, j ∈ {0, 1} with 0 ≤ α ≤ s− 1− j, we have

∂t∂
α
xD

j
ρ(H − PNh) + (Mj(U + U))∂x∂

α
xD

j
ρ(H − PNh) = κ∂2x∂

α
xD

j
ρ(H − PNh) +R′

α,j

where for every t ∈ [0, T ], R′
α,j(t) ∈ l2(L2(R)) and

∥R′
α,j(t, ·) ∥l2(L2

x)
≤C(∥U − PNu ∥Hs,2 + ∥H − PNh ∥Hs−1,1).
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• For all α ∈ N with 0 ≤ α ≤ s, we have

∂t∂
α
x (H − PNh) + (U + U)∂x∂

α
x (H − PNh) + (H +H) ∂x∂

α
x (U − PNu) = κ∂2x∂

α
x (H − PNh) +R′

α,0,

∂t∂
α
x (U − PNu) +

(
U + U − κ

∂xH

H +H

)
∂x∂

α
x (U − PNu) + Γ∂x∂

α
x (H − PNh) = R′

α,0,

where for every t ∈ [0, T ], (SR′
α,0(t),TSR

′
α,0(t),R

′
α,0(t)) ∈ l2(L2(R))3 and

∥ SR′
α,0(t, ·) ∥l2(L2

x)
+ ∥TSR′

α,0(t, ·) ∥l2(L2
x)
≤

C(∥U − PNu ∥Hs,1 + ∥ S(H − PNh) ∥Hs,0 + ∥TS(H − PNh) ∥Hs,0 + ∥H − PNh ∥Hs−1,0).

∥R′
α,0 ∥l2(L2

x)
≤ ∥RN ∥Hs,2 +C(1 + κ ∥ ∂xH ∥Hs,1) ∥U − PNu ∥Hs,1

+ C
(
∥H − PNh ∥Hs−1,1 +κ

1
2 ∥H − PNh ∥Hs,2 +κ ∥ ∂x(H − PNh) ∥Hs,2

)
.

• For any α ∈ N, j ∈ {1, 2} such that 0 ≤ α ≤ s− j, it holds

∂tD
j
ρS∂

α
x (H − PNh) + Rd(M

j−1(U + U))Dj
ρS(∂

α
x∂x(H − PNh))

= κ∂2x(∂
α
xD

j
ρS(H − PNh)) +R′

α,j

∂tD
j
ρ∂

α
x (U − PNu) +Mj

(
U + U − κ

∂xH

H +H

)
∂x(D

j
ρ∂

α
x (U − PNu)) = R′

α,j

where for every t ∈ [0, T ], (R′
α,j(t),R

′
α,j(t)) ∈ l2(L2(R))× l2(L2(R)) and

∥R′
α,j(t, ·) ∥l2(L2

x)
≤C(∥U − PNu ∥Hs,2 + ∥H − PNh ∥Hs−1,1).

∥R′
α,j ∥l2(L2

x)
≤∥RN ∥Hs,2 +C(1 + κ ∥ ∂xH ∥Hs,2) ∥U − PNu ∥Hs,2

+ C(∥TS(H − PNh) ∥Hs,0 + ∥ S(H − PNh) ∥Hs,1)

+ C
(
∥H − PNh ∥Hs−1,1 +κ

1
2 ∥H − PNh ∥Hs,2 +κ ∥ ∂x(H − PNh) ∥Hs,2

)
.

• For any α ∈ N, j ∈ {0, 1, 2}, 0 ≤ α ≤ s− j , it holds

∂tD
j
ρ∂

α
x (H − PNh) +Mj(U + U) ∂x(D

j
ρ∂

α
x (H − PNh)) = κ∂2x(∂

α
xD

j
ρ(H − PNh)) + r′α,j + ∂xr′α,j

where for every t ∈ [0, T ], (r′α,j(t), r′α,j(t)) ∈ l2(L2(R))× l2(L2(R)) and

∥ r′α,j ∥l2(L2
x)
≤ C ∥H − PNh ∥Hs,2 ,

∥ r′α,j ∥ ≤ C(∥U − PNu ∥Hs,2 + ∥H − PNh ∥Hs−1,1).

Above, we denote by RN the term defined in (5.3).

Proof. Under the hypothesis of the Lemma, (PNh, PNu) is a solution to (5.2), consequently
(H − PNh, U − PNu) satisfy the following system{

∂t(H − PNh) + (U + U)∂x(H − PNh) + (H +H)∂x(U − PNu) = κ∂2x(H − PNh) +R′,

∂t(U − PNu) +
(
U + U − κ ∂xH

H+H

)
∂x(U − PNu) + Γ∂x(H − PNh) = −RN +R′,

(5.6)
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where

RN = Γ∂xPNh− PN

(
1

ϱ
∂xψ

)
,

R′ = −(U − PNu)∂xPNh− (H − PNh)∂xPNu,

R′ = −
(
(U − PNu)− κ

(
∂xH

H +H
− PN

(
∂xh

h+ h

)))
∂xPNu.

The contribution from RN is trivial in this proof. We have estimated R′ and R′ in Lemma
5.2 and Lemma 5.3. The remaining contributions are estimated following the same steps as in
Lemma 4.2.

Estimates for R′
α,j, for all α ∈ N, j ∈ {0, 1} with 0 ≤ α ≤ s− 1− j, we have

R′
α,j = ∂αxD

j
ρR

′ − J∂αxD
j
ρ, U + UK∂x(H − PNh)− ∂αxD

j
ρ ((H +H)∂x(U − PNu)) ,

we obtain an estimate of the above by using the same estimates as Rα,j (adapted to our case)
in Lemma 4.2 and then applying Lemma 5.2 and Lemma 3.9, consequently we have

∥R′
α,j(t, ·) ∥l2(L2

x)
≲(∥ ∂xh ∥∞,s−1,1+ |H |w1,∞ + ∥H ∥Hs−1,1) ∥U − PNu ∥Hs,2

+ (∥ ∂xu ∥∞,s−1,1+ |DρU |l∞ + ∥U ∥Hs,2) ∥H − PNh ∥Hs−1,1 .

Estimates for SR′
α,0, TSR′

α,0 and R′
α,0 with 0 ≤ α ≤ s.

For all α ∈ N with 0 ≤ α ≤ s, using Abel’s summation Lemma 3.1 we have

SR′
α,0 =∂

α
xSR

′ − [∂αx , U, ∂xS(H − PNh)]− (∂x(U − PNu))(∂
α
xSH)

+ S0

(
[∂αx ;DρU,Ru∂xS(H − PNh)] + (Dρ(∂x(U − PNu)))(RuS∂

α
xH)

)
− S

(
(∂αxU)(∂x(H − PNh)) + [∂αx ;H, ∂x(U − PNu)]

)
,

TSR′
α,0 =∂

α
xTSR

′ − [∂αx , U, ∂xTS(H − PNh)]− (∂x(U − PNu))(∂
α
xTSH)

+ TS0

(
[∂αx ;DρU,Ru∂xS(H − PNh)] + (Dρ(∂x(U − PNu)))(RuS∂

α
xH)

)
− TS

(
(∂αxU)(∂x(H − PNh)) + [∂αx ;H, ∂x(U − PNu)]

)
,

and

R′
α,0 =− ∂αxRN + ∂αxR

′ − [∂αx , U ]∂x(U − PNu) +
κ

H +H
[∂αx , ∂xH]∂x(U − PNu)

+ κ

[
∂αx ,

1

H +H

] (
(∂xH)(∂x(U − PNu))

)
.

We obtain an estimate using the previous identities by using the same estimates of SRα,0,
TSRα,0 and Rα,0 (adapted to our case) in Lemma 4.2. Moreover, applying Lemma 5.2 we find

∥ SR′
α,0(t, ·) ∥l2(L2

x)
+ ∥TSR′

α,0(t, ·) ∥l2(L2
x)

≲ (∥ ∂xh ∥∞,s,0+ ∥TSH ∥Hs,0 + ∥ SH ∥Hs,0 + ∥H ∥Hs−1,0) ∥U − PNu ∥Hs,1

+ (∥ ∂xu ∥∞,s−1,1+ ∥U ∥Hs,1)(∥ S(H − PNh) ∥Hs,0 + ∥TS(H − PNh) ∥Hs,0)

+ (∥ ∂xu ∥∞,s,0+ ∥U ∥Hs,0) ∥H − PNh ∥Hs−1,0 .
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In the same way, and using additionally Lemma 5.3, we find

∥R′
α,0 ∥l2(L2

x)
≲ ∥RN ∥Hs,2

+ C(h−1
∗ , ∥H ∥Hs−1,1)(∥U ∥Hs,1 + ∥ ∂xu ∥∞,s,0+κ(∥H ∥2Hs,1 + ∥ ∂xH ∥Hs,1))× ∥U − PNu ∥Hs,1

+ C(h−1
∗ ,M,Mc,M)κ ∥ ∂xu ∥∞,s,0

×
(
∥ ∂x(H − PNh) ∥Hs,2 + ∥H − PNh ∥Hs,2(∥H ∥Hs,2 + ∥ ∂xh ∥∞,s−1,1)

+ ∥H − PNh ∥Hs−1,1 ∥ ∂xh ∥∞,s,2+ ∥H − PNh ∥Hs−1,1 ∥ ∂xh ∥∞,s−1,1(∥H ∥Hs,2 + ∥h ∥∞,s,2)

)
.

Estimates for R′
α,j, j ∈ {1, 2}, for any α ∈ N, such that 0 ≤ α ≤ s− j.

Recalling that DρS = Rd and D2
ρS = RdDρ we have

R′
α,1 = Rd∂

α
xR

′ + Rd

(
−[∂α+1

x , U + U ]∂αx (H − PNh)− ∂αx ((H +H)∂x(U − PNu))
)

= Rd∂
α
xR

′ + Rd (∂
α
x ((∂xU)(H − PNh))− ∂αx ((H)(∂x(U − PNu))))

+ Rd

(
−[∂α+1

x , U ](H − PNh)− ∂αx ((H)(∂x(U − PNu))
)

and

R′
α,2 =RdDρ∂

α
xR

′ + Rd

(
− J∂αxDρ, U + UK∂x(H − PNh)− ∂αxDρ ((H +H)(∂x(U − PNu)))

)
.

Using Lemma 3.5 (1) to estimate the second and third term of R′
α,1, and Lemma 5.2 to estimate

the contributions of R′ and the same estimates as Rα,1, Rα,2 (adapted to our case) in Lemma
4.2 for the remaining contributions, we find

∥R′
α,j(t, ·) ∥l2(L2

x)
≲(∥ ∂xh ∥∞,s−1,1+ ∥H ∥Hs−1,1 + |H |w1,∞) ∥U − PNu ∥Hs,2

+ (∥ ∂xu ∥∞,s−1,1+ ∥U ∥Hs,2 + |DρU |l∞) ∥H − PNh ∥Hs−1,1 .

Estimates for R′
α,j, for any α ∈ N, j ∈ {1, 2} such that 0 ≤ α ≤ s− j, we have

R′
α,j =− ∂αxD

j
ρRN + ∂αxD

j
ρR

′ −
s
∂αxD

j
ρ, U + U − κ

∂xH

H +H

{
∂x(U − PNu)

− ∂αxD
j
ρ (Γ∂x(H − PNh)) .

Where Γ is as in (4.2). Again we use the corresponding estimates for Rα,j (adapted to our case)
in Lemma 4.2, Lemma 5.2 and Lemma 5.3 for the contribution of R′, and deduce

∥R′
α,j ∥l2(L2

x)
≲ ∥RN ∥Hs,2 +(∥ ∂xu ∥∞,s,2+ ∥U ∥Hs,2 + |DρU |w1,∞)× ∥U − PNu ∥Hs,2

+ C(ρ1, |ρ−1 |l∞)(∥TS(H − PNh) ∥Hs,0 + ∥ S(H − PNh) ∥Hs,0)

+ C(h−1
∗ , |H |w2,∞ , ∥H ∥Hs−1,1)κ(∥H ∥2Hs,2 + ∥ ∂xH ∥Hs,2)× ∥U − PNu ∥Hs,2

+ C(h−1
∗ ,M,Mc,M)κ ∥ ∂xu ∥∞,s,2

×
(
∥ ∂x(H − PNh) ∥Hs,2 + ∥H − PNh ∥Hs,2(∥H ∥Hs,2 + ∥ ∂xh ∥∞,s−1,1)

+ ∥H − PNh ∥Hs−1,1 ∥ ∂xh ∥∞,s,2+ ∥H − PNh ∥Hs−1,1 ∥ ∂xh ∥∞,s−1,1(∥H ∥Hs,2 + ∥h ∥∞,s,2)

)
.
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Estimates for r′α,j and r′α,j, for any α ∈ N, j ∈ {0, 1, 2}, 0 ≤ α ≤ s− j, we have

r′α,j = −J∂α+1Dj
ρ;U,H − PNhK + (∂αxD

j
ρU)(M

j∂x(H − PNh)).

r′α,j = −JDj
ρ, UK∂αx (H − PNh)− ∂αxD

j
ρ(H(U − PNu))− (∂αxD

j
ρU)(M

j(H − PNh))

− ∂αxD
j
ρ((U − PNu)PNh)).

The estimate of the last term of r′α,j is obtained using Lemma 3.1 and Lemma 3.9. The
remaining contributions are obtained using the estimates of rα,j and rα,j (adapted to our case)
in Lemma 4.2, and we obtain

∥ r′α,j ∥l2(L2
x)
≲ ∥U ∥Hs,2 ∥H − PNh ∥Hs,2 .

∥ r′α,j ∥ ≲ (|H |w2,∞ + ∥h ∥∞,s,2) ∥U − PNu ∥Hs,2

+ (|DρU |w1,∞ + ∥U ∥Hs,2) ∥H − PNh ∥Hs−1,1 .

This concludes the proof.

5.3 Convergence

In this subsection we state and prove our second main result. Specifically, we show that con-
sidering any sufficiently regular solutions to the continuously stratified system (5.1) that is
bounded and satisfies the non-cavitation assumptions on a given time interval, we can con-
struct corresponding solutions (H,U) to the multi-layer system (4.1) on the same time interval
provided that the number of layers N is sufficiently large, and we quantify the convergence rate
between the continuously stratified and multi-layer solutions as N goes to infinity.

Theorem 5.5. Let ρbott > ρsurf > 0, s ∈ N such that s > 2 + 1
2
, and M,Mc, h∗, h

∗, κ > 0.
Moreover, consider h, u ∈ W 2,∞((ρsurf , ρbott)) such that

|h |W 2,∞ + |u |W 2,∞ ≤M,

and (h, u) ∈ C([0, T ];X∞,s+1,2
ϱ,x ) solution to (5.1) on a time interval [0, T ] with T > 0 such that

for all t ∈ [0, T ]

inf
(x,ϱ)∈R×(ρsurf ,ρbott)

h(ϱ) + h(t, x, ϱ) ≥ h∗, sup
(x,ϱ)∈R×(ρsurf ,ρbott)

h(ϱ) + h(t, x, ϱ) ≤ h∗ (5.7)

and

∥h(t, ·) ∥∞,s+1,2+ ∥u(t, ·) ∥∞,s+1,2+ ∥ ∂ϱ∂xΛsh(t, ·) ∥L∞
ϱ (L2

x)
+ ∥ ∂2ϱ∂xΛsh(t, ·) ∥L∞

ϱ (L2
x)
≤Mc.

(5.8)
Then there exists c > 0 and N0 ∈ N∗ such that for all N ≥ N0 and any initial data (H0, U0) ∈
Hs(R)2N satisfying

∥(H0 − PNh(0, ·), U0 − PNu(0, ·))∥s(0) ≤ cMc,

the solution to (4.1) with H = PNh, U = PNu and satisfying (H,U)t=0 = (H0, U0) defined in
Theorem 4.5 is well-defined on the time interval [0, T ] and satisfies for any t ∈ [0, T ]

inf
(x,i)∈R×{1,··· ,N}

H i + (H)i(t, x) ≥
h∗
2
, sup

(x,i)R×{1,··· ,N}
H i + (H)i(t, x) ≤ 2h∗, (5.9)

and
∥(H,U)∥s(t) ≤ α(1 +

√
κt)Mc, (5.10)
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with α a universal constant, and the difference between the two solutions satisfies

∥(H − PNh, U − PNu)∥s(t) ≤ C∥(H − PNh, U − PNu)∥s(0) exp

(
C

2
(1 + κ−1(∥DρU ∥2l2 +(CMc)

2)t

)

+
C

2N2

t∫
0

exp

(
C

2
(1 + κ−1(∥DρU ∥2l2 +(CMc)

2)(t− τ)

)
dτ,

(5.11)

where ∥ · ∥s is defined as in Theorem 4.5, and C depends only on ρbott, ρsurf , s,M,Mc, h∗, h
∗

(while N0 and c depend also on T and κ).

Proof. From Theorem 4.5 (or Proposition 4.1) we set TN > 0 the maximal time of existence
and uniqueness of the solution (H,U) ∈ C([0, TN);H

s(R)2N) with H ∈ L2(0, TN ;H
s+1,2(R)) to

the system (4.1) with (H,U)t=0 = (H0, U0). We set T∗ ∈ [0, TN ] the larger value such that for
all t ∈ [0, T∗) we have (5.9) and

∥(H,U)∥s(t) ≤ c0Mc,

where c0 > 0 will be determined below. We can choose c > 0 sufficiently small such that, by
continuity of the energy functional we have that T∗ > 0, and we consider below t ∈ (0, T∗) such
that t ≤ T .

Notice that the control of the difference (H−PNh, U−PNu)(t) induces a control of (H,U)(t)
by triangular inequality: using Lemma 3.9, there exists α > 0 a universal constant such that

∥(H,U)∥s(t) ≤ ∥(H − PNh, U − PNu)∥s(t) + ∥(PNh, PNu)∥s(t)

≤ ∥(H − PNh, U − PNu)∥s(t) + α(1 +
√
κt)Mc.

In the following, we prove the estimate (5.11) for t ∈ (0, T∗), that is assuming (5.9) and
∥(H,U)∥s(t) ≤ c0Mc. From (5.11) we infer that under the assumptions

∥(H − PNh, U − PNu)∥s(0) ≤ ϵ
Mc

2C
exp

(
−C

2
(1 + κ−1(∥DρU ∥2l2 +(c0Mc)

2)T

)
, (5.12)

1

N2

exp
(
C
2
(1 + κ−1(∥DρU ∥2l2 +(c0Mc)

2)T
)
− 1

(1 + κ−1(∥DρU ∥2l2 +(c0Mc)2)
≤ ϵ

Mc

2
, (5.13)

where ϵ > 0 is arbitrary, we have

∥(H,U)∥s(t) ≤ (ϵ+ α(1 +
√
κt))Mc.

Similarly, choosing ϵ sufficiently small, we can infer (5.9) with h∗/2 (respectively 2h∗) replaced
with 3h∗/4 (respectively 3h∗/2) from (5.11)-(5.12)-(5.13). Hence setting c0 = 2(ϵ+α(1+

√
T )),

the usual continuity argument implies that TN ≥ T⋆ ≥ T , and the conclusions of the Theorem
hold.

Let us now establish (5.11), assuming (5.9) and ∥(H,U)∥s(t) ≤ c0Mc. To this aim we follow
the proof of Theorem 4.5, using the stability estimates analogous to Lemma 4.3 and Lemma
4.4 together with the estimates on remainders of Lemma 5.1 and Lemma 5.4. We use below
the results and notations of Lemma 5.4.

Following the proof of Lemma 4.4 and integrating in time the differential inequality instead
of using Gronwall’s lemma (and using the fact that | S |l2→l2 ≤ 1√

N
|TS |l2→l2 + |CS |l2→l2) we
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obtain

∥ S(H − PNh)(t, ·) ∥2Hs,0 + ∥TS(H − PNh)(t, ·) ∥2Hs,0 + ∥(U − PNu)(t, ·) ∥2Hs,0

+ κ ∥ ∂xS(H − PNh) ∥2L2(0,t;Hs,0) +κ ∥ ∂xTS(H − PNh) ∥2L2(0,t;Hs,0)

≤ c
(
∥ S(H − PNh)(0, ·) ∥2Hs,0 + ∥(U − PNu)(0, ·) ∥2Hs,0 + ∥TS(H − PNh)(0, ·) ∥2Hs,0

)
+ c

∫ t

0

C(ρsurf , h∗, c0Mc)
(
1 + κ−1 ∥Dρ(U + U)(τ, ·) ∥2L∞

x (l2)

)(
∥(H − PNh, U − PNu)∥s(τ)

)2

dτ

+ c

∫ t

0

( ∑
0≤α≤s

(∥ SR′
α,0(τ, ·) ∥l2(L2

x)
+ ∥TSR′

α,0(τ, ·) ∥l2(L2
x)
+ ∥R′

α,0(τ, ·) ∥l2(L2
x)
)

)
×
(
∥(H − PNh, U − PNu)∥s(τ)

)
dτ, (5.14)

where c > 1 depends on h∗, h∗, ρsurf and ρbott.
Similarly, integrating in time the differential inequalities that yield Lemma 4.3 and recalling

that, by definition,

∥(H − PNh)(t, ·) ∥Hs−1,1 + ∥(U − PNu)(t, ·) ∥Hs,2 +κ
1
2 ∥(H − PNh)(t, ·) ∥Hs,2

≤ ∥(H − PNh, U − PNu)∥s(t),

we find that for j ∈ {1, 2},

∥Dj
ρS(H − PNh)(t, ·) ∥2Hs−j,0 +κ ∥ ∂xDj

ρS(H − PNh) ∥2L2(0,t;Hs−j,0)

≲ ∥Dj
ρS(H − PNh)(0) ∥2Hs−j,0 +

∫ t

0

∥U(τ, ·) ∥Hs,2

(
∥(H − PNh, U − PNu)∥s(τ)

)2

dτ

+

∫ t

0

( ∑
0≤α≤s−j

∥R′
α,j(τ, ·) ∥l2(L2

x)

)
(τ)∥(H − PNh, U − PNu)∥s(τ)dτ, (5.15)

for j ∈ {1, 2},

∥Dj
ρ(U − PNu)(t, ·) ∥2Hs−j,0 ≲ ∥Dj

ρ(U − PNu)(0) ∥2Hs−j,0

+

∫ t

0

∥∥∥∥∂x(U − κ
∂xH

H +H

)
(τ, ·)

∥∥∥∥
l∞(L∞

x )

(
∥(H − PNh, U − PNu)∥s(τ)

)2

dτ

+

∫ t

0

( ∑
0≤α≤s−j

∥R′
α,j(τ, ·) ∥l2(L2

x)

)(
∥(H − PNh, U − PNu)∥s(τ)

)
dτ, (5.16)

for j ∈ {0, 1},

∥Dj
ρ(H − PNh)(t, ·) ∥2Hs−j−1,0 +κ ∥ ∂xDj

ρ(H − PNh) ∥2L2(0,t;Hs−j−1,0)

≲ ∥Dj
ρ(H − PNh)(0) ∥2Hs−j−1,0 +

∫ t

0

∥U(τ, ·) ∥Hs,2

(
∥(H − PNh, U − PNu)∥s(τ)

)2

dτ

+

∫ t

0

( ∑
0≤α≤s−j−1

∥R′
α,j(τ, ·) ∥l2(L2

x)

)(
∥(H − PNh, U − PNu)∥s(τ)

)
dτ, (5.17)
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for j ∈ {0, 1, 2},

κ ∥Dj
ρ(H − PNh)(t, ·) ∥2Hs−j,0 +

κ2

2
∥ ∂xDj

ρ(H − PNh) ∥2L2(0,t;Hs−j,0)

≲ κ ∥Dj
ρ(H − PNh)(0) ∥2Hs−j,0 +

∫ t

0

∥U(τ, ·) ∥Hs,2

(
∥(H − PNh, U − PNu)∥s(τ)

)2

dτ

+ κ
1
2

∫ t

0

( ∑
0≤α≤s−j

∥ r′α,j(τ, ·) ∥l2(L2
x)

)
∥(H − PNh, U − PNu)∥s(τ)dτ

+

∫ t

0

( ∑
0≤α≤s−j

∥ r′α,j(τ, ·) ∥l2(L2
x)

)2

dτ, (5.18)

where we used Cauchy-Schwarz and Young inequalities for the contribution of r′α,j.
Moreover as seen in the proof of Theorem 4.5 we have∥∥∥∥∂x(U − κ

∂xH

H +H
(τ, ·)

)∥∥∥∥
l∞(L∞

x )

≤ C(∥U(τ, ·) ∥Hs,2 +κ ∥ ∂xH(τ, ·) ∥Hs,2 +κ ∥H(τ, ·) ∥2Hs,2),

(5.19)
with C = C(h−1

⋆ , c0Mc) and

∥Dρ(U + U) ∥2L∞
x (l2) ≲ ∥DρU ∥2l2 + ∥U ∥2Hs,2 ≤ ∥DρU ∥2l2 +(c0Mc)

2. (5.20)

Hence gathering estimates (5.14)-(5.18) with (5.19) and (5.20), together with the remainder
estimates obtained in Lemma 5.1 and Lemma 5.4, and using the control of (h, u) in (5.8) and
that for all τ ∈ [0, t], ∥(H,U)∥s(τ) ≤ c0Mc, we obtain(

∥(H − PNh, U − PNu)∥s(t)

)2

≤ C2

(
∥(H − PNh, U − PNu)∥s(0)

)2

+ C

∫ t

0

(1 + κ−1(∥DρU ∥2l2 +(c0Mc)
2)

(
∥(H − PNh, U − PNu)∥s(τ)

)2

dτ

+
C

N2

∫ t

0

∥(H − PNh, U − PNu)∥s(τ)dτ

+ C sup
τ∈[0,t]

(
∥(H − PNh, U − PNu)∥s(τ)

)(∫ t

0

(
∥(H − PNh, U − PNu)∥s(τ)

)2

dτ

)1/2

,

where C := C(ρbott, ρ
−1
surf , h

∗, h−1
∗ ,M, c0Mc) > 1 and the last term stems from the use of Cauchy-

Schwarz inequality in contributions involving either ∥ ∂x(H − PNh) ∥Hs,2 or ∥ ∂xH ∥Hs,2 . Using
Young inequality and augmenting C, this contribution can be absorbed in terms of the other
ones, and we have simply

sup
τ∈[0,t]

(
∥(H − PNh, U − PNu)∥s(t)

)2

≤ C2

(
∥(H − PNh, U − PNu)∥s(0)

)2

+ C

∫ t

0

(1 + κ−1(∥DρU ∥2l2 +(c0Mc)
2) sup

τ ′∈[0,τ ]

(
∥(H − PNh, U − PNu)∥s(τ

′)

)2

dτ

+
C

N2

∫ t

0

sup
τ∈[0,τ ′]

∥(H − PNh, U − PNu)∥s(τ
′)dτ.

By Gronwall’s lemma we infer that supτ∈[0,t] ∥(H − PNh, U − PNu)∥s(t)
2 ≤ Z(t) for all

t ∈ [0, T∗), where Z is the solution to{
Z ′(τ) = C(1 + κ−1(∥DρU ∥2l2 +(c0Mc)

2)Z(τ) + C
N2Z

1
2 (τ) τ ∈ [0, T∗),

Z(0) = C2∥(H − PNh, U − PNu)∥s(0)
2,
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whose explicit solution is

Z(t) =

(
C∥(H − PNh, U − PNu)∥s(0) exp

(
C

2
(1 + κ−1(∥DρU ∥2l2 +(CMc)

2)t

)

+
C

2N2

t∫
0

exp

(
C

2
(1 + κ−1(∥DρU ∥2l2 +(CMc)

2)(t− τ)

)
dτ

)2

.

Consequently we obtain (5.11), and the proof is complete.

Remark 5.6. • The existence of T > 0 and (h, u) sufficiently smooth solutions to the
system (5.1) over the time interval [0, T ] satisfying (5.7) and (5.8), as considered in the
previous theorem, results from Theorem 1.1 in [8].

• The dependency of c and N0 on T and κ is expressed in (5.12) and (5.13).

Remark 5.7. We used the operator

PN :
C([ρsurf , ρbott]) → RN

f 7→ (f(ρi))1≤i≤N

to map functions defined on [ρsurf , ρbott] to N-dimensional vectors because it enjoys the property
PN(fg) = PN(f)PN(g). However we can adapt the proof of Thorem 5.5 so as to replace PN

with

PN :
C([ρsurf , ρbott]) → RN

f 7→
(

1
ρi+1/2−ρi−1/2

∫ ρi+1/2

ρi−1/2
f(ϱ)dϱ

)
1≤i≤N

In this case the physical meaning of the discretized objects is more explicit. For instance,(
PN(u+u)

)
i
is the i−th layer-averaged horizontal velocity, whereas

(
PN(h+h))i = N(ηi−1−ηi)

is the rescaled layer depth; see Figure 1.
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