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Introduction

Many complex systems in sciences and engineering can be modeled by coupled systems of differential equations on networks. A network can be mathematically treated as a weighted digraph (directed graph), consisting of a set of n vertices and a set of directed arcs. In 1977, Freedman and Waltman [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator[END_REF] consider a two-patch model with a single species in logistic population growth as follows:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 + (x 2 -x 1 ), dx 2 dt = r 2 x 2 1 - x 2 K 2 + (x 1 -x 2 ), (1) 
where x i represents the population density in patch i, the parameter r i is the intrinsic growth rate, K i is carrying capacity and is the dispersal rate. Freedman and Waltman

show that under certain conditions, the total population abundance can be larger than the total carrying capacities K 1 + K 2 . Holt [START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF] generalized these results to a sourcesink system. In 2015, Arditi et al. [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF] gave a full mathematical analysis of the model (1) of Freedman and Waltman with symmetric dispersal.

In 2018, Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] extended the model (1) by considering asymmetric dispersal, i.e. the model:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 + (γ 12 x 2 -γ 21 x 1 ), dx 2 dt = r 2 x 2 1 - x 2 K 2 + (γ 21 x 1 -γ 12 x 2 ), (2) 
where γ 12 and γ 21 with γ ij > 0, i = j and ≥ 0, are the migration terms which describe the flows of individuals from the patch 2 to the patch 1, and from the patch 1 to the patch 2 respectively. These flows can for example depend on the distance between the patches. By noting that the positive equilibrium (x * 1 ( ), x * 2 ( )) of model ( 2) is the unique positive solution to

       r 1 x * 1 ( ) 1 - x * 1 ( ) K 1 + r 2 x * 2 ( ) 1 - x * 2 ( ) K 2 = 0, x * 2 ( ) = 1 γ 12 γ 21 x * 1 ( ) - r 1 x * 1 ( ) 1 - x * 1 ( ) K 1 ,
i.e., the intersection of an ellipse and a parabola, they used a graphical method to completely the analyze of the model [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] in order to determine when dispersal is either favorable or unfavorable to the total population abundance

In [START_REF] Elbetch | Effect of dispersal in Two-patch environment with Richards growth on population dynamics[END_REF], I suggested to study the two-patch coupled model where each patches follows a Richard's law, i.e, the model:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 µ + (γ 12 x 2 -γ 21 x 1 ), dx 2 dt = r 2 x 2 1 - x 2 K 2 µ + (γ 21 x 1 -γ 12 x 2 ), (3) 
where x 1 and x 2 represent population densities of the species in patch 1 and 2, respectively. The parameters K i and r i represents the carrying capacity and the growth rate respectively. Parameter represents the dispersal rate and µ is a positive parameter. γ 12 denote the migration rate from patch 2 to the patch 1 and γ 21 from patch 1 to patch 2. For this model, I interested in the effect of this choice, which generalize the logistic, on the dynamic of the total population in two patches. I have given a complete classification of the model parameters regarding when the dispersion causes a total biomass smaller or greater than the sum of the carrying capacities. I used for this classification, the geometric method of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF].

In 2019, Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] studied the following two-patch source-sink model:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 + (x 2 -sx 1 ), dx 2 dt = r 2 x 2 -1 - x 2 K 2 + (sx 1 -x 2 ), (4) 
where x 1 and x 2 represent population densities of the species in patch 1 and 2, respectively. Parameter represents the dispersal intensity while the parameter s reflects the dispersal asymmetry. The authors show that the dispersal asymmetry can lead to either an increased total size of the population in two patches, a decreased total size with persistence in the patches, or even extinction in both patches. They show also that for a large growth rate of the species in the source and a fixed dispersal intensity:

• If the asymmetry is small, the population would persist in both patches and reach a density higher than that without dispersal and the population approaches its maximal density at an appropriate asymmetry.

• If the asymmetry is intermediate, the population persists in both patches but reaches a density less than that without dispersal.

• If the asymmetry is large, the population goes to extinction in both patches.

Arino et al. [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF] also studied a source-sink model of n patches, where the source patch follows a logistic growth rate, and the sink patch follows exponential decay, i.e the model

           dx i dt = r i x i 1 - x i K i + n j=1 γ ij x j , i = 1, . . . , s, dx i dt = -r i x i + n j=1 γ ij x j , i = s + 1, . . . , n, (5) 
where x i represent population densities of the species in the patch i. The parameter represents the dispersion rate of the population, γ ij ≥ 0 denote the flux between patches j and i for i = j. We denote Γ, the matrix Γ := (γ ij ) n×n with

γ ii = - n j=1,j =i γ ji . (6) 
For system [START_REF] Benaim | When can a population spreading across sink habitats persist[END_REF], the authors proved the existence of a threshold number of source patches such that the population potentially becomes extinct below the threshold and persistent above the threshold.

In 2021, Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] have considered the model of multi-patch logistic growth, coupled by asymmetric linear migration terms

dx i dt = r i x i 1 - x i K i + n j=1,j =i (γ ij x j -γ ji x i ) , i = 1, • • • , n, (7) 
where n is the number of patches in the system. The parameters r i and K i are respectively the intrinsic growth rate and the carrying capacity of patch i. The term on the right hand side of the system [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF] describes the effect of the linear migration between the patches, where is the migration rate and Γ := (γ ij ) is the matrix representing the migrations between the patches. Note that, the system [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF] is studied also by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF] and Takeuchi [START_REF] Takeuchi | Cooperative systems theory and global stability of diffusion models[END_REF] in the case when the matrix Γ is symmetric. We recall that, when the matrix of migration Γ is irreducible, System (7) admits a unique positive equilibrium which is globally asymptotically stable, see [3, Theorem 1] [4, Theorem 2.2] or [START_REF] Elbetch | The multi-patch logistic equation[END_REF]Theorem 6.1], when → ∞, this equilibrium tend to

i δ i r i i δ 2 i α i (δ 1 , . . . , δ n ),
where α i = ri Ki and (δ 1 , . . . , δ n ) T the vector which generate the vector space ker Γ (for more properties of the vector space ker Γ, see subsection 4.1).

In [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF], Elbetch et al. have answered in some particular cases of the model [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF] to the following important question: Is it possible, depending on the migration rate, that the total equilibrium population be larger than the sum of the carrying capacities i K i ? This question is of ecological importance since the answer gives the conditions under which the linear dispersal is either beneficial or detrimental to total equilibrium population. Note that, this question has been studied by many researches, see [1, 2, 9-13, 15, 17, 21-24] for logistic model, [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF][START_REF] Elbetch | Effect of dispersal in single-species discrete diffusion systems with source-sink patches[END_REF][START_REF] Elbetch | How does nonlinear asymmetric dispersal affect the dynamics of a population and the coexistence of species in Two-patch source-sink heterogeneous environment[END_REF][START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] for source-sink models, [START_REF] Gao | How does dispersal affect the infection size?[END_REF][START_REF] Gao | A multipatch malaria model with logistic growth[END_REF][START_REF] Gao | Fast diffusion inhibits disease outbreak[END_REF] for susceptible-infected-susceptible (SIS) patch-model and [START_REF] Benaim | When can a population spreading across sink habitats persist[END_REF][START_REF] Benaim | Untangling the role of temporal and spatial variations in persistance of populations[END_REF][START_REF] Katriel | Dispersal-induced growth in a time-periodic environment[END_REF] for populations with time-varying growth rates living in sinks and also some details of the dispersalinduced growth (DIG) phenomenon ( i.e. it is possible for populations in a set of patches, with dispersal among them, to persist and grow despite the fact that all these patches are sinks). They proved that, if all the patches do not differ with respect to the intrinsic growth rate (i.e., r 1 = . . . = r n ), then the effect of linear migration is always detrimental. In the case when (K 1 , . . . , K n ) T ∈ ker Γ ( if the matrix Γ is symmetric, the condition (K 1 , . . . , K n ) T ∈ ker Γ means that the patches do not differ with respect to the carrying capacity ), linear migration has no effect on the total equilibrium population. An example when the effect of linear migration is always beneficial, is in the case when Γ is symmetric and all the patches do not differ with respect to the the parameter α = r/K quantifying intraspecific competition (i.e., α 1 = . . . , α n ) ( see also [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF]Prop. 4.2]).

With the aim to generalize the results obtained in [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] for a multi-patch logistic model, to a multi-patch model with generalized growth rate, recently, Elbetch [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] have considered the model of multi-patch generalized logistic growth, coupled by asymmetric linear migration terms:

dx i dt = x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ) , i = 1, • • • , n, (8) 
where ϕ i (x i ) represents the specific growth rate of the population in the i-th patch and satisfied to the following conditions:

ϕ i (0) > 0, dϕi dxi (x i ) < 0, there exist K i > 0 such that ϕ i (K i ) = 0 and x i ϕ i (x i ) → -∞ as x i → +∞ for all i = 1, . . . , n. When the matrix of migration Γ = (γ ij ) n×n is irreducible, System (8) 
admits a unique positive equilibrium which is GAS, see [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF]Theorem 6]. When → ∞, this equilibrium tend to λ 0 (δ 1 , . . . , δ n ), where λ 0 is the unique solution in the positive axis of the following equation i δ i ϕ i (δ i x) = 0, see Theorem 7 in [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF]. For this last model, Elbetch [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] have shown that, if the n patches do not differ with respect to K i dϕi dxi (K i ) then the total equilibrium population on the n connected patches is always less than or equal to the sum of carrying capacity of the isolated patches. In the general case when

K i dϕi dxi (K i )
are different, He determined some conditions for which the total population size of the n connected patches at equilibrium may be greater than the sum of carrying capacities of n isolated patches.

For general information of the effects of patchiness and migration in both continuous and discrete cases, and the results beyond the logistic model, the reader is referred to the work of Levin [START_REF] Levin | Dispersion and population interactions[END_REF][START_REF] Levin | Spatial patterning and the structure of ecological communities[END_REF], DeAngelis et al. [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF][START_REF] Deangelis | Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach[END_REF] and Freedman et al. [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat[END_REF].

Our aim in this work is to study the model of n patches with generalized sourcesink dynamics, coupled by migration terms. In particular, we are interested in studying the effect of dispersion and the specific growth and death rates on the dynamics of population. Thus we generalize some results of [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] for n-source, 0-sink generalized logistic patch model to s-source, (n-s)-sink patch model and also we extend the results proved by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] for n-source, 0-sink patch logistic model to s-source, (n -s)-sink patch model and also we extend the results proved by Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] for 1-source, 1-sink patch model.

This paper is organized as follows: The introduction consists of giving an overview of the different models of two and n patches, as well as of the two-patch source-sink models of a single population and also for n patches. In Section 2, we introduce the mathematical model and we give some definitions and notations. Next, in Section 3, We prove that there exists a threshold number of source patches such that the population becomes extinct below the threshold and persist above the threshold for the model [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF]. In Section 4, we study the behavior of the system (9) in the case when the migration rate goes to infinity by using perturbation arguments and Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF]. In Section 5, we compare the total equilibrium population with the sum of the s carrying capacities for some parameter space. In Section 6, the following both cases: death rates are much larger than the growth rates and growth rates are much larger than the death rates are considered. In Section 7, using the method graphic of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] and of [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF], we give a complete analysis of two-patch source-sink case, where the first patch follows a logistic law and the second Richards law. Two-patch model where one growth rate is much larger than the second one is also examined. In

Appendix A, we give some background concepts and preliminaries results which are used in the analysis of the global stability of our different models. We ends with a conclusion in the section 8.

In the following, we shall use for convenience the abbreviation LAS for Locally Asymptotically Stable and GAS for Globally Asymptotically Stable equilibria.

Mathematical model and assumptions

Let us consider the growth of single specie which can disperse among of n patches, with s source and n -s sink patches, described by:

           dx i dt = x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = 1, . . . , s, dx i dt = -x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = s + 1, . . . , n, (9) 
where x i represents the population density of the species in the i-th patch and ϕ i (x i )

represents the specific growth rate of the population in the i-th patch for i ≤ s and specific death rate for i ≤ s + 1, see figure 2 for an example when n = 3. Since the specific growth and death rates may depend on each patch environment, the function

ϕ i (x i
) is supposed to be different in each patch. The second term of the right hand side in [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF] describes the diffusion effect between source and sink patches where is the migration rate and γ ij ≥ 0, for all i = j is the term of asymmetrical migration which describes the flows of individuals from the patch j to the patch i. These flows can for example depend on the distance between the patches. We list the following hypotheses, the first three of which are standard in single species models ( see [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat[END_REF][START_REF] Takeuchi | Cooperative systems theory and global stability of diffusion models[END_REF]):

H1. All solutions of the initial value problem (9) exist, are unique and are continuable for all positive time.

H2. Source patch:

ϕ i (0) > 0, dϕi dxi (x i ) < 0, there exist K i > 0 such that ϕ i (K i ) = 0 and x i ϕ i (x i ) → -∞ as x i → +∞ for all i = 1, . . . , s.
H3. Sink patch: ϕ i (0) > 0, dϕi dxi (x i ) > 0, and x i ϕ i (x i ) → +∞ as x i → +∞ for all i = s + 1, . . . , n.

H4. The matrix Γ := (γ ij ) where γ ii given by (6), is irreducible.

In term of graph theory, given a network represented by digraph G with n vertices, n ≥ 2, a coupled generalized source-sink system can be built on G by assigning each vertex its own internal dynamics and then coupling these vertex dynamics based on directed arcs in G ( see Figure 1).

γ ji x i γ ij x j dxi dt = x i ϕ i (x i ) dxj dt = -x j ϕ j (x j )
Figure 1. A coupled generalized source-sink system on a network. Under the irreducibility of the matrix Γ, a patch (source or sink )among the n patches can connect, only source patches, or, only sink patches, or, mixture of source and sink patches, see figure 2.

System (9) can be written:

           dx i dt = x i ϕ i (x i ) + n j=1 γ ij x j , i = 1, . . . , s, dx i dt = -x i ϕ i (x i ) + n j=1 γ ij x j , i = s + 1, . . . , n, (10) 
where the term γ ii accounts for the flux out of patch i and takes the form (6). The system (9) can also be written in matrix form as follows:

Ẋs = diag (ϕ 1 (x 1 ), • • • , ϕ s (x s )) X s + (Γ ss X s + Γ sp X p ) , Ẋp = diag (ϕ s+1 (x s+1 ), • • • , ϕ n (x n )) X p + (Γ ps X s + Γ pp X p ) , (11) 
where X s = (x 1 , . . . , x s ) T , X p = (x s+1 , . . . , x p ) T and the matrices Γ ss , Γ pp , Γ sp , Γ ps describe the flux within and between source and sink patches. They are obtained by writing the matrix Γ in block form as

Γ = Γ ss Γ sp Γ ps Γ pp . ( 12 
)
Assumption H1 is a just mathematical one. The first part in H2 ensures the exponential growth of the population for its small density. The second in H2 means the limited resources and K i given in H2 is a carrying capacity of the source patch. Note that ϕ(x) = r(1 -x/K) for logistic growth and it satisfies all the above assumption H2. In H2, for i ≤ s, all patches are source since ϕ i (0) > 0, and in H3, for i ≥ s + 1, all patches are sink since -ϕ i (0) < 0. We remark that growth and death functions of patches can be very different; that is, system (9) allows patch-specific population dynamics. To model this specification using continuous space model, one needs to deal with partial differential equations with spatially varying coefficients, which are particularly challenging in stability analysis. General growth model ẋ = xϕ(x) which ϕ satisfies to H2, has been used by many ecologists. For example, Richard's model [START_REF] Richards | A Flexible Growth Function for Empirical Use[END_REF],

see also Gilpin and Ayala 1973 [33], ẋ = rx 1 - In hypothesis H4, The matrix Γ being irreducible means that the set of the source and sink patches cannot be partitioned into two nonempty disjoint subsets, I and J, such that there is no migrations between a patch in subset I and a patch in subset J, i.e the irreducibility of matrix Γ implies that every patch in the model ( 9) is connected by migration term, i.e. the species can reach any i-th patch from any j-patch. For Two-patch model, the matrix Γ is irreducible if and only if γ 12 and γ 21 are positives.

If n = 3, we have four cases possible as in figure 2, and when Γ is irreducible, we have five cases, see figure 3.
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Source Source
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Sink Sink

Sink

Sink Sink 3-source, 0-sink 2-source, 1-sink 1-source, 2-sink 0-source, 3-sink 

G 1 G 2 G 3 G 4 G 5 Figure 3.
The assumption that the matrix Γ is irreducible, implies that the species can reach any i-th patch from any j-patch. For Three-patch model, under the irreducibility hypothesis on the matrix Γ, there are five possible cases, modulo permutation of the three patches. The two graphs G 1 and G 2 for which the migration matrix may be symmetric, if γ ij = γ ji . For the remaining cases, the graphs G 3 , G 4 and G 5 , cannot be symmetrical.

The model ( 9) studied in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] for two patches, i.e (n, s) = (2, 1),

ϕ 1 (x 1 ) = r 1 -r1 K1 x 1 and ϕ 2 (x 2 ) = r 2 + r2 K2 x 2 .
The same model studied in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF] for n patches where the source population flow at the growth rate: ẋi = r i x i (1 -x i /K i ) for all 1 ≤ i ≤ s, and the sink population flow at the death rate: ẋi = -r i x i for all s + 1 ≤ i ≤ n. Recently, Elbetch [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] studied the model ( 9) for s = n. Note that, (9) studied in [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF][START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF][START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF][START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat[END_REF][START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator[END_REF][START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF] for two source patches, s = 0 sink patch and logistic growth rate, i.e.

ϕ i (x i ) = r i - r i K i x i , i = 1, 2.
Model ( 9) is studied in [START_REF] Deangelis | Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach[END_REF][START_REF] Deangelis | Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems[END_REF][START_REF] Zhang | Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment[END_REF] for n source patches, 0 sink patches and a logistic growth rate, where the matrix Γ take the following form:

γ 1n = γ n1 = γ i,i-1 = γ i-1,i = 1 for 2 ≤ i ≤ n and γ ij = 0 otherwise. ( 13 
)
We have the following result:

Proposition 2.1. The domain Ω = {(x 1 , . . . , x n ) ∈ R n /x i ≥ 0, i = 1, . . . , n.} is posi-
tively invariant for the system (9).

Proof. Assume that x i = 0 and x j ≥ 0 for all j = i. We have

dx i dt = j=1,j =i γ ij x j ≥ 0, i = 1, • • • , n.
Hence, on the boundary of Ω, the vector field associated to [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF] either is tangent to Ω, or points inward Ω. According to [45, Proposition B.7, page 267], no trajectory comes out of Ω.

Therefore, Ω is positively invariant for the system (9).

Global stability

In this part, our goal is to study the dynamics of the system [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF]. Note that, in the absence of migration, i.e. the case where = 0, the equations ( 9) are uncoupled:

     dx i dt = x i ϕ i (x i ) i = 1, . . . , s, dx i dt = -x i ϕ i (x i ) i = s + 1, . . . , n,
and according to the hypotheses H2 and H3, the system (9) admits (K 1 , . . . , K s , 0, . . . , 0) as a non trivial equilibrium point, which furthermore is GAS in the positive cone, indeed, consider the following Liapunov function:

V (x 1 , . . . , x n ) = s i=1 x i -K i -K i log x i K i + n i=s+1 x i .
System (9) admits origin as trivial equilibrium which is unstable and a boundary equilibrium occur where one or more of the K i , i ≤ s are replaced by zero. The problem is whether or not, the equilibrium continues to exist and GAS for any > 0. Here, we obtain a complete global asymptotic behavior of solutions which depends on the maximal eigenvalue of Jacobian of ( 9) evaluated at the origin 0. The Jacobian matrix of the system (9) evaluated at x = 0 is given by:

J s (0) = diag(ϕ 1 (0), . . . , ϕ s (0), -ϕ s+1 (0), . . . , -ϕ n (0)) + Γ, (14) 
which is the same as the matrix obtained by Arino et al. [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF]Equation 7] for the model (5) ( just replace ϕ i (0) by r i ). The matrix J s (0) is cooperative ( see Appendix A). We have the following result:

Lemma 3.1. Consider the matrix J s (0). Then, if s = 0, S(J 0 (0)) < 0, and if s = n, S(J n (0)) > 0, where S denote the stability modulus defined by (A1) .

Proof. If s = 0, then the matrix J 0 (0) becomes

J 0 (0) = diag(-ϕ 1 (0), . . . , -ϕ n (0)) + Γ. ( 15 
) Let u = (1, • • • , 1) T . We have J 0 (0) T u = (-ϕ 1 (0), • • • , -ϕ n (0)) T ≤ λu, where λ = max{-ϕ 1 (0), • • • , -ϕ n (0)} < 0.
Therefore, since J 0 (0) is a cooperative matrix, according to Lemma A.2, we have

S(J 0 (0)) = S(J 0 (0) T ) ≤ λ < 0.
If s = n, then the matrix J n (0) becomes

J n (0) = diag(ϕ 1 (0), . . . , ϕ n (0)) + Γ. ( 16 
) Let u = (1, • • • , 1) T . We have J n (0) T u = (ϕ 1 (0), . . . , ϕ n (0)) T ≥ λu, where λ = min{ϕ 1 (0), . . . , ϕ n (0)} > 0.
Therefore, since J n (0) is a cooperative matrix, according to Lemma A.2, we have

S(J n (0)) = S(J n (0) T ) ≥ λ > 0.
This completes the proof of the lemma.

We have also the following result:

Lemma 3.2. The stability modulus of the matrix J s (0) is a non-decreasing function of s. Moreover, if the matrix of movement Γ is irreducible, then J s (0) is an increasing function of s.

Proof. See proof of Proposition 6 in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF].

The dynamics of the system (9) in the case where Γ is reducible, is given as follow:

Theorem 3.1. Consider the system [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF]. Assume that Γ is reducible. Then, there exists a unique interval I ⊂]0, n[⊂ R, such that:

• If s < min I, then the origin is LAS, and

• if s > max I, then the origin is unstable.
Proof. Since S(J 0 (0)) < 0, and S(J n (0)) > 0 by Lemma 3.1. Moreover, the function s → S(J s (0)) is non-decreasing by Lemma 3.2 and continues with respect s (See [27, Theorem 2.4.9.2]). So by the intermediate value theorem, there exists an interval I, possibly reduced to a single point, such that S(J s (0)) = 0 for all s ∈ I. Criteria for local asymptotic stability and instability of equilibria gives the completes proof of the theorem.

Our goal in the remainder of this section is to study the dynamics of the model [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF] in the case when the matrix Γ is irreducible. First, according to hypothesis H1, the solutions of ( 9) exist for all t ≥ 0 and remain non negative for non negative initial conditions. Thus, the positive cone R n + is invariant under the flow of the system (9).

To establish the boundedness of solutions, we have the following result:

Proposition 3.1. For any non negative initial condition, the solutions of the system (9) remain non negative and positively bounded.

Proof. To show that all solutions are bounded, we consider the quantity defined by

X T = n i=1 x i . So, we have ẊT = s i=1 x i ϕ i (x i ) - n i=s+1 x i ϕ i (x i ). ( 17 
)
According to hypotheses H2 and H3, for sufficiently large x i for i = 1, . . . , n, we have ẊT < 0, so X T (t) ≤ X T (0). Therefore, the solutions of system ( 9) are positively bounded and defined for all t ≥ 0.

We have the result:

Theorem 3.2. Consider the system [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF]. Assume that the matrix Γ is irreducible, then, there exists a unique point I * ∈]0, n[, such that:

• If s < I * , then the origin is GAS, and

• if s > I * , then the model has a unique equilibrium point E * ( ), which is GAS in the interior of the positive cone R n \ {0}.

Proof. If the matrix Γ is irreducible, then the interval I reduced to a single point I * , such that: if s < I * , then S(J s (0)) < 0, and if s > I * , then S(J s (0)) > 0. According to [39, Theorem 1], if S(J s (0)) < 0, the origin is GAS. If S(J s (0)) > 0, then, the model ( 9) is persistent for any > 0, that is, any solution x(t) satisfies lim t→∞ inf x i (t) > 0, for all i, and furthermore, since all the solutions to (9) are bounded, there exists a positive equilibrium point. We note (x * 1 ( ), . . . , x * n ( )) an equilibrium of [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF]. Now, define the map:

Υ i :]0, +∞[→ R, Υ i (ξ) = Ψ i (ξE * ( )),
where Ψ = (Ψ 1 , . . . , Ψ n ) denote the vector field associated to [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF]. We have,

Υ i (ξ) = ξx * i ( ) {ϕ i (ξx * i ( )) -ϕ i (x * i ( ))} , i = 1, . . . , s. ξx * i ( ) {ϕ i (x * i ( ) -ϕ i (ξx * i ( )))} , i = s + 1, . . . , n.
By hypotheses H2 and H3, dϕi dxi (x i ) < 0 for all i ≤ s, and dϕi dxi (x i ) > 0 for all i ≥ s + 1 respectively, we deduce that:

Υ i (ξ) > 0 for 0 < ξ < 1, < 0 for ξ > 1,
Therefore, according to Theorem A.1, we conclude the proof of theorem.

As a corollary of the previous theorem we obtain the following result which proven in [20, Theorem 6.1]:

Corollary 3.1. If s = n, the model (9) has a unique equilibrium point in the interior of the positive cone, which is GAS.

Remark 3.1. As it is initialized by Arino [3, Prop. 8 ] for the system (5), in the irreducible case, we can express the result of Theorem 3.2 using a basic reproduction number R 0 defined by

R 0 = ρ Γ ss + Γ sp {diag(-ϕ s+1 , . . . , -ϕ n (0)) -Γ pp } -1 Γ ps -1 diag(ϕ 1 (0), . . . , ϕ s (0)) ,
where the matrices Γ ss , Γ pp , Γ sp , Γ ps describe the flux within and between source and sink patches given by [START_REF] Elbetch | The multi-patch logistic equation[END_REF].

In all of this work, the globally asymptotically stable positive equilibrium of the system ( 9) is denoted by

E * n ( ) = (x * 1 ( ), . . . , x * n ( ))
, and by T * n ( ) the total equilibrium population

T * n ( ) = n i=1 x * i ( ). ( 18 
)

Fast diffusion rate

The goal in the next is to give the behavior of the model ( 9) when the growth of diffusion tend to infinity (i.e → ∞).

Properties of the migration matrix Γ

Note that the matrix Γ combines the connection matrix deduced from the graph of patches, and a description of the intensity of the connections. The connection matrix of the graph is thus easily reconstructed from Γ by setting diagonal entries in Γ to zero, and nonzero off diagonal entries to 1. We recall that, if Γ is irreducible, then 0 is a simple eigenvalue of Γ and all non-zero eigenvalues of Γ have negative real part.

Moreover, the kernel of the matrix Γ is generated by a positive vector ( see Lemma 2 in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement[END_REF]). In all of this paper, we denote by δ := (δ 1 , . . . , δ n ) T this positive vector. For the existence , uniqueness, and positivity of δ see Lemma is a right eigenvector of Γ associated with the zero eigenvalue. Here, Γ * ii is the cofactor of the i-th diagonal entry of Γ, and sgn(Γ * ii ) = (-1) n-1 . As in our work, the matrix Γ is assumed to be irreducible, then (-1) n-1 (Γ * 11 , . . . , Γ * nn ) T is strictly positive, i.e δ i = (-1) n-1 Γ * ii > 0 for all i. Therefore, we have explicit formula for the components of the vector δ, as functions of the coefficients of Γ, at our disposal. For two patches we have δ = (γ 12 , γ 21 ) T , and for three patches we have δ = (δ 1 , δ 2 , δ 3 ) T , where 

   δ 1 =
In Lemma 2.1 of Guo et al [START_REF] Guo | Global stability of the endemic equilibrium of multigroup SIR epidemic models[END_REF] gives explicit formulas of the components of the vector δ, with respect of the coefficients of γ as follow:

δ k = T ∈Tk (i,j)∈E(T ) γ ij , k = 1, . . . , n, (20) 
where T k is the set of all directed trees of n vertices rooted at the k-th vertex, and E(T ) denotes the set of arcs in a directed tree T .

Two time scale dynamics

In this part, we use the theory of singular perturbations to obtain a better understanding of the behavior of the system (9) in the case of perfect mixing. We have the following result:

Theorem 4.1. Let (x 1 (t, ), . . . , x n (t, )) be the solution of the system (9) with initial

condition (x 0 1 , • • • , x 0 n ) satisfying x 0 i ≥ 0 for i = 1 • • • n. Let Y (t) be the solution of the equation n i=1 δ i dX dt = X s i=1 δ i ϕ i δ i n i=1 δ i X - n i=s+1 δ i ϕ i δ i n i=1 δ i X , (21) 
with initial condition X 0 = n i=1 x 0 i . Then, when → ∞, we have

n i=1 x i (t, ) = Y (t) + o (1), uniformly for t ∈ [0, +∞) (22) 
and, for any t 0 > 0, we have

x i (t, ) = δ i n i=1 δ i Y (t) + o (1), i = 1, . . . , n, uniformly for t ∈ [t 0 , +∞). (23) Proof. Let X(t, ) = n i=1
x i (t, ). We rewrite the system (9) using the variables

(X, x 1 , • • • , x n-1
). One obtains:

                     dX dt = s i=1 x i ϕ i (x i ) - n i=s+1 x i ϕ i (x i ) , dx i dt = x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = 1, • • • , s. dx i dt = -x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = s + 1, • • • , n -1. ( 24 
)
This system is actually a system in the variables (X,

x 1 , • • • , x n-1
), since, whenever

x n appears in the right hand side of [START_REF] Freedman | Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Non linear Anal[END_REF], it should be replaced by

x n = X - n-1 i=1 x i . ( 25 
)
When → ∞, (24) is a slow-fast system, with one slow variable, X, and n -1 fast variables,

x i for i = 1 • • • n -1.
According to Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] we consider the dynamics of the fast variables in the time scale τ = t. One obtains

           dx i dτ = 1 x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = 1 • • • s. dx i dτ = - 1 x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = s + 1 • • • n -1. ( 26 
)
where x n is given by (25). In the limit → ∞, we find the fast dynamics

dx i dτ = n j=1,j =i (γ ij x j -γ ji x i ), i = 1, • • • , n -1. ( 27 
)
This is an n -1 dimensional linear system differential. According to Lemma 3.9 of Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF], the slow manifold of system [START_REF] Freedman | Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Non linear Anal[END_REF], which is the equilibrium point of the fast dynamics [START_REF] Horn | Matrix analysis[END_REF], is unique and is given by:

x i = δ i n i=1 δ i X, i = 1, . . . , n -1. ( 28 
)
As this manifold is GAS, the theorem of Tikhonov ensures that after a fast transition toward the slow manifold, the solutions of ( 24) are approximated by the solutions of the reduced model which is obtained by replacing (28) into the dynamics of the slow variable, which gives the equation ( 21).

Let we denote Ω the function

Ω(X) := s i=1 δ i ϕ i δ i n i=1 δ i X - n i=s+1 δ i ϕ i δ i n i=1 δ i X .
We have Ω(0) =

s i=1 δ i ϕ i (0) - n i=s+1 δ i ϕ i (0), dΩ dX < 0 and Ω → -∞ when X → +∞.
So by the intermediate value theorem, if Ω(0) > 0, then there exists unique point X * > 0 such that Ω(X * ) = 0. Else, Ω(X) ≤ 0 for all X. Therefore, if

s i=1 δ i ϕ i (0) > n i=s+1
δ i ϕ i (0), then [START_REF] Elbetch | Influence of dispersal intensity and asymmetry on total biomass in two-patch environment[END_REF] admits

X * = n i=1 δ i λ 0
as a positive equilibrium point, which is GAS in the positive axis, where λ 0 > 0 is the unique solution in the positive axis of the following equation:

s i=1 δ i ϕ i (δ i x) - n i=s+1 δ i ϕ i (δ i x) = 0. ( 29 
)
If

s i=1 δ i ϕ i (0) ≤ n i=s+1
δ i ϕ i (0), then (21) admits the origin as unique equilibrium point, which is GAS. The approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variables, where t 0 is as small as we want. Therefore, let Y (t) be the solution of the reduced model ( 21) of initial condition

Y (0) = X(0, ) = n i=1
x 0 i , then, when → ∞, we have the approximations ( 22) and [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator[END_REF].

Approximation [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator[END_REF] shows that, with the exception of a thin initial boundary layer, where the density population x i (t, ) quickly jumps from its initial condition x 0 i to the average δ i X 0 / n i=1 δ i , each patch of the n-patch source-sink model behaves like the following equation:

n i=1 δ i du dt = u s i=1 δ i ϕ i (u) - n i=s+1 δ i ϕ i (u) . (30) 
Hence, when t and tend to ∞, the density population x i (t, ) tends toward K =

δ i λ 0 , if s i=1 δ i ϕ i (0) > n i=s+1 δ i ϕ i (0), and x i (t, ) tends toward 0 if s i=1 δ i ϕ i (0) ≤ n i=s+1 δ i ϕ i (0).
According to the previous theorem, we obtain the limit E * (∞) of E * ( ) when → ∞:

Corollary 4.1. We have:

lim →+∞ E * ( ) = λ 0 (δ 1 , . . . , δ n ), if s i=1 δ i ϕ i (0) > n i=s+1 δ i ϕ i (0), 0 otherwise, (31) 
where (δ 1 , . . . , δ n ) the vector which generate the kernel of Γ. Moreover, if the matrix Γ is symmetric, then:

lim →+∞ E * ( ) = λ 0 (1, . . . , 1), if s i=1 ϕ i (0) > n i=s+1 ϕ i (0), 0 otherwise. ( 32 
)
As a second corollary of the previous theorem we obtain the following result which describes the total equilibrium population for perfect mixing:

Corollary 4.2. We have

T * n (+∞) = ( n i=1 δ i ) λ 0 if s i=1 δ i ϕ i (0) > n i=s+1 δ i ϕ i (0), 0, otherwise. (33) 
Moreover, if the matrix Γ is symmetric, then:

T * n (+∞) = nλ 0 , if s i=1 ϕ i (0) > n i=s+1 ϕ i (0), 0, otherwise. ( 34 
)
Proof. The sum of the n components of the point E * (∞) immediately gives Formula (33).

In the case n = 2 and s = 1, one has δ 1 = γ 12 and δ 2 = γ 21 . Therefore (33) becomes

T * n (+∞) =    (γ 12 + γ 21 ) γ 12 r 1 -γ 21 r 2 γ 2 12 α 1 + γ 2 21 α 2 if γ 21 /γ 12 < r 1 /r 2 , 0 otherwise.
which is the formula given by Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]Equation 5.8]. In the case n = s = 2, Formula (33) becomes

T * n (+∞) = (γ 12 + γ 21 ) γ 12 r 1 + γ 21 r 2 γ 2 12 α 1 + γ 2 21 α 2 ,
which is the formula given by Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF]Equation 7].

In the case of the multi-patch logistic model with asymmetric migration, i.e. the model ( 9) with s = n, Formula (33) becomes

T * n (+∞) = n i=1 δ i n i=1 δ i r i n i=1 δ 2 i α i ,
which is the formula given by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF]Equation 13].

When the movement pattern of individuals among n patches is symmetric, the previous theorem becomes:

Theorem 4.2. Assume that the matrix Γ is symmetric. Let (x 1 (t, ), . . . , x n (t, )) be the solution of the system (9) with initial condition

(x 0 1 , • • • , x 0 n ) satisfying x 0 i ≥ 0 for i = 1 • • • n. Let Y (t) be the solution of the equation dX dt = 1 n X s i=1 ϕ i 1 n X - n i=s+1 ϕ i 1 n X , (35) 
with initial condition X 0 = n i=1

x 0 i . Then, when → ∞, we have

n i=1 x i (t, ) = Y (t) + o (1), uniformly for t ∈ [0, +∞) (36) 
and, for any t 0 > 0, we have

x i (t, ) = 1 n Y (t) + o (1), i = 1, . . . , n, uniformly for t ∈ [t 0 , +∞). ( 37 
)
Proof. If the matrix Γ is symmetric, then δ = (1, . . . , 1) T .

As a corollary of the previous theorem we obtain the following result which describes the total equilibrium population for perfect mixing when the dispersal is symmetric.

We can state this result as follows:

Corollary 4.3. If s i=1 ϕ i (0) > n i=s+1 ϕ i (0)
then, the total equilibrium population for perfect mixing T * n (+∞) satisfied:

s i=1 ϕ i T * n (+∞) n = n i=s+1 ϕ i T * n (+∞) n . ( 38 
)
Proof. If the matrix Γ is symmetric, then δ = (1, . . . , 1) T . The equation ( 21) prove that T * n (+∞) is satisfied by Equation (38).

Total equilibrium population

In this section, our aim is to compare the total equilibrium population T * n with the sum of carrying capacities of source patches T * n (0) = K 1 + . . . + K s , when the rate of migration varies from zero to infinity. First, we compute the derivative of T * n at no dispersal.

Derivative of T * n at no dispersal

Proposition 5.1. The derivative of the total equilibrium population T * n at = 0 is given by:

dT * n d (0) = - s i=1   1 K i dϕi dxi (K i ) s j=1,j =i (γ ij K j -γ ji K i )   + n i=s+1   1 ϕ i (0) s j=1,j =i (γ ij K j -γ ji K i )   (39) 
= -1

K 1 dϕ1 dx1 (K 1 ) , . . . , - 1 
K s dϕs dxs (K s ) , 1 ϕ s+1 (0) , . . . , 1 ϕ n (0) Γ(K 1 , . . . , K s , 0, . . . , 0) T .
Proof. The equilibrium point E * n ( ) is the solution of the algebraic system:

x * i ( )ϕ i (x * i ( )) + n j=1,j =i (γ ij x * j ( ) -γ ji x * i ( )) = 0, i = 1, • • • , s, -x * i ( )ϕ i (x * i ( )) + n j=1,j =i (γ ij x * j ( ) -γ ji x * i ( )) = 0, i = s + 1, • • • , n. (40) 
The derivative of the first equation in [START_REF] Nesterov | Computing closest stable nonnegative matrix[END_REF] with respect to give:

ϕ i (x * i ( )) dx * i d ( ) + x * i ( ) dϕ i dx * i (x * i ( )) dx * i d ( ) + n j=1,j =i (γ ij x * j ( ) -γ ji x * i ( )) + n j=1,j =i γ ij dx * j d ( ) -γ ji dx * i d ( ) = 0, i = 1, • • • , s,
and, the derivative of the second equation in [START_REF] Nesterov | Computing closest stable nonnegative matrix[END_REF] with respect to give:

-ϕ i (x * i ( )) dx * i d ( ) -x * i ( ) dϕ i dx * i (x * i ( )) dx * i d ( ) + n j=1,j =i (γ ij x * j ( ) -γ ji x * i ( )) + n j=1,j =i γ ij dx * j d ( ) -γ ji dx * i d ( ) = 0, i = s + 1, • • • , n.
For = 0, we obtain

       ϕ i (x * i (0)) dx * i d (0) + x * i (0) dϕ i dx * i (x * i (0)) dx * i d (0) + n j=1,j =i (γ ij x * j (0) -γ ji x * i (0)) = 0, i = 1, . . . , s, -ϕ i (x * i (0)) dx * i d (0) -x * i (0) dϕ i dx * i (x * i (0)) dx * i d (0) + n j=1,j =i (γ ij x * j (0) -γ ji x * i (0)) = 0, i = s + 1, . . . , n.
Since x * i (0) = K i for all i ≤ s and x * i (0) = 0 for all i ≥ s + 1 then ϕ i (K i ) = 0, and

     K i dϕ i dx * i (K i ) dx * i d (0) + s j=1,j =i (γ ij K j -γ ji K i ) = 0, i = 1, . . . , s, -ϕ i (0) dx * i d (0) + s j=1,j =i (γ ij K j -γ ji K i ) = 0, i = s + 1, . . . , n.
By summing the previous equations for i = 1, . . . , n we obtain the formula of the derivative [START_REF] Lu | Global asymptotic behavior in single-species discrete diffusion systems[END_REF].

The formula ( 39) is an extension of the one obtained by Arditi et al. [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] for twopatch logistic model, the results of Elbetch [START_REF] Elbetch | Effect of dispersal in Two-patch environment with Richards growth on population dynamics[END_REF] for two-patch Richard model, Elbetch 44] for multi-patch generalized logistic model.

In the rest of this section, we show that the total equilibrium population, T * n ( ), is generally different from the sum of the carrying capacities, T * n (0), of the source patches. Depending on the kernel of the matrix Γ, the intrinsic growth and death functions, T * n ( ) can either be smaller than, or equal to the sum of the carrying capacities of the source patches. If the equilibrium E * ( ) exist, then it is a solution of the algebraic system:

           0 = x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = 1, . . . , s, 0 = -x i ϕ i (x i ) + n j=1,j =i (γ ij x j -γ ji x i ), i = s + 1, . . . , n.
The sum of these equations shows that E * ( ) satisfies the following equation

s i=1 x i ϕ i (x i ) - n i=s+1 x i ϕ i (x i ) = 0. ( 41 
)
Therefore E * n ( ) belongs to the locus of points described by the equation ( 41) consists of the origin together with a connected (n-1)-dimension surface denoted by:

S := x ∈ R n + : Θ(x) := s i=1 x i ϕ i (x i ) - n i=s+1 x i ϕ i (x i ) = 0 , (42) 
which passes through all boundary equilibria together with the equilibrium (K 1 , . . . , K s , 0, . . . , 0). Note that this surface is independent of the migration terms and γ ij . In all of the rest , we assume that S is compact and convex. Let we start by the following situation: • If s i=1 δ i ϕ i (0) ≤ n i=s+1 δ i ϕ i (0), then there is * > 0 such that, T * n ( ) > 0 for < * , and T * n ( ) = 0, for ≥ * .

• If s i=1 δ i ϕ i (0) > n i=s+1 δ i ϕ i (0), then T * n ( ) > 0 for all ≥ 0.
Proof. The equation of the tangent space to the surface S, defined by [START_REF] Richards | A Flexible Growth Function for Empirical Use[END_REF], at point

A s = (K 1 , . . . , K s , 0, . . . , 0) is given by s i=1 (x i -K i ) ∂Θ ∂x i (A s ) + n i=s+1 x i ∂Θ ∂x i (A s ) = 0, ( 43 
)
where Θ is given by Equation [START_REF] Richards | A Flexible Growth Function for Empirical Use[END_REF]. Since ∂Θ ∂xi (A s ) = -K i dϕi dxi (K i ) for all i = 1, . . . , s and ∂Θ ∂xi (A s ) = ϕ(0) for all i = s + 1, . . . , n, Equation ( 43) can be written as follows:

s i=1 -K i dϕ i dx i (K i )(x i -K i ) + n i=s+1 ϕ i (0)x i = 0. ( 44 
)
If we take -K 1 dϕ1 dx1 (K 1 ) = . . . = -K s dϕs dxs (K s ) = ϕ s+1 (0) = . . . = ϕ n (0), in Equation ( 44), we get that the equation of the tangent plane to surface S at the point A s is n i=1

x i = s i=1 K i .
By the convexity of the surface S, any point of S lies in the half-space defined by the inequality n i=1 x i ≤ s i=1 K i . Therefore E * ( ) satisfies

n i=1 x * i ( ) ≤ s i=1 K i for all ≥ 0.
Now, according to the formula of perfect mixing [START_REF] Gilpin | Global models of growth and competition[END_REF], we can see immediately that

T * n (+∞) = 0 if and only if s i=1 δ i ϕ i (0) = n i=s+1 δ i ϕ i (0). If -K 1 dϕ1 dx1 (K 1 ) = . . . = -K s dϕs dxs (K s ) = ϕ s+1 (0) = .
. . = ϕ n (0) =: r, then the formula of the derivative (39) at = 0 becomes

dT * n d (0) = 1 r (1, . . . , 1) Γ (K 1 , . . . , K s , 0, . . . , 0) T = 0.
This completes the proof of the proposition.

Note that, the result of the previous proposition is also obtained by Arditi et al. [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] for two-patch logistic model and by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] for n-patch model with logistic dynamic ϕ i (x i ) = r i -r i /K i x i . They proved that, if the growth rates r i are equal in all patches, then the total equilibrium population is always smaller than the sum of the carrying capacities. In the case when s = n, the previous proposition becomes

: if K 1 dϕ1 dx1 (K 1 ) = . . . = K n dϕn dxn (K n ), then 0 < T * n ( ) ≤ i K i , which is [20,
Prop. 13].

Heterogeneous source-sink system

In the next proposition we give sufficient and necessary conditions for the total equilibrium population not to depend on the migration rate. More precisely, we show that, the only situation where the total equilibrium population is independent with respect to dispersal, is when all the patches are sources and the vector of the carrying capacities lies in the vector space ker Γ. That is, if there is at least one sink patch, or we have n sources and the vector of the carrying capacities does not belong to the vector space ker Γ, then the total equilibrium population depends on the dispersion.

Proposition 5.3. The equilibrium E * ( ) does not depend on if and only if, s = n

and (K 1 , . . . , K n ) ∈ ker Γ. In this case E * ( ) = (K 1 , . . . , K n ) for all > 0.
Proof. The equilibrium E * ( ) := (X * s ( ); X * p ( )), where

X * s ( ) = (x * 1 ( ), . . . , x * s ( ))
and X * p ( ) = (x * s+1 ( ), . . . , x * n ( )), is the unique positive solution of the system (9), i.e:

0 = diag (ϕ 1 (x * 1 ( )), • • • , ϕ s (x * s ( ))) X * s ( ) + Γ ss X * s ( ) + Γ sp X * p ( ) , 0 = -diag (ϕ 1 (x * 1 ( )), • • • , ϕ s (x * s ( ))) X * s ( ) + Γ ps X * s ( ) + Γ pp X * p ( ) . (45) 
Suppose that the equilibrium E * ( ) does not depend on . The derivative of ( 45) with respect to gives:

0 = Γ ss X * s ( ) + Γ sp X * p ( ) 0 = Γ ps X * s ( ) + Γ pp X * p ( ) ⇔ Γ ss Γ sp Γ ps Γ pp X * s ( ) X * p ( ) = 0 ⇔ ΓE * ( ) = 0. ( 46 
)
Replacing Equation ( 46) in ( 45), we get E * ( ) = (K 1 , . . . , K s , 0, . . . , 0). From Equation ( 46), we conclude that (K 1 , . . . , K s , 0, . . . , 0) ∈ ker Γ. Since the vector space ker Γ is generated by a positive vector, then (K 1 , . . . , K s , 0, . . . , 0) ∈ ker Γ is hold if and only if, s = n.

Now, suppose that s = n and (K 1 , . . . , K n ) ∈ ker Γ, then (K 1 , . . . , K n ) satisfies Equation ( 45), for all ≥ 0. So, E * ( ) = (K 1 , . . . , K n ), for all ≥ 0, which proves that the total equilibrium population is independent of the migration rate .

When all the patches are sources and the vector of the carrying capacities lies in the vector space ker Γ, we obtain the results proved by Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF]Prop. 3.2 ], [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF]Prop. 4.5 ] and [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF]Prop. 15 ].

Two blocks of identical source and sink patches

We consider the model of source-sink patches ( 9) and we assume that we have one block of identical source patches and one block of identical sink patches. We denote by I so = {1, . . . , s} and I si = {s + 1, . . . , n} for the block of the source patches and sink patches respectively such that I so ∪ I si = {1, . . . , n}. The source patches being identical means that they have the same growth functions ϕ i . Therefore, we have

ϕ 1 = . . . = ϕ s =: ϕ so . (47) 
The same for the sink patches, we suppose that:

ϕ s+1 = . . . = ϕ n =: ϕ si . (48) 
First, we give some definitions:

Definition 5.1. Let the flux Γ iIsi = j∈Isi γ ij , Γ jIso = i∈Iso γ ij , Γ IsoIsi = i∈Iso,j∈Isi
γ ij , and Γ IsiIso = i∈Iso,j∈Isi γ ji .

• For i ∈ I so , Γ iIsi is the flux from block I si to patch i, i.e. the sum of the migration rates γ ij from patches j ∈ I si to patch i.

• For j ∈ I si , Γ jIso is the flux from block I so to patch j, i.e. the sum of the migration rates γ ji from patches i ∈ I so to patch j.

• Γ IsoIsi is the flux from block I si to block I so , i.e. the sum of the migration rates γ ij from patches j ∈ I si , to patches i ∈ I so .

• Γ IsiIso is the flux from block I so to block I si , i.e. the sum of the migration rates γ ji from patches i ∈ I so , to patches j ∈ I si .

For each patch i we denote by T i the sum of all migration rates γ ji from patch i to another patch j = i (i.e. the outgoing flux of patch i) minus the sum of the migration rates γ ik from patch k to patch i, where k belongs to the same block as i. Hence, we have:

If i ∈ I so , T i = j∈Isi γ ji + k∈Iso\{i} (γ ki -γ ik ) If j ∈ I si , T j = i∈Iso γ ij + k∈Isi\{j} (γ kj -γ jk )
We make the following assumption on the migration rates

Γ 1Isi = . . . = Γ sIsi , Γ (s+1)Iso = . . . = Γ nIso T 1 = . . . = T s , T s+1 = • • • = T n ( 49 
)
If Conditions ( 49) are satisfied, then, according to [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF]Lemma 4.6], for all i ∈ I so and j ∈ I si one has

Γ iIsi = Γ IsoIsi /s, Γ jIso = Γ IsiIso /s, T i = Γ IsiIso /s, T j = Γ IsoIsi /s. ( 50 
)
where s = n -s, Γ IsoIsi and Γ IsiIso are defined in Definition 5.1. We have the following result Theorem 5.1. Assume that Conditions (47),( 48) and (49) are satisfied. If System (9) admits unique equilibrium point in the interior of the positive cone, then is of the form

x 1 = x * so , . . . , x s = x * so , x s+1 = x * si , . . . , x n = x * si
where (x * so , x * si ) is the interior equilibrium point of the two-patch source -sink model

    
dx so dt = sx so ϕ so (x so ) + (Γ IsoIsi x si -Γ IsiIso x so ) ,

dx si dt = -sx si ϕ si (x si ) + (Γ IsiIso x so -Γ IsoIsi x si ) , (51) 
with specific growth rate sx so ϕ so (x so ) and death rate sx si ϕ si (x si ), migration rates Γ IsiIso from source to the sink patch and Γ IsoIsi from the sink to the source patch.

Proof. Assume that Conditions ( 47) and ( 48) are satisfied. Then, if the interior equilibrium point of ( 9) exist, it is the unique positive solution of the set of algebraic equations

           x i ϕ so (x i ) + n k=1,k =i (γ ik x k -γ ki x i ) = 0, i = 1, • • • , s, -x i ϕ si (x i ) + n k=1,k =i (γ ik x k -γ ki x i ) = 0, i = s + 1, • • • , n. (52) 
We consider the following set of algebraic equations obtained from (52) by replacing

x i = x so for i = 1, . . . , s and x i = x si for i = s + 1, . . . , n:

           x so ϕ so (x so ) + n k=1,k =i (γ ik x si -γ ki x so ) = 0, i = 1, • • • , s, -x si ϕ si (x si ) + n k=1,k =i (γ ik x so -γ ki x si ) = 0, i = s + 1, • • • , n. (53) 
Now, using Condition ( 49), together with (50), we see that System (53) is equivalent to the set of two algebraic equations:

       x so ϕ so (x so ) + Γ IsoIsi s x si - Γ IsiIso s x so = 0, -x si ϕ si (x si ) + Γ IsiIso s x so - Γ IsoIsi s x si = 0. (54) 
Therefore, if x so = x * so , x si = x * si is a positive solution of (54) then x i = x * so for i = 1, . . . , s and x i = x * si for i = s + 1, . . . , n is a positive solution of (52).

As a corollary of the previous theorem:

Corollary 5.1. Assume that Conditions ( 47), ( 48) and ( 49) are satisfied. Then, the total equilibrium population

T * n ( ) = sx * so ( ) + sx * si ( )
of ( 9) behaves like the total equilibrium population of the following Two-patch sourcesink model

    
dy so dt = y so ϕ so y so s + (γ 2 y si -γ 1 y so ) ,

dy si dt = -y si ϕ si y si s + (γ 1 y so -γ 2 y si ) . (55) 
with migration rates γ 1 = ΓI si Iso s

, γ 2 = ΓI so I si s .

Proof. The equilibrium point (x * so , x * si ) is the positive solution of the following system:

0 = sx so ϕ so (x so ) + (Γ IsoIsi x si -Γ IsiIso x so ) , 0 = -sx si ϕ si (x si ) + (Γ IsiIso x so -Γ IsoIsi x si ) , (56) 
Therefore (y * so = sx * so , y * si = sx * si ) is the solution of the set of equations

       y so ϕ so y so s + (γ 2 y si -γ 1 y so ) = 0, -y si ϕ si y si s + (γ 1 y so -γ 2 y si ) = 0, (57) 
obtained from (56) by using the change of variables y so = sx so , y si = sx si .

The growth and death rates with two different scales

Recently, in [START_REF] Elbetch | Effects of rapid population growth on total biomass in Multi-patch environment[END_REF], Elbetch is interested in some biological situations that can be found in the nature, that is, the case where several sub-populations grow with different speed.

Mathematically speaking, he studied the system (8) under the hypothesis that some growth rates tend to infinity (i.e r i → ∞ for some i ). In two following sections, we consider the model ( 9) and we assume that the death rates (resp. growth rates) are much larger than growth rates (resp. death rates).

6.1. Death rates are much larger than the growth rates

In this part, we consider the multi-patch source-sink model ( 9) and we assume that the death rates of the sink patches are much larger than the growth rates of the source patches. Under this assumption, one can write the model in the matrix form as follow:

Ẋs = diag (ϕ 1 (x 1 ), • • • , ϕ s (x s )) X s + (Γ ss X s + Γ sp X p ) , Ẋp = 1 η diag (ϕ s+1 (x s+1 ), • • • , ϕ n (x n )) X p + (Γ ps X s + Γ pp X p ) , (58) 
where η is assumed to be a small positive number and the point denotes the derivative with respect to t. We have the following result:

Theorem 6.1. Let (x 1 (t, η), . . . , x n (t, η)) be the solution of System (58) with initial condition (x 0 1 , . . . , x 0 n ) satisfying x 0 i ≥ 0 for i = 1, . . . , n. Let u(t) = (u 1 (t), . . . , u s (t))
be the solution of the following differential system

Ẋs = diag (ϕ 1 (x 1 ), . . . , ϕ s (x s )) X s + Γ ss , (59) 
with initial condition u(0) = (x 0 1 , . . . , x 0 s ), X s = (x 1 , . . . , x s ) T and Γ ss is the sub matrix of Γ defined by [START_REF] Elbetch | The multi-patch logistic equation[END_REF]. Then, when η → 0, we have

x i (t, η) = u i (t) + o η (1), i = 1, . . . , s uniformly for t ∈ [0, T ], (60) 
and

x i (t, η) = o η (1), i = s + 1, . . . , n, (61) 
uniformly for t ∈ [t 0 , T ], where 0 < t 0 < T are arbitrary but fixed and independent of η. If the solution u s (t) of the reduced problem converges to an asymptotically stable equilibrium, then we can put T = +∞ in Approximations (60) and (61).

Proof. When η → 0, System (58) is a slow-fast system, with x 1 , . . . , x s are slow variables, and x s+1 , . . . , x n fast variables. Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] prompts us to consider the dynamics of the fast variables in the time scale τ = 1 η t. One obtains

Ẋp = diag (ϕ s+1 (x s+1 ), • • • , ϕ n (x n )) X p + η (Γ ps X s + Γ pp X p ) , (62) 
where the point denotes the derivative of X p with respect to τ . In the limit η → 0, we find the fast dynamics

Ẋp = diag (ϕ s+1 (x s+1 ), • • • , ϕ n (x n )) X p . (63) 
Proof. We suppose that the origin is an equilibrium of (65), then Γ ps K s = 0, which is equivalent to Γ ps = 0. So, we obtain a contradiction since Γ is irreducible.

Theorem 6.3. Assume that the two matrices Γ pp and Γ are irreducible. The reduced model (65) has unique equilibrium point in the interior of the positive cone R n-s + \ {0} which is GAS.

Proof. To show the global stability of the reduced model (65) in this case, we use the result of Hirsch [START_REF] Hirsch | The dynamical systems approach to differential equations[END_REF] recalled in Theorem A.2. The Jacobian matrix of the reduced model ( 65) is given by

G(X p ) := -diag (ϕ s+1 (x s+1 ), . . . , ϕ n (x n )) + Γ pp , which is irreducible because Γ pp is also. Moreover, if G(X p ) ≤ G(Y p ) then -diag (ϕ s+1 (x s+1 ), . . . , ϕ n (x n )) ≤ -diag (ϕ s+1 (y s+1 ), . . . , ϕ n (y n )) which gives ϕ k (x k ) ≥ ϕ k (y k ) for all k ≥ s + 1. Since the function ϕ i is increasing, then x k ≥ y k , i.e X p ≥ Y p .
All solutions are bounded and the reduced model (65) does not admits the origin as equilibrium by Lemma 6.1. Hence, the reduced model ( 65) is globally stable according to Hirsch [START_REF] Hirsch | The dynamical systems approach to differential equations[END_REF].

Example of Two-patch Source-sink model

In this section, we concentrate on the following two-patch source-sink model:

         dx 1 dt = r 1 x 1 1 - x 1 K 1 + (γ 12 x 2 -γ 21 x 1 ) , dx 2 dt = -r 2 x 2 1 + x 2 K 2 2 + (γ 21 x 1 -γ 12 x 2 ) , (68) 
where the first patch is assumed to follow a logistic law and the second a Richard law ( see Fig. 4).

γ 21 x 1 γ 12 x 2 dx1 dt = r 1 x 1 1 -x1 K1 dx2 dt = -r 2 x 2 1 + x2 K2 2 Figure 4. A Tow-patch source-sink coupled system
The total equilibrium population of the model (68) in the perfect mixing case (i.e → ∞) equal (γ 12 + γ 21 ) λ 0 where

λ 0 = -γ 12 2 r 1 K 2 + γ 12 4 r 1 2 K 2 2 + 4 γ 21 3 r 2 K 1 2 γ 12 r 1 -4 γ 21 4 r 2 2 K 1 2 K 2 2γ 21 3 r 2 K 1 ,
is the unique solution of the following equation:

γ 12 r 1 1 - γ 12 x K 1 -γ 21 r 2 1 + γ 21 x K 2 2 = 0 ⇔ - γ 21 3 r 2 K 2 2 x 2 - γ 12 2 r 1 K 1 x+γ 12 r 1 -γ 21 r 2 = 0.
Therefore, T * 2 (+∞) is given by the following formula:

T * 2 (+∞) = (γ 12 + γ 21 ) -γ12 2 r1K2+ √ γ12 4 r1 2 K2 2 +4 γ21 3 r2K1 2 γ12r1-4 γ21 4 r2 2 K1 2 K2 2γ21 3 r2K1 if γ 12 r 1 > γ 21 r 2 , 0
otherwise, (69) and the derivative of the total equilibrium population T * 2 ( ) at = 0 becomes

dT * 2 d (0) = (γ 12 K 2 -γ 21 K 1 ) 1 r 1 - 1 r 2 . ( 70 
)
The equilibrium of the system (68) is the solutions of the following algebraic system:

         0 = r 1 x 1 1 - x 1 K 1 + (γ 12 x 2 -γ 21 x 1 ) , 0 = -r 2 x 2 1 + x 2 K 2 2 + (γ 21 x 1 -γ 12 x 2 ) . (71) 
The sum of two equations of (71) shows that the equilibrium points are in curve noted F, where its equation is given by:

F : r 1 x 1 1 - x 1 K 1 -r 2 x 2 1 + x 2 K 2 2 = 0. (72) 
The curve F passes through the points (0, 0) and A := (K 1 , 0). Note that, it is independent of migration rate and γ ij (shown in red in Fig. 5). Solving the first equation of system (71) for x 2 yields a parabola noted P defined by

P : p (x 1 ) := 1 γ 12 x 1 γ 21 - r 1 1 - x 1 K 1 .
As our study is limited in the positive cone, then we are interested only in the positive branch of P . The parabola P ( shown in blue in Fig. 5) depend on the migration rate . It always passes through the origin and the point B := K 1 , γ21 γ12 K 1 . Notice that, the parabola P intersect the axis (Ox 1 ) at 0 and a second point

x 1 = -(γ21 -r1)K1
r1 if γ 21 -r 1 < 0, which always smaller than K 1 . So, the equilibrium points are the non negative intersection between the curve F and P . So, we have at most two equilibrium, the origin as unique equilibrium, or, the trivial point (0, 0) and the second is a non

trivial point E * 2 ( ) = (x * 1 ( ), x * 2 (
)) whose position depend on migration rate ( see Fig. 5).

When → 0, the left branch of parabola P tend to the vertical line x 1 = 0 and the right branch into the vertical line P 0 : x 1 = K 1 . Moreover, F ∩ P 0 = {(K 1 , 0)}. In the case when → ∞, the parabola P tend to the oblique line P ∞ : x 2 = γ21 γ12 x 1 . Moreover,

F ∩ P ∞ = {(0, 0), (γ 12 λ 0 , γ 21 λ 0 )} if r 1 γ 12 > γ 21 r 2 , {(0, 0)} if r 1 γ 12 ≤ γ 21 r 2 . F P F P 0 0 x 1 x 1 x 2 x 2 K 1 K 1 • E * 2 ( ) Figure 5
. Some examples of the curve F and the Parabola P . The equilibrium points are the intersection in the positive cone between F and P , this intersections contains the origin or the origin and a second positive point E * ( ).

Effect of dispersal on total equilibrium population

For two-patch source-sink model ( 4), it was shown by Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] that only three situations can occur: the case where the total equilibrium population is always greater than the carrying capacity of source patch, the case where it is always smaller with persistence or even extinction in both patches, and a third case, where the effect of migration is beneficial for lower values of the migration coefficient and detrimental for the higher values, with persistence or even extinction in both patches. More precisely, it was shown in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] that, the following trichotomy holds

• If T * 2 (+∞) > K 1 then T * 2 ( ) > K 1 for all > 0.
• If dT * 2 d (0) > 0 and T * 2 (+∞) < K 1 , then there exists 0 > 0 such that T * 2 ( ) > K 1 for 0 < < 0 , T * 2 ( ) < K 1 for > 0 and T * 2 ( 0 ) = K 1 . Moreover, there exists > 0 such that T * 2 ( ) > 0 for all < and T * 2 ( ) = 0 for all ≥ .

• If dT * 2 d (0) < 0, then T * 2 ( ) < K 1 for all > 0. Moreover, there exists > 0 such that T * 2 ( ) > 0 for all < and T * 2 ( ) = 0 for all ≥ .

Therefore, the condition T * 2 ( ) = K 1 holds only for = 0 and at most for one positive value 0 . The value 0 exists if and only if dT * 2 d (0) > 0 and T * 2 (+∞) < K 1 .

In this section, Our aim is to compare the total equilibrium population

T * 2 ( ) = x * 1 ( ) + x * 2 ( ), E * 2 ( ) = (x * 1 ( ), x * 2 ( )),
of (68) and carrying capacity of the source patch K 1 , by analyzing the stable positive equilibrium E * 2 ( ). Note that, when there is no dispersal (i.e., = 0), the total equilibrium population is T * 2 (0) = K 1 . We study the effect of asymmetric dispersal on the total equilibrium population for the two-patch source-sink system (68). Using the method graphic of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] and of Wu et al. [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF], we describe the position affects the equilibrium E * 2 ( ) when the migration rate varies from zero to infinity, we will give the condition whether T * 2 is greater or smaller than the carrying capacity T * 2 (0) = K 1 . We prove there are only three cases as in the two-patch source-sink model with linear diffusion can occur. Denote

ξ = -r 1 K 2 2 -2 r 2 K 1 2 + r 1 2 K 2 4 + 4 r 1 K 2 2 r 2 K 1 2 -4 r 2 2 K 1 2 K 2 2 2r 2 K 1 .
We consider the regions in the set of the parameters γ 21 and γ 12 , denoted ∆ 0 , ∆ 1 , ∆ 2 , ∆ 3 and ∆ 4 , depicted in Figure 6 and defined by:

                             If r 2 ≥ r 1 then      ∆ 0 = γ 21 , γ 12 ) : γ12 γ21 ≤ r2 r1 , ∆ 1 = (γ 21 , γ 12 ) : γ12 γ21 > r2 r1 . If r 2 < r 1 then            ∆ 2 = (γ 21 , γ 12 ) : γ12 γ21 ≤ r2 r1 , ∆ 3 = (γ 21 , γ 12 ) : r2 r1 < γ12 γ21 < ξ K1-ξ , ∆ 4 = (γ 21 , γ 12 ) : γ12 γ21 ≥ ξ K1-ξ . ( 73 
) Case r 2 ≥ r 1 . 0 ∆ 1 ∆ 0 γ 21 γ 12 γ12 γ21 = r2 r1 Case r 2 < r 1 . 0 ∆ 4 ∆ 3 ∆ 2 γ 21 γ 12 γ12 γ21 = ξ K1-ξ γ12 γ21 = r2 r1 Figure 6
. Qualitative properties of source-sink model (68). In ∆ 0 and ∆ 1 , the effect is detrimental, with extinction in two patches for ∆ 0 , and persistence for ∆ 1 . In ∆ 2 and ∆ 3 , the effect is beneficial for < 0 and detrimental for > 0 with persistence of the population in the region ∆ 3 , and extinction in the region ∆ 2 . In ∆ 4 , patchiness has a beneficial effect on the total equilibrium population.

We have the following results which gives the conditions under which fragmentation and asymmetrical migration can lead to a total equilibrium population greater or smaller than the carrying capacity K 1 of the source patch:

Theorem 7.1. The total equilibrium population T * 2 of (68) satisfies the following properties (1) If r 2 ≥ r 1 , let ∆ 0 and ∆ 1 be defined by (73). Then we have:

(a) if (γ 21 , γ 12 ) ∈ ∆ 0 then T * 2 ( ) ≤ K 1 for all ≥ 0. Moreover, there is 0 > 0 such that T * 2 ( ) = 0 for all ≥ 0 . (b) if (γ 21 , γ 12 ) ∈ ∆ 1 then 0 < T * 2 ( ) ≤ K 1 for all ≥ 0. Moreover, T * 2 ( ) -→ T * 2 (∞) > 0 when -→ +∞.
(2) If r 2 < r 1 , let ∆ 2 , ∆ 3 and ∆ 4 be defined by (73). Then we have:

(a) if (γ 21 , γ 12 ) ∈ ∆ 2 then, there is * > 0, such that: T * 2 ( ) > K 1 for < * and

If the slope of P ∞ , γ21 γ12 , is bigger than the slope of T O E 1 , i.e. γ21 γ12 ≥ r1 r2 , the curve is below the line ∆ in the first quadrant. Thus, there is 0 , such that, when 0 < ≤ 0 , the equilibrium E * In the case when r 1 > r 2 , direct calculation finds that the curve F and the line ∆ have two intersections: A = (K 1 , 0), and C = (ξ, K 1 -ξ). We denote by Σ the straight line joint the origin and C. The slope of Σ is equal to K1-ξ ξ . We distinguish three cases relative position of the points O, B = E * 2 (∞), and C, or equivalently, the three lines T O E 1 , P ∞ and Σ whose slopes respectively are

r 1 r 2 , γ 21 γ 12 and K 1 -ξ ξ .
By the method graphic of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] ( see also of [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF]), we conclude the complete proof ( see Figures 8 and9). 

* 2 → K 1 = T * 2 (∞) for γ 12 γ 21 = ξ K 1 -ξ .
Speaking biologically, the result of the previous theorem show that the asymmetric dispersal can lead to either an increased total size of the population in two patches, a decreased total size with persistence in the patches, or even extinction in both patches when the growth of migration goes to infinity. Let us explain the result of Theorem 7.1 in the particular case where the dispersion is symmetric i.e. γ21 γ12 = 1. In this case, the system (68) becomes

         dx 1 dt = r 1 x 1 1 - x 1 K 1 + (x 2 -x 1 ) , dx 2 dt = -r 2 x 2 1 + x 2 K 2 2 + (x 1 -x 2 ) , (74) 
We consider the regions in the set of the parameters r 1 and r 2 , denoted Λ 0 , Λ 1 and Λ 2 , depicted in Figure 10 and defined by:

         Λ 0 = {(r 1 , r 2 ) : r 2 ≥ r 1 } , Λ 1 = (r 1 , r 2 ) : r 1 < r 2 < 2K 2 2 K 2 1 +4K 2 2 r 1 , Λ 2 = (r 1 , r 2 ) : r 2 ≥ 2K 2 2 K 2 1 +4K 2 2 r 1 . ( 75 
) 0 Λ 0 Λ 1 Λ 2 r 1 r 2 r 2 = r 1 r 2 = 2K 2 2 K 2 1 +4K 2 2 r 1 
Figure 10. Qualitative properties of source-sink model (74) with γ 12 = γ 21 = 1. In Λ 0 , the effect is detrimental with extinction in two patches. In Λ 1 , the effect is beneficial for < * * and detrimental for > * * with persistence of the population. In Λ 2 , patchiness has a beneficial effect on the total equilibrium population.

Corollary 7.1. Consider the model (74). Let Λ 0 , Λ 1 and Λ 2 be defined by (75). The total equilibrium population T * 2 of (74) satisfies the following properties

(1) if (r 1 , r 2 ) ∈ Λ 0 then, T * 2 ( ) ≤ K 1 for all . Moreover, there is 0 > 0 such that T * 2 ( ) = 0 for all ≥ 0 . (2) if (r 1 , r 2 ) ∈ Λ 1 then, there is * > 0, such that T * 2 ( ) ≥ K 1 If ≤ * , 0 < T * 2 ( ) < K 1 If > * . (76) Moreover, T * 2 ( ) → T * 2 (∞) > 0 when → ∞. (3) if (r 1 , r 2 ) ∈ Λ 2 , then T * 2 ( ) ≥ K 1 for all ≥ 0. Moreover, if r1 r2 = 2K 2 2 K 2 1 +4K 2 2 , then T * 2 (∞) = K 1 .
Proof. Consequence direct of the theorem 7.1.

7.2. Two-patch model where one growth rate is much larger than the second one

Recently, in [START_REF] Elbetch | Effects of rapid population growth on total biomass in Multi-patch environment[END_REF], Elbetch is interested in some biological situations that can be found in the nature, that is, the case where several sub-populations grow with different speed. Mathematically speaking, he studied the system [START_REF] Cosner | The effects of human movement on the persistence of vector-borne diseases[END_REF] under the hypothesis that some growth rates tend to infinity (i.e r i → ∞ for some i). In the preceding two subsections, we consider the two-patch model (68) and we assume that the death rate r 2 (resp. growth rater 1 ) is much larger than growth rate r 1 (resp. death rate r 2 ).

Case where r 2 → ∞

In this part, we assume that the death rate r 2 is much larger than the growth rate r 1 .

For simplicity we denote γ 2 := γ 12 > 0 the migration rate from sink to source patch and γ 1 := γ 21 > 0 from source to sink patch. The model ( 68) is written:

         dx 1 dt = r 1 x 1 1 - x 1 K 1 + (γ 2 x 2 -γ 1 x 1 ) , dx 2 dt = - r 2 η x 2 1 + x 2 K 2 2 + (γ 1 x 1 -γ 2 x 2 ) , (77) 
where η is assumed to be a small positive number. Denote E * 2 ( , η) = (x * 1 ( , η), x * 2 ( , η))

the positive equilibrium of (77), and T * 2 ( , η), the total equilibrium population. We recall that the derivative of T * 2 ( , η) with respect to at = 0 is written as follow:

dT * 2 d (0, η) = γ 1 K 1 η r 2 - 1 r 1 . ( 78 
)
The total equilibrium population of the model (77) for perfect mixing (i.e → ∞) is given by the following formula:

T * 2 (+∞, η) = (γ 1 + γ 2 ) -ηγ2 2 r1K2+
√ η 2 γ2 4 r1 2 K2 2 +4η γ1 3 r2K1 2 γ2r1-4 γ1 4 r2 2 K1 2 K2 2γ1 3 r2K1 if γ 2 r 1 η > γ 1 r 2 , 0 otherwise.

(79) First, we have the result: Theorem 7.2. Let (x 1 (t, η), x 2 (t, η)) be the solution of the system (77) with initial condition (x 0 1 , x 0 2 ) satisfying x 0 i ≥ 0 for i = 1, 2. Let u(t) be the solution of the differential equation

dx 1 dt = r 1 x 1 1 - x 1 K 1 -γ 1 x 1 =: ϕ(x 1 ), (80) 
with initial condition u(0) = x 0 1 . Then, when η → 0, we have

x 1 (t, η) = u(t) + o η (1), uniformly for t ∈ [0, +∞) (81)

and, for any t 0 > 0, we have

x 2 (t, η) = o η (1), uniformly for t ∈ [t 0 , +∞).

(82)

Proof. When η → 0, the system (77) is a slow-fast system, with one slow variable,

x 1 , and one fast variable, x 2 . Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF] prompts us to consider the dynamics of the fast variables in the time scale τ = 1 η t. One obtains

dx 2 dτ = -r 2 x 2 1 + x 2 K 2 2 + η(γ 1 x 1 -γ 2 x 2 ). ( 83 
)
In the limit η → 0, we find the fast dynamics

dx 2 dτ = -r 2 x 2 1 + x 2 K 2 2 . ( 84 
)
The slow manifold is given by the positive equilibrium of the system (84), i.e x 2 = 0, which is GAS in the positive axis. When η goes to zero, Tikhonov's theorem ensures that after a fast transition toward the slow manifold, the solutions of (77) converge to the solutions of the reduced model (80), obtained by replacing x 2 = 0 into the dynamics of the slow variable.

The differential equation (80) admits 0 as unique equilibrium if r 1 ≤ γ 1 which is GAS, else, (80) admits 0 which is unstable, and a positive equilibrium

x * 1 ( , 0 + ) := r 1 -γ 1 α 1 , (85) 
where α 1 = r1 K1 . As ϕ(x 1 ) > 0 for all 0 ≤ x 1 < x * 1 ( , 0 + ) and ϕ(x 1 ) < 0 for all x 1 > x * 1 ( , 0 + ) then, the equilibrium x * 1 ( , 0 + ) is GAS in the positive axis, so, the approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variable, where t 0 is as small as we want. Therefore, let u(t) be the solution of the reduced model (80) of initial condition u(0) = x 0 1 , then, when η → 0, we have the approximations (81) and (82).

As a corollary of the previous theorem, we have the following result which give the limit of the total equilibrium population T * 2 ( , η) of the model (77) when η goes to zero:

Corollary 7.2. We have:

T * 2 ( , 0 + ) := lim η→0 T * 2 ( , η) = lim η→0 (x * 1 ( , η) + x * 2 ( , η)) = r 1 -γ 1 α 1 , if < r 1 /γ 1 , 0, otherwise . (86) 
Moreover, 0 < T * 2 ( , 0 + ) < K 1 for all < r 1 /γ 1 , and T * 2 ( , 0 + ) = 0, for ≥ r 1 /γ.

Proof. According to the equations (81), ( 82) and (85), when η goes to zero, the equilibrium E * 2 ( , η) of the model ( 77) is converge to E * 2 ( , 0 + ) := (x * 1 ( , 0 + ), 0), where

x * 1 ( , 0 + ) is given in (85).The sum of the coordinates of E * 2 ( , 0 + ) gives the formula (86).

7.2.2. Case where r 1 → ∞

In this part, we assume that r 1 is much larger than r 2 . The model ( 68) is written:

         dx 1 dt = r 1 η x 1 1 - x 1 K 1 + (γ 2 x 2 -γ 1 x 1 ) , dx 2 dt = -r 2 x 2 1 + x 2 K 2 2 + (γ 1 x 1 -γ 2 x 2 ) , ( 87 
)
where η is assumed to be a small positive number. We recall that the derivative of T * 2 ( , η) with respect to at = 0 is written as follow:

dT * 2 d (0, η) = γ 1 K 1 1 r 2 - η r 1 . ( 88 
)
The total equilibrium population of the model (77) for perfect mixing (i.e → ∞) is given by the following formula:

T * 2 (+∞, η) = (γ 1 + γ 2 ) -γ2 2 r1K2+ √ γ2 4 r1 2 K2 2 +4η γ1 3 r2K1 2 γ2r1-4η 2 γ1 4 r2 2 K1 2 K2 2ηγ1 3 r2K1
if γ 2 r 1 > ηγ 1 r 2 , 0 otherwise.

(89) We have the result: Theorem 7.3. Let (x 1 (t, η), x 2 (t, η)) be the solution of the system (87) with initial condition (x 0 1 , x 0 2 ) satisfying x 0 i ≥ 0 for i = 1, 2. Let u(t) be the solution of the differential equation

dx 2 dt = -r 2 x 2 1 + x 2 K 2 2 + (γ 1 K 1 -γ 2 x 2 ) =: ϕ(x 1 ), (90) 
with initial condition u(0) = x 0 2 . Then, when η → 0, we have 

  's model (see Swann and Vincent 1977 [44]), ẋ = -r log x K , Schoener 1973 [43], ẋ = rx I x -C -bx and Pianka 1972 [41], ẋ = x b + a-x 1+cx x , where r, K, µ, a, I, C, b and c are positive constants. Note that, last model exhibits an Alee effect, which occurs in a population with difficulties in reproducing at low densities. That is, the growth rate of the members in the population is enhanced up to a certain density by aggregation and beyond its density the rate decreases as the density increases by the limited resources. The function ϕ in Pianka's model has a maximum at x m = (-1 + √ 1 + ca)/c > 0 and the solution converges to x * > 0 as t → ∞, where ϕ(x * ) = 0. Further, ϕ can be approximated by the function b + ax for small x > 0, by b + a/c -x/c for large x > 0 and verify the Alee effect.
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 2 Figure 2. The possible cases modulo permutation of the three patches, for n = 3 and s ∈ {0, 1, 2, 3}. Source patches are in red and sink patches are in blue. Under the irreducibility hypothesis on the matrix Γ, there are five possible cases, modulo permutation of the three patches, which patches can connect, see figure 3.

et al. [ 13 ,

 13 Equation 28] for multi-patch logistic model and also the result of Elbetch[START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] Equation 
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 7 Figure 7. This illustrates the cases (1)-a and (1)-b in Theorem 7.1. Case (a) illustrate an example with (γ 21 , γ 12 ) ∈ ∆ 0 and the case (b) illustrate an example with (γ 21 , γ 12 ) ∈ ∆ 1 . The curve F and the parabola P are shown in red and blue respectively for some parameters of the model (68), the straight lines ∆ and P∞ are shown in green and orange respectively. As the migration intensity increases from 0 to ∞, the equilibrium point E * 2 ( ) moves counterclockwise along the ellipse from A = (K 1 , 0) to O in the case (1)-a, from A to B in the case (1)-b. The total equilibrium population is always smaller than K 1 for all ≥ 0.
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 89 Figure 8. This illustrates the cases (2)-a and (2)-b in Theorem 7.1. As the migration intensity increases from 0 to ∞, the equilibrium point E * 2 ( ) moves counterclockwise along the ellipse from A = (K 1 , 0) to O in the case (a) from A to B in the case (b), passing through the point C which is the other point of intersection between the curve F and the line ∆. The dispersal is favorable when E * 2 ( ) is between A and C, and unfavorable when E * 2 ( ) is between C and B .

x 2 ( 2 2, σ 2 = r 2 + γ 2 and σ 3 = γ 1 K 1 , 2 -σ 2 x 2 + σ 3 .

 2222311223 t, η) = u(t) + o η (1), uniformly for t ∈ [0, +∞)(91)and, for any t 0 > 0, we havex 1 (t, η) = K 1 + o η (1), uniformly for t ∈ [t 0 , +∞). (92)Proof. The proof is the same as in Theorem 7.2. Denote σ 1 = r2 K the equation (90) becomes ϕ(x 2 ) = -σ 1 x 3 This last equation

  γ 12 γ 13 + γ 12 γ 23 + γ 32 γ 13 , δ 2 = γ 21 γ 13 + γ 21 γ 23 + γ 31 γ 23 , δ 3 = γ 21 γ 32 + γ 31 γ 12 + γ 31 γ 32 .

( ) moves counterclockwise along the ellipse from A = (K 1 , 0) to O in the case (1)-a, from A to B in the case (1)-b. The total equilibrium population is always smaller than K 1 for all ≥ 0.

The slow manifold is given by the equilibrium of System (63), i.e X * p = 0, which is LAS in the positive axis. When η goes to zero, Tikhonov's theorem ensures that after a fast transition toward the slow manifold, the solutions of (58) converge to the solutions of the reduced model (59), obtained by replacing X p = 0 into the dynamics of the slow variable. Approximations (60) and (61) follow from Tikhonov's Theorem. Recall that when the reduced problem (59) has an asymptotically stable equilibrium, then these approximations hold for all t > 0 and not only on a compact interval [0, T ]. Recall also that there is a boundary layer for the fast variables, that is Approximations (61) hold only for t > t 0 where t 0 > 0 can be arbitrarily small but fixed.

Growth rates are much larger than the death rates

In this part, we consider the multi-patch source-sink model [START_REF] Deangelis | Persistence and stability of seed-dispersel species in a patchy environment[END_REF] and we assume that the growth rates of the source patches are much larger than the death rates of the sink patches. Under this assumption, one can write the model in the matrix form as follow:

where η is assumed to be a small positive number. We have the following result:

Let u(t) = (u s+1 (t), . . . , u n (t)) be the solution of the differential system

with initial condition (x 0 s+1 , . . . , x 0 n ), X p = (x s+1 , . . . , x n ) T , K s = (K 1 , . . . , K s ) T , Γ pp and Γ ps are the sub matrices of Γ defined by [START_REF] Elbetch | The multi-patch logistic equation[END_REF]. Then, when η → 0, we have

and

uniformly for t ∈ [t 0 , T ], where 0 < t 0 < T are arbitrary but fixed and independent of η. If the solution u p (t) of the reduced problem converges to an asymptotically stable equilibrium, then we can put T = +∞ in Approximations (66) and (67).

Proof. The proof is the same as Theorem 6.1.

Our next goal is to prove the global stability of the reduced model (65) under the hypothesis that the two matrices Γ pp and Γ are irreducible. First, we start by the following lemma: Lemma 6.1. Assume that the matrix Γ is irreducible. The reduced model (65) does not have the origin as equilibrium.

T * 2 ( ) < K 1 for all > * . Moreover, there is 0 > * such that T * 2 ( ) = 0 for all ≥ 0 .

(b) if (γ 21 , γ 12 ) ∈ ∆ 3 then, there is > 0, such that: T * 2 ( ) > K 1 for < and

Proof. Recall that, the equilibrium points of (68) are the non-negative intersection between the curve F and parabola P . There are most two equilibrium points. The first is the trivial point (0, 0) and the second is a non trivial point noted E * ( ) := (x * 1 ( ), x * 2 ( )) whose position depend on migration rate ( see Fig. 8). As our study is limited in the positive cone, then we are interested only in the positive branch of P .

The tangent space of the curve F at O and

To facilitate comparison between the total equilibrium population T * 2 ( ) and

If the intersection of the curve F and the parabola P , i.e., the equilibrium (x * 1 ( ), x * 2 ( )), is on or below the line ∆, then T * 2 ( ) ≤ T * 2 (0), whereas if the intersection is above the line ∆, then

) is always in ellipse, then, for = 0, the equilibrium point states at A, and when increases, E * 2 ( ) describes an arc of the curve and ends at point E * (∞).

Suppose r 1 ≤ r 2 . Then the slope of T A F, -r1 r2 ≥ -1, which means that the curve F is below the line ∆ in the first quadrant and T * 2 ( ) < T * 2 (∞), as shown in Fig. 7.

admits unique positive solution given by

2 ( , 0 + ) and ϕ(x 2 ) < 0 for all x 2 > x * 2 ( , 0 + ) then, the equilibrium x * 2 ( , 0 + ) is GAS in the positive axis, so, the approximation given by Tikhonov's theorem holds for all t ≥ 0 for the slow variable and for all t ≥ t 0 > 0 for the fast variable, where t 0 is as small as we want. Therefore, let u(t) be the solution of the reduced model (90) of initial condition u(0) = x 0 2 , then, when → 0, we have the approximations (91) and ( 92).

The result of the previous theorem prove that T * 2 ( , 0 + ) ≥ K 1 for all .

Conclusion

The aim of this paper is to generalize, to a generalized source-sink multi-patch model, the results of Elbetch [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] for generalized multi-patch logistic model i.e. n-source 0sink patch model, the results obtained in [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] for a multi-patch logistic model and also the results obtained in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] for a two-patch source-sink. The diffusion between source and sink patches is modeled by a cooperative matrix. When this last matrix is irreducible, two cases can produce for our system, either the origin is GAS, or there is a positive equilibrium, which furthermore is GAS (see Theorem 3.2). This is an extension of Elbetch's result [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF]Theorem 6]. The extension is based on developed cooperative system theory and proprieties of cooperative matrix.

In Section 4, we consider the particular case of perfect mixing, when the migration rate goes to infinity. As in [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] and [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF], we implicitly compute the total equilibrium population as a function of the number of the source patches in that case, and, by perturbation arguments and Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF], we prove that the dynamics in this ideal case provides a good approximation to the case when the migration rate is large. Our results generalize those of [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] for tow-patch logistic model, [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] for tow-patch source-sink model, [START_REF] Elbetch | The multi-patch logistic equation[END_REF] for n-patch logistic model with dispersal symmetric between patches, [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] for many patches with movement between patches not necessarily symmetric, [START_REF] Elbetch | Effect of dispersal in single-species discrete diffusion systems with source-sink patches[END_REF] for multi-patch source-sink model and [START_REF] Elbetch | Generalized logistic equation on Networks[END_REF] for generalized multi-patch logistic model.

In Section 5, we considered the total equilibrium population in the n patches. As shown in Proposition 5.2, diffusion could make total equilibrium population small than the sum of carrying capacities of the source patches and also the extinction in all patches. We give also sufficient and necessary conditions for which the total equilibrium population not to depend on the diffusion rate. More precisely, we show that, the only situation where the total equilibrium population is independent with respect to dispersal, is when all the patches are sources and the vector of the carrying capacities lies in the vector space ker Γ. That is, if there is at least one sink patch, or we have n source patches and the vector of the carrying capacities does not belong to the vector space ker Γ, then the total equilibrium population depends on the dispersion (See Proposition 5.3).

In Sections 6.1 and 6.2, we consider the model ( 9) and we assume that the death rates (resp. growth rates) is much larger than growth rates (resp. death rates). First, for both cases, by perturbation arguments and Tikhonov's theorem [START_REF] Lobry | On Tykhonov's theorem for convergence of solutions of slow and fast systems[END_REF][START_REF] Tikhonov | Systems of differential equations containing small parameters in the derivatives[END_REF][START_REF] Wasow | Asymptotic Expansions for Ordinary Differential Equations[END_REF], we construct the reduced models, and for the second case, under certain condition, we prove its global stability by using Hirsch's theorem A.2. Next, we compare the total equilibrium population of the source-sink patch model ( 9) with carrying capacities of the source patches.

In Section 7, Two-patch source-sink model where the first patch is assumed to follow a logistic law and the second a Richard law is studied. As in [START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF], we have shown that, the dispersal asymmetry can lead to either an increased total size of the population in two patches, a decreased total size with persistence in the patches, or even extinction in both patches. Next, the growth rate in the second (resp. first) patch is supposed to be much larger than that in the first (resp. second) one. We have given then the conditions for which patchiness is beneficial or detrimental for the population in models ( 77) and

(87) when η → 0. In this configuration where the population of one of the patches has a fast growing compared to the other patch, the critical value of migration rate 0 , which that the total equilibrium equal the some of carrying capacities, does not intervene.

Finally, comparisons the present results with previous works [START_REF] Arditi | In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF][START_REF] Elbetch | Effect of dispersal in single-species discrete diffusion systems with source-sink patches[END_REF][START_REF] Elbetch | Generalized logistic equation on Networks[END_REF][START_REF] Wu | Dispersal asymmetry in a two-patch system with source-sink populations[END_REF] indicate that, in general, the generalized growth rate mechanism has an effect on the dynamics of the total equilibrium population in the multi-patch source-sink model. Some important questions remain open: Is there a way to make connections between the source and sink patches (n ≥ 3) that increases the total equilibrium population? Mathematically speaking, are there conditions on the parameters of the model in which:

Ki for all positive diffusion rate ? Anther problem, for example, for three-patch model (one-source two-sink, two-source one-sink), is it possible to give a complete comparison between the total equilibrium population and the sum of the carrying capacities. I think this question is difficult and requires a lot of work and mathematical tools.

Appendix A. Background concepts and preliminaries results

In this section, our goal is to recall some concepts and results which we need in this work. Proofs of some results are given here and the others we refer interested readers to references.

Definition A.1. The kernel of a matrix A is defined by ker A = {v ∈ R n ; Av = 0}.

Definition A.2. A matrix A = (a ij ) is called reducible, if there is a matrix of permutation P = (p ij ) ( i.e p ij = 0 or p ij = 1) such that:

where A 11 and A 22 are two square sub-matrices of A. We say that A is irreducible if Proof. Let A be a cooperative matrix, there exists h > 0 such that A + hI, where I is the identity matrix, is non negative. Let u and λ be such that Au ≥ λu. Since S(A+hI)u ≥ (λ+h)u, using Lemma A.1, we deduce that ρ(A+hI) ≥ λ+h. According to the Perron-Frobenius Theorem [32, Theorem 3, page 66], we have

Therefore we have S(A+hI) ≥ λ+h. Using S(A+hI) = S(A)+h, we obtain S(A) ≥ λ.

By the same method, we prove the second statement.

Let we consider the autonomous system:

where ẋ denote the derivative of x, Ψ = (Ψ 1 , . . . , Ψ n ) is C 1 on a domain R n + .

Definition A.5. Consider System (A3). Let x(t, x 0 ) is a trajectory, and x 0 is the initial point. The set O of R n is said to be positively invariant if x 0 ∈ O implies that x(t, x 0 ) ∈ O for all t ≥ 0. In other words, once a trajectory of the system enters O, it will never leave it again.

Definition A.6. System (A3) is called cooperative if the Jacobian matrix JΨ(x) is a cooperative matrix for all x ∈ R n + .

To prove the global stability of the system cooperative (A3), generally, the following result is used:

Theorem A.1. [START_REF] Freedman | Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Non linear Anal[END_REF][START_REF]Ecology, Genetics and Evolution of Metapopulations[END_REF] If system (A3) possesses a positive equilibrium point x * satisfying Ψ i (ξx * ) > 0 for ξ ∈]0, 1[, < 0 for ξ > 1, (A4) then x * is globally stable.

We have also the following result of Hirsch [START_REF] Hirsch | The dynamical systems approach to differential equations[END_REF]:

Theorem A.2. If the cooperative system (A3) has the following proprieties:

• JΨ(x) is irreducible for any x ≥ 0,

• JΨ(x) ≤ JΨ(y) for any x ≥ y ≥ 0, and • all solutions are bounded, then either the origin is globally stable or there exists a unique positive equilibrium point and all the trajectories in R n + \ {0} tend to it.