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ABSTRACT

Context. The availability of large bandwidth receivers for millimeter radio telescopes allows for the acquisition of position-position-frequency
data cubes over a wide field of view and a broad frequency coverage. These cubes contain a lot of information on the physical, chemical, and
kinematical properties of the emitting gas. However, their large size coupled with an inhomogenous signal-to-noise ratio (S/N) are major challenges
for consistent analysis and interpretation.
Aims. We searched for a denoising method of the low S/N regions of the studied data cubes that would allow the low S/N emission to be recovered
without distorting the signals with a high S/N.
Methods. We performed an in-depth data analysis of the 13CO and C17O (1 − 0) data cubes obtained as part of the ORION-B large program
performed at the IRAM 30m telescope. We analyzed the statistical properties of the noise and the evolution of the correlation of the signal in a
given frequency channel with that of the adjacent channels. This has allowed us to propose significant improvements of typical autoassociative
neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13CO (1 − 0) cube, we were able to
compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state-of-the-art procedure
for data line cubes.
Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing
literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data
has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed
algorithm leads to an increase in the S/N in voxels with a weak signal, while preserving the spectral shape of the data in high S/N voxels.
Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a
promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may
further improve the denoising performances seems to be a promising avenue. In addition, dealing with the multiplicative noise associated with the
calibration uncertainty at high S/N would also be beneficial for such large data cubes.

Key words. Methods: data analysis, Methods: statistical, ISM: clouds, Radio lines: ISM, Techniques: image processing, Techniques: imaging
spectroscopy

1. Introduction

The current generation of millimeter radio-astronomy receivers
is able to produce large spectro-imaging data cubes (about 106

pixels ×105 frequencies or 0.4 TB) at a sensitivity of 0.1 K (per
pixel of ∼ 9′′ × 9′′ × 0.5 km s−1 in about 1 000 hours of observ-
ing time at, for example, the IRAM (Institut de Radioastronomie
Millimétrique) 30m telescope (Pety et al. 2017). The next gen-
eration of receivers will be between 25 and 50 times faster (Pety
et al. 2022). Such projects will thus move from the category of
large programs, which are difficult to carry out because they re-
quire more than 100 hours of telescope time per semester, to
typical programs that only require 20 to 40 hours per semester.
The main challenges in interpreting these observations are the
following: i) the noise level depends on the frequency, ii) the
emission varies from bright unresolved sources to faint extended
ones, and iii) the intricate gas kinematics of the emitting gas
leads to complex emission line profiles (non-Gaussian profiles,
high velocity line wings, self-absorptions, etc.), which vary from

one pixel to another. Increasing the signal-to-noise ratio (S/N),
often simply referred to as denoising, is an important step to lead
to new discoveries by enlarging the space of achieved observing
performances.

Denoising is an important topic in remote sensing, and many
methods and algorithms are found in the literature, for instance
principal component analysis (PCA, e.g., Wold et al. 1987),
kernel-PCA (e.g., Schölkopf et al. 1997), low rank tensor decom-
position (e.g., Harshman et al. 1970), and total variation meth-
ods (e.g., Vogel & Oman 1996). These methods try to compress
and uncompress the input data in a way that filters the noise but
retains the salient features of the signal. Among them, autoen-
coder neural networks are interesting algorithms because they
propose a generic nonlinear PCA, well adapted to hyperspectral
data in Earth remote sensing (Licciardi & Chanussot 2018). In
this paper, we explore the statistical nature of signal and noise
in millimeter radio-astronomy cubes in order to understand the
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adaptations of typical autoencoders, which are required to effi-
ciently denoise these cubes.

This article is organized as follows. Section 2 presents the
general problem of denoising and the particular case of denois-
ing by dimension reduction. Section 3 details the acquisition pro-
cesses that directly affect the properties of the noise. Sections 4
and 5 characterize the signal and noise properties for the studied
line data cubes. The intrinsic dimension of the signal is deter-
mined in Sect. 6. Section 7 presents the modifications proposed
to typical autoencoder neural networks to better handle radio-
astronomy line cubes. The obtained denoising performances are
then compared with the state-of-the-art Regularized Optimiza-
tion for Hyper-Spectral Analysis (ROHSA) algorithm in Sec-
tion 8. Section 9 summarizes the conclusions.

2. Denoising by dimension reduction

2.1. Definition of a denoising algorithm

The observed data d are noisy observations of the astronomical
signal s

d = f (s), (1)

where f is a known function that describes the observing process
with its random component considered as noise. Denoising com-
putes an estimate ŝ of the signal based on prior knowledge of the
deterministic and random part of the function f . This study will
be restricted to the case where the response f of the telescope is
linear

d = c · s + n, (2)

where n is one realization of an additive random variable N, and
c is one realization of a multiplicative random variable C. The
variables N and C are centered on 0 and 1, respectively. In radio-
astronomy, N represents the thermal noise, and C the calibration
noise associated to the uncertain determination of the calibration
parameters (see Sec. 5). It is often assumed that the calibration
uncertainty is negligible. In this case, the performance of the de-
noising estimator can be characterized by the improvement of
the S/N.

2.2. Supervised versus self-supervised methods

In machine learning, denoising algorithms belong to two main
categories.

Supervised methods that use a set of known (d, s) couples,
called a training set, to train the algorithm to estimate s from
the measured values of d. When available, ground truth data
are the best choice to build the training set. In astrophysics,
numerical simulations based on physical laws and laboratory
experiments are used as surrogates. The simplifications re-
quired to be able to describe a complicated reality may bias
the denoising.

Self-supervised methods consider that data are both the mea-
surements (features) and ground truth (labels). Additional
constraints on the denoising process are required to avoid
delivering the data itself as the denoised estimate of the sig-
nal. A common assumption is that the signal s is located in a
lower dimension space than the observed data d. The idea is
that the intrinsic dimension of the signal space is lower than
its extrinsic dimension. For instance, we shall assume that

the data are composed of three features (d1, d2, d3) with four
different samples for each of the feature, as in

[d1, d2, d3] =


2 1 1
1 −2 1
5 6 4
2 −8 4

 . (3)

The extrinsic dimension is three, that is the number of fea-
tures. But its intrinsic dimension is only two. Indeed, the val-
ues of the features (i.e., the first, second, and third columns
of the above matrix) are deterministically linked to two inde-
pendent variables u and v through

d1 = u + v, d2 = uv, and d3 = u2, (4)

where [u, v] =


1 1
−1 2

2 3
−2 4

 . (5)

Any algorithm that is able to deduce the above relations from
the measured data would enable one to compress it because
only two numbers per sample are required to encode the three
features. But it would also enable one to denoise the data.
Indeed, in the presence of noise, knowing the relationship
that exists between the features, will enable us to consider
the measurement of the three features as three independent
measurements of the same two underlying variables u, v, and
thus to increase the S/N of the estimated signal.

2.3. Generic denoising by dimension reduction

2.3.1. Principle

Denoising by dimension reduction aims at mapping the data with
an encoder function E : Rm −→ Rl with l < m, so that φ = E(d)
contains all the salient features φ of the signal of interest s and
filters out the noise. The fact that l < m implies that the en-
coder compresses the data. Another function, named decoder
D : Rl −→ Rm, estimates the signal s from its salient features
without loss. The estimated signal should preserve the relevant
physical information from the astronomical source, and it should
have an increased S/N. The spaces Rm and Rl are thus called
data and bottleneck (or latent) spaces, respectively. The denois-
ing will be all the better when l � m, and the signal is extracted
without distortion.

In astrophysics, denoising can be achieved with two differ-
ent approaches. First, astronomers may just wish to improve the
S/N of the measurements to ease the extraction of the physi-
cal information in a second step. The structure and unit of the
estimated signal stay unchanged. Second, astronomers may di-
rectly try to estimate the physical parameters (e.g., the source
geometry and kinematics, the volume and column density, the
kinetic temperature, the far-UV illumination, the Mach number,
the magnetic field, chemical abundances, etc), which best fit the
measured data. In this case, the significant physical and chemical
processes are selected, and their corresponding laws allow one to
fit the data. The salient features φ are the physical parameters of
interest. While this study will use the first approach, an interest-
ing challenge of denoising algorithms by dimension reduction is
to enable astrophysicists to relate the delivered salient features
to the physical quantities of interest. For instance, Gratier et al.
(2017) showed that the first component of the PCA of the inte-
grated intensities of a set of lines is related to the gas column
density.
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2.3.2. In practice

Denoising by dimension reduction is thus based on a structure
linking data d, estimated signal ŝ, and salient features φ as

d(i1, ..., im)
E−→ φ( j1, ..., jl)

D−→ ŝ(i1, ..., im), with l < m. (6)

In principle, the level of distorsion should be measured as the
distance between s and ŝ. However, it is impossible here be-
cause astronomical observations of the interstellar medium do
not provide ground truth. We thus replace ŝ by s in the reminder
of the paper for the sake of simplicity. In this representation,
(i1, ..., im) are the spectral channels of the observed intensities,
while ( j1, ..., jl) are the indices of the salient features. The global
denoising functionA, often called autoencoder, is defined as

d
A=D◦E−−−−−−→ s. (7)

It is just the composition of the E and D functions. The func-
tions E and D are not exactly inverse of each other. Indeed, in
order to denoise, the function Emust filter out the noise. In other
words, we expect that the function E will transform a random
variable D of a large variance into a random variable Φ of a low
variance. There is no such requirement for the function D. For
instance, denoising can sometimes be achieved through the asso-
ciation of PCA, which is a linear inversible transformation, with
a low dimensional projection. After the application of the PCA
to the data, the components that better explain the correlations
of the original data are kept and the other ones are set to zero,
before inversing the PCA transformation. In this case, D is the
inverse of the PCA, while E is the PCA itself followed by a non-
linear function that sets the noisiest (least informative from the
signal viewpoint) components to zero. In this case, the reduction
of dimensionality is obtained by enforcing a low dimensional
bottleneck with the direct transform before applying the inverse
transform.

To achieve the denoising, it is necessary to estimate the best
functions E and D in terms of quality of reconstruction of the
data for a given dimensionality of the bottleneck space.

Sampling the data Finding functions by numerical means first
implies to correctly sample the manifold that links their in-
put and output values. In other words, the algorithm must be
trained with many (e.g., K) samples of the data d. This is sub-
ject to interpretation. In our case, the data are one position-
position-channel cube d(ix, iy.ic), where ix, iy, and ic are the
position of a pixel along the position and channel axes. This
data cube can be seen as a set of images dima

ic
(ix, iy), or a set

of spectra dspe
ix,iy

(ic). The molecular line profiles are broadened
by the gas motions along the line of sight. Optically thin lines
deliver an approximation of the probability distribution func-
tion (PDF) of the velocity component parallel to the line of
sight. As the interstellar medium is highly turbulent, the dif-
ferent spectra of one cube can be seen as the PDFs of many
realizations of the underlying turbulent velocity field. This is
the viewpoint used in this article.

Measuring the distance between s and d over all the samples
Our goal is to find a single pair of functions (E,D) that
correctly autoencodes all the samples of the data (all the
spectra in our case). The distance between s and d is
quantified with the mean squared error (MSE) between d
and s over all the samples

MSE(s, d) =
1
K

K∑
k=1

(sk − dk)2 . (8)

Table 1: Studied molecular lines

Species Transition Rest frequency
[GHz]

13CO J=1−0 110.201354
C17O J=1−0 112.358982

The denoising problem can then be recast as an optimiza-
tion problem whose goal is to find the function A that will
minimize the distance between s = A(d) and d, that is

Â = arg min
A
L(A, dk), (9)

with L(A, d) =
1
K

K∑
k=1

[A(dk) − dk]2 . (10)

L is often called the loss function.

We now need to define the family of functions from which A
will be selected. Several ways can be used to reach this goal.

Using generic function approximators such as artificial neu-
ral networks. This will be our choice in this paper (see
Sect. 6).

Using specific classes of function For instance, Marchal et al.
(2019) propose to fit the spectra as a finite set of Gaussian
functions whose parameters (amplitude, position, full width
at half maximum) can be spatially regularized. This meth-
ods is named ROHSA that stands for Regularized Optimiza-
tion for Hyper-Spectral Analysis. In this case,D is a sum of
Gaussians, E is the fitting algorithm, and the loss function is
regularized as

L(A, d) = MSE(A(d), d) +
1
K

K∑
k=1

R(k), with (11)

R(k) =
∑

g=1,G

{
λa

∣∣∣∣∣∣K ∗ ag

∣∣∣∣∣∣2
2 + λµ

∣∣∣∣∣∣K ∗ µg

∣∣∣∣∣∣2
2 + λσ

∣∣∣∣∣∣K ∗ σg

∣∣∣∣∣∣2
2

}
,

(12)

where K is a 2D convolution kernel that computes the sec-
ond order differences, and λa, λµ, and λσ are the Lagrangian
multipliers associated with convolved images of the ampli-
tudes ag, positions µg, and standard deviations σg of the G
Gaussian functions. The value of the these multipliers needs
to be fixed.

3. Acquisition of radio-astronomy spectral line
cubes by a ground-based single-dish telescope

A detailed analysis of the radio-astronomical data is of critical
importance to understand the specificities of the considered data
and thus propose adequate optimizations for the denoising au-
toencoder. To do this, we first describe the acquisition of the
data in detail to emphasize all the phenomena that will impact
the properties of the recorded signal and noise.
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3.1. The ORION-B IRAM 30m Large Program

The ORION-B project (Outstanding Radio-Imaging of OrioN-B,
co-PIs: J. Pety and M. Gerin) is a large program of the IRAM
30 meter telescope that aims to improve our understanding of
physical and chemical processes of the interstellar medium by
mapping about half of the Orion B molecular cloud over ∼ 85%
of the 3 mm atmospheric window. The ORION-B field of view
covers five square degrees at a typical angular resolution of 27′′
(or 50 mpc at a distance of 400 pc), or about 8×104 independent
lines of sight.

It uses the EMIR heterodyne receivers (Carter et al. 2012)
coupled with the Fourier Transform Spectrometers (Klein et al.
2006, 2012) that instantaneously deliver two spectra per polar-
ization of 7.8 GHz-bandwidth sampled every 195 kHz. These
two spectra, named lower and upper side-bands, are separated by
7.9 GHz. The local oscillator of the heterodyne receiver can be
tuned at 3 mm from 82.0 to 107 GHz. This enables a frequency
coverage ranging from 70.7 to 118.3 GHz in a few successive
observations. Moreover, the horizontal and vertical polarizations
are recorded and averaged. This delivers the total intensity of
the source (independent of the polarization state). It also allows
us to gain a factor of two on the acquisition time compared to
recording a single polarization state and assuming that the signal
is unpolarized.

The ORION-B large program delivers a total bandwidth of
about 40 GHz at a channel spacing of δ f = 195 kHz, that is
about 200 000 channels. The spectral resolving power (defined
as f /δ f , where f is the observing frequency) increases from
3.6 × 105 to 6.0 × 105 with increasing frequency in the 3 mm
wavelength range. This huge resolving power allows radio-
astronomers to resolve the profiles from emission lines of chem-
ical tracers of the molecular gas, for instance, the J=1−0 lines of
the isotopologues of carbon monoxide: 12CO, 13CO, C18O, and
C17O.

3.2. Scanning strategy

The heterodyne receivers currently available at the IRAM 30 me-
ter telescope can only record the emission toward a single direc-
tion of the sky at any time. They are thus called single-beam
receivers. To make an image with such a detector, we need to
scan the sky at a constant angular velocity along lines of con-
stant right ascension or declination. The signal is continuously
recorded and dumped at regular time intervals. This observing
mode is called on-the-fly observations.

The data consist of a set of spectra that cover the target field
of view in a set of parallel lines. The angular distance (∆θ) be-
tween the lines is set to satisfy the Nyquist sampling criterion

∆θ =
λ

2 D
, (13)

where λ is the smallest observed wavelength, and D is the single-
dish telescope diameter (30 m here).

The resulting telescope response is slightly elongated along
the scanning direction because it is convolved along this direc-
tion with a boxcar filter whose size corresponds to the angular
size scanned during the integration time (Mangum et al. 2007).
To minimize this effect, it is desirable that the telescope has
moved only by a small fraction of its natural response during
one integration. We choose to dump the data 5 times over the
angular scale corresponding to the telescope natural beamwidth

θ = 1.2
λ

D
. (14)

We use the minimum sampling time that the computer system
is able to sustain during the typical duration of an observing
session, for instance 8 hours. With a dump time of 0.25 sec-
onds, a scanning speed of 17′′/s ensures a sampling of 5 dumps
per beam along the scanning direction at the 21.2′′ resolution
reached at the highest observed frequency for the used tuning,
that is 116 GHz. The spatial sampling rates along and across the
scanning direction are adapted to the highest frequencies of each
individual tunings.

Only one scanning direction per tuning was observed in or-
der to maximize the observed field of view in the allocated tele-
scope time. The usual redundancy between horizontal and ver-
tical scanning coverages could thus not be exploited to improve
the denoising algorithm.

3.3. Calibration

Appendix B describes the methods used to calibrate the data.
Under perfect conditions, the calibrated spectrum, S cal, can be
written as

S cal( f , θl, θm) = Tsys ( f , θl, θm, θl0, θm0)
{

ON( f , θl, θm)
REF( f , θl0, θm0)

− 1
}
,

(15)

where Tsys( f ) is the system temperature during the observation,
ON( f , θl, θm) is the spectra on-source at the position (θl, θm), and
REF( f , θl0, θm0) is a reference spectrum observed at a fixed po-
sition (θl0, θm0) of the sky where the source does not emit. This
reference spectrum is used 1) to correct for the shape of the fre-
quency bandpass, and 2) to subtract the contribution of the at-
mosphere to the measured signal. The RMS noise level will be
directly proportional to the system temperature that is the cali-
bration factor needed to get the right intensity units. Using the
same reference spectrum for several adjacent pixels introduces
a slight spatial correlation in the noise properties. Section 5.2
characterizes this in detail.

3.4. Spectral resampling and spatial gridding

We wish to study the variations of the emission of a given line
as a function of the position on the sky. We thus need to obtain
a position-position-frequency cube centered around the line rest
frequency in the source rest frame (see Table 1), which is tagged
by the typical velocity of the source in the LSRK frame. How-
ever, the gas in a molecular cloud experiences turbulent motions.
These hypersonic motions imply a combination of a broadening
of the linewidth compared to the natural thermal linewidth and
a shift in frequency of the line peak due to the Doppler effect
associated with the large scale velocity gradients. Both effects
are used to probe the kinematics of the molecular gas where star
forms (see, e.g., Orkisz et al. 2017, 2019; Gaudel et al. 2022).

In order to study the kinematics of the gas traced by different
molecules, it is easier to compare spectral line cubes that share
the same spatial and velocity grid. Appendix A describes the im-
pact of the Doppler effect on radio-astronomy line cubes. The
velocity axis is linked to the frequency axis through Eq. A.1. In
particular, the velocity resolution associated for a given line is
inversely proportional to the line rest frequency for a spectrum
regularly sampled in frequency. Getting the same velocity axis
for the different tracers around their rest frequencies requires re-
sampling the spectra in velocity. We choose to resample all the
spectra to 0.5 km s−1, which corresponds to the spectrometer ve-
locity channel spacing at the highest observed frequency in our
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Fig. 1: Comparison of mean intensity images between two radio-
astronomy lines.

data, that is the frequency of the 12CO (1 − 0) line. This means
that all other spectral line cubes will be oversampled along the
spectral axis. As the imperfect Doppler tracking also implies a
resampling of the spectral axis, we correct for both effects in a
single resampling step. This resampling is done by simple lin-
ear split (or integration) of the adjacent channels when the target
spectral resolution is narrower (or respectively wider) than the
original one. This ensures that the line flux is conserved.

At this point, the data are thus a set of spectra regularly sam-
pled on the same velocity grid. They are also regularly sampled
spatially but with small spatial shifts between two rows along the
scanned direction because the data acquisition only starts when
the telescope scanning velocity is constant, and this event has a
relatively uncertain position on the sky for each line. We thus
need to “grid” the spectra on a regular spatial grid. This is done
through a convolution with a Gaussian kernel of full width at half
maximum approximately one-third of the IRAM 30m telescope
beamwidth at the considered rest line frequency. This operation
conserves the flux and degrades the telescope point spread func-
tion width by ∼ 9%. Here again we choose the same spatial grid
for all the lines. We set the pixel size of 9′′ in order to com-
ply with the Nyquist criterion for the studied line that has the
highest frequency. The other spectral line cubes will be spatially
oversampled.

We now end up with one position-position-velocity cube per
studied line. Each cube contains 240 velocity channels times
1074×758 pixels. The size of the voxels are 9′′×9′′×0.5 km s−1.
The velocity axis is centered around the rest frequency of the as-
sociated line. While the spatial and spectral grid are common to
all cubes, the spatial and spectral response inversely scales as
the line rest frequency. To ease the computation of line ratios,
the cubes are often convolved with a Gaussian kernel to reach
the same angular resolution as the telescope response of the line

Fig. 2: Comparison of intensity spectra between the two radio-
astronomy lines. The spectra show the mean (top), minimum and
maximum (bottom) intensity as a function of the channel veloc-
ity or number. The vertical dashed red lines show the channels
whose spatial distribution is plotted on Fig. 4. The vertical dotted
lines on the radio-astronomy spectra separate the signal channels
from the noise-only ones.

that has the smallest rest frequency. This is the case for the cubes
provided in the first public data release of the ORION-B project1,
where the provided cubes are smoothed to a common resolution
of 31′′. In contrast, no action is in general taken to get a com-
mon spectral resolution because a large fraction of the analysis
just relies on the intensity integrated on the full line profile.

4. Properties of the signal in two ORION-B spectral
line cubes

We here analyze the signal properties of two radio-astronomy
line cubes from the ORION-B dataset (namely, the 13CO J=1−0
and C17O J=1−0 cubes2). This analysis will lay out the ground
for the innovations proposed in Sect. 7.

4.1. Spatial and spectral means

A spectral cube contains two spatial dimensions and a spectral
dimension. Figure 1 compares the map of the emission averaged
over the spectral axis for the two cubes. The most obvious differ-
ences are the intensity dynamics (defined as the ratio of the cube

1 It is available on the IRAM large program archive at https://oms.
iram.fr/?dms=frontpage.
2 These cubes are available on the ORION-B project web page at
https://www.iram.fr/~pety/ORION-B/data.html.
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Fig. 3: Comparison of the histograms of the intensity of the two
radio-astronomy lines. The left column shows the full intensity
dynamical range, while the right column zoom on faint intensity.
The black histogram is computed over all the data channels. The
red and green histograms are computed over the channel ranges
that contains either mostly noise or high signal-to-noise ratio in-
tensity, respectively.

peak intensity to the typical noise level) and the S/Ns. The 13CO
(1 − 0) mean emission has an intensity dynamic of at least a fac-
tor 10. But a fraction of the voxels of the 13CO (1 − 0) cube still
lies at S/N lower than 5. The C17O (1 − 0) mean emission mostly
looks like noise. Only an astronomer knowing the shape of the
source may guess the existence of some signal on the southeast-
ern part of the image near NGC 2023 and NGC 2024.

Figure 2 compares the spectra averaged over the observed
field of view, as well as the minimum and maximum spectra
for the two cubes. The line signal is sparse along the spectral
axis: The mean spectra of the line cubes show signal only be-
tween about −0.5 and 16.0 km s−1, that is a small fraction of the
measured channels. These spectra confirm the difference already
seen for the intensity dynamics and S/Ns. The sparsity of the
line signal along the spectral axis allows us to estimate the noise
level. Assuming that the noise follows a centered Gaussian dis-
tribution of RMS σ, the difference between the minimum and
maximum spectra is 6σ for 99.7% of the samples. This gives
a typical noise level of about 0.1 K in our case. The dynamical
range of the line cubes are thus on the order of 430 and 20 for
the 13CO (1 − 0) and C17O (1 − 0) lines, respectively. The spec-
tra in the C17O (1 − 0) cube must be spatially averaged in order
to clearly detect a mean spectrum because the typical S/N of this
cube is on the order of 1.

4.2. Histograms of the measured intensities

Figure 3 compares the histograms of the intensities for the two
cubes. On each panel, three noise histograms are displayed: The
black one uses all the channels, while the green and red ones use
the channel with mostly signal or noise, respectively. The left
column shows the histograms over the full interval of intensi-
ties. These “signal” histograms show that the bright end of the
13CO (1 − 0) intensities follow an exponential distribution. The
right column zooms in over the faint intensity edge of the his-
togram. These two “noise” histograms are close to a Gaussian
distribution. They are centered on zero by construction because
of the baseline removal.

Fig. 4: Velocity channels at 6 and 10 km s−1 of 13CO (1 − 0).
The corresponding channels are displayed as vertical dashed red
lines in Fig. 2.

4.3. Signal redundancy among the channels

Figure 4 compares the spatial distribution of the signal for two
channels of the 13CO (1 − 0) cube. The two chosen channels are
displayed as the red vertical lines in Fig. 2. They are centered
on the two main velocity components of the Orion B molecular
cloud (Pety et al. 2017). These channels display different spa-
tial patterns and are thus quasi-independent. In other words, the
knowledge of the first pattern provides no information on the
shape of the second pattern.

To better quantify this phenomenon, we compute the Pear-
son correlation coefficient and the mutual information between
each pair of channels. The former highlights linear relationships
between two channels while the latter is able to capture both
linear and nonlinear relationships. The absence of a linear cor-
relation does not mean either independence or the absence of
redundancy to be exploited for information extraction. The com-
putation of the mutual information is thus desirable because, as
shown by Licciardi & Chanussot (2018), the relations between
the channels of hyperspectral cubes are sometimes strongly non-
linear. It quantifies whether one can predict one quantity know-
ing the other one, even though the relationship is nonlinear. It
is equal to 0 if and only if both variables are statistically inde-
pendent. More details are given in Appendix F. The mutual in-
formation is numerically computed by approximating the joint
distribution with nearest neighbors (Kraskov et al. 2004). In or-
der to have homogeneous and comparable results, we express
the correlation coefficient in bits of information as the mutual
information (Gelfand & Yaglom 1959). If ρ(X,Y) is the Pearson
correlation coefficient between X and Y , it can be expressed in
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Fig. 5: Amount of information shared between channels for the
13CO(1 − 0) data cube. The top row shows information related
only to linear relationship, while the bottom row shows informa-
tion related to any type of relation (i.e., the mutual information).

bits of information through I = −0.5 log2

[
1 − ρ(X,Y)2

]
. This

quantity diverges when the relationship between the two vari-
ables is deterministic. We thus blank the diagonal coefficients.

The top panel of Fig. 5 shows the linear relation between
two channels. The linear correlation of the 13CO (1 − 0) cube
has significant values only in two regions: 1) along the diagonal
because the spectral response of the radio-astronomy spectrom-
eter is slightly larger than one channel (see Sect. 5.3), and 2) for
the [3, 15 km s−1] velocity range, where the signal sits. The bot-
tom panel of Fig. 5 shows the image of mutual information that
quantifies any relation. Large values of the mutual information
gather into two main groups related to the two velocity compo-
nents of the Orion B cloud at 6 km s−1 and 11 km s−1. Moreover,
there is a faint correlation between the two main velocity ranges.
In the signal region, the coefficient values fall by a factor of ∼ 10
at a typical distance of 3 or 4 channels. We call this distance mu-
tual information scale in Sect. 6.5. In other words, the mutual
information scale is small for the 13CO (1 − 0) cube.

5. Noise properties

We next characterize the noise properties inside the acquired
radio-astronomical cubes. In particular we compute the noise
spatial and spectral power density.3

3 To be precise, we could use the complete formulation, noise spatial
and spectral power spectral density. This however introduces a confu-

Fig. 6: Noise spatial (top) and spectral (bottom) variations for
the C17O (1 − 0) line cube. The spatial maps were normalized
by the median noise value. The red region in the bottom panels
shows the 3σ uncertainty interval of the computation.

5.1. Spatial and spectral levels

To estimate the noise levels, we assume that the spatial and spec-
tral variations of the noise are independent of each other, as pro-
posed by Leroy et al. (2021). The noise RMS can then be fac-
tored as

σ(ix, iy, ic) = σspe(ix, iy) . σspa(ic), (16)

where σspe(ix, iy) and σspa(ic) represent the spatial and spectral
variation of the noise RMS computed along the spectral and spa-
tial axes, respectively. We start by computing the noise RMS of
the channels for each pixel on channels that are devoid of signal.
We then divide the signal cube by the spatial variations of the
spectral RMS, σspe(ix, iy), and we compute the RMS per channel
after masking regions where signal is detected (see Sect. 7.3).
Moreover, we compute the standard deviation of the RMS as
σ/
√

2s where s is the number of samples used.
The top panel of Fig. 6 shows the map of the noise spectral

RMS, normalized by its median value, for the C17O (1 − 0) cube.
We do not show the result for the 13CO (1 − 0) cube because it
is similar to the result for the C17O (1 − 0) cube. The noise map
has an obvious inhomogeneous spatial distribution with mostly
vertical stripes organized in squares. This reflects the acquisi-

sion between the spectral (frequency, wavelength, or velocity) axis of
astronomy cubes and the spectral density that refers to computations in
the Fourier plane. We thus choose to remove spectral in power spectral
density.
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Fig. 7: Comparison between the measured (left) and modeled (middle) noise spatial power density, and their ratios (right) in
logarithmic scale. The top row shows the spatial power densities for all scales, while the bottom row zooms in on the large spatial
scales.

tion scheme, where a single pixel detector is scanned along ver-
tical lines of size of ∼ 1000′′ inside squares. The noise pattern
evolves from left to right because the scanning strategy was op-
timized during the acquisition of the ORION-B large program
data. For instance, in the middle of the acquisition we tried to
organize the approximately 1000′′-long scans into long vertical
lines instead of squares. However, this increased the striping in
the signal images. We thus decided to come back to an acquisi-
tion in consecutive squares to ensure a better continuity of the
signal.

The noise comes mostly from the atmosphere contribution
to the measured power in radio-astronomy (see Appendix C.1).
This implies that the noise level follows to first order the qual-
ity of the weather. A dry atmosphere during winter observations
improve the noise level by a typical factor of approximately 1.5
over summer observations for the two studied lines. This is the
origin of the large variations of the noise level from one square
to another. The amount of atmosphere that emits depends on the
source elevation. It is minimum at zenith and maximum when the
source rises and sets. Thus, the noise level also follows the ele-
vation of the telescope at constant weather, and this is the main
origin of the noise level regular variations inside each square.

The bottom panel of Fig. 6 shows the variations of the spatial
RMS of the noise with the velocity. The line cubes show spectral
variations of the noise between −2 and +4% with two character-
istic patterns. First, there is an oscillating pattern that directly
comes from the resampling of the spectra along the spectral
axis. Superimposed, there is also an increase of the noise level
of about 2% following more or less a boxcar function between
−10 and +30 km s−1. This is related to the baseline removal step
during the reduction. This step is required to remove remaining
atmospheric residual signal after the atmosphere calibration. It is
done by fitting a Chebyshev polynomial of low order outside the

velocity window where the signal appears with some margin to
avoid biasing the baseline by signal at low S/N in the line wings.
The baseline substracted inside the signal window is then inter-
polated using the fitted Chebyshev coefficients. We here used a
polynomial order of degree 1 outside the [−10,+30 km s−1] sig-
nal window.

5.2. Noise spatial power density

We first compute the spatial 2D Fourier transform of the
C17O (1 − 0) cube for 90 channels devoid of signal, from −50
to −5 km s−1. We then compute the square of the modulus of the
Fourier transform, and we finally average the 90 resulting im-
ages. This gives an estimation of the noise spatial power density.

We use the radio-astronomy convention to define the conju-
gate coordinates of the angular coordinates (θl, θm) relative to the
projection center of the image as (u, v) with

u θl = λ, and v θm = λ, (17)

where λ is the wavelength of the observed line. In our case,
λ = 2.67 mm. The conjugate planes are called image and uv
planes, respectively. The (θl, θm) and (u, v) coordinates are ex-
pressed in radian and meter, respectively.

The first column of Fig. 7 shows the obtained noise spatial
power density. For a perfect measurement, we expect to recover
an image proportional to |F [B]|2, that is the square of the mod-
ulus of the Fourier transform of the point spread function of the
telescope B. While |F [B]|2 should show a radial symmetry to
first order, we obtain a spatial power density that is dominated
by a structure elongated along the u axis. This structure comes
from correlations in the observed noise between all the spectra
belonging to the same subscan (scanned vertically in this case).
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Fig. 8: Comparison between the measured (plain line) and mod-
eled (dashed line) spectral power density (left) and autocorrela-
tion function (right).

Appendix C shows that the noise spatial power density is to
first order equal to P(u, v) ' Pon(u, v) + Pref(u, v), with

Pon(u, v) = Apix

(
σon

σ

)2 ∣∣∣F [B]
∣∣∣2(u, v), (18)

and

Pref(u, v) = Arect

(
σref

σ

)2
[
sinC

(
∆θl u
λ

)
sinC

(
∆θm v
λ

)]2

. (19)

In these equations, Apix and Arect = ∆θl∆θm are the respective
areas of the image pixel and of any rectangle that shares the same

reference measurement. Moreover, σ =

√
σ2

on + σ2
ref , and σon

and σref are the typical standard deviation of the noise on source
and on reference, respectively.

The second and third columns of Fig. 7 show the resulting
model, and the ratio of the measured and modeled noise spatial
power density in logarithmic scale. In the studied case, the mod-
eling holds for most of the uv plane.

5.3. Noise spectral power density

Figure 8 shows the noise spectral power density and the noise
autocorrelation. To get them, we first compute the 1D Fourier
transform along the frequency axis for the same subcube devoid
of signal. We then compute the square of the modulus of the
Fourier transform, and we average results over the pixels. The
autocorrelation function of the noise is estimated by calculating
the inverse Fourier transform of the spectral power density.

The autocorrelation shows that the correlation between
two channels x[ f ] and x[ f + δ f ] becomes zero when
|δ f | > 2 × 183.80 kHz. This fact leads us to model the noise
spectral autocorrelation with the autocorrelation of a symmet-
ric finite impulse response filter of the form h = [a b a], with
the constraint 2a2 + b2 = 1 in order to preserve the signal power.
The curve on Fig. 8 shows five nonzero values because it
corresponds to the autocorrelation of the filter. We estimate
h = [0.18 0.97 0.18] for the 13CO (1 − 0) and C17O (1 − 0) spec-
tral cubes. The good fit of the noise autocorrelation with the
autocorrelation of this filter indicates that the noises of pair of
channels separated by more than two channels are uncorrelated.
The estimated filter can be used to simulate noise with a similar
spectral power density.

5.4. Noise PDFs at low and large S/N

The measured intensity at pixel i j and velocity channel c is given
by

Iijc =
(
1 + εi j

) [
S ijc + Nijc

]
, (20)

where S ijc is the signal from the source, Nijc the additive noise
coming mostly from the atmosphere and the receiver, and εi j the
relative uncertainty on the calibration gain. We assume that εi j
is mostly constant over the narrow-band spectra used here. The
values of Nijc and εi j are drawn from two centered normal distri-
butions of standard deviationσi jc and Σ, respectively. Depending
on the observed atmospheric window (3 or 1 mm), the values of
Σ range from 0.05 to 0.1, so εi j � 1 (for details, see the ap-
pendix D). Thus, there are two main different limiting regimes
that depend on the S/N

Iijc ∼ S ijc + Nijc when S ijc � Nij,

log Iijc ∼ log S ijc + εi j when S ijc � Nijc.

At low S/Ns, we can neglect the uncertainty of the calibration,
and the additive noise dominates the uncertainty budget. In con-
trast, at a high S/N, we can neglect the additive noise, and the
uncertainty budget is dominated by the multiplicative noise with
log

(
1 + εi j

)
∼ εi j.

6. The autoencoder neural network as a generic
method of dimension reduction

In this section, we introduce a deep learning method called au-
toencoder neural network. We present its default architecture and
operation. We then use it to compute the amount of redundancy
available in the input dataset. In the next section, we tailor it for
molecular line cubes based on the data analysis performed in
section 3.

6.1. Neural networks

Artificial neural networks are a class of statistical machine learn-
ing methods that were originally designed to simulate the be-
havior of the brain. Today, they are widely used in data science
because they allow any nonlinear functions in high dimensional
spaces to be modeled easily. More precisely, we use architectures
derived from the multilayer perceptron (Shalev-Shwartz & Ben-
David 2014). Multilayer perceptrons are composed of a succes-
sion of matrix products and nonlinear functions called activation
functions. They are interesting because they are universal ap-
proximators of any continuous function when they have at least
one hidden layer and this layer contains enough neurons (Hornik
et al. 1989). Appendix E gives more details.

The modeling of a nonlinear function by a neural network
can be considered as a global optimization problem that is solved
through stochastic gradient descent. The user specifies a loss
function that will constrain the neural network to select one fam-
ily of functions adapted to the considered problem. The only
constraint on the loss function is that it must be derivable with
respect to each parameter of the network, in order to be able to
perform their optimization by the stochastic gradient descent al-
gorithm (Duda & Hart 1973).

6.2. Autoencoder neural network

Figure 9 shows the architecture of an autoencoder neural net-
work. As the autoencoder described in Sect. 2.3, it is composed
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Fig. 9: Example of an autoencoder neural network. Each column
represents a neuron layer. Each arrow represents a connection
between the neuron layers. The first and last layers are composed
from the measured and denoised intensities of a spectrum at the
different channels, respectively. The bottleneck contains the min-
imum number of neurons needed to compress the data without
loss of signal information. In this example, the signal intrinsic
dimension (size of the bottleneck) is three while the data extrin-
sic one (size of the input and output spectra) is ten.

of two cascaded parts, the encoder and the decoder functions
that are implemented as two neural networks. The encoder aims
at computing a simplified representation of the data. The decoder
aims at reconstructing the input data as faithfully as possible
from the simplified representation. In our cases, we choose sym-
metrical architectures for the encoder and decoder parts. Never-
theless, it does not mean that the functions E and D are inverse
from each other, as explained in Sect. 2.3.

The reduction of dimension space enforced by the autoen-
coder can be interpreted as an approximation of a nonlinear
PCA (Licciardi & Chanussot 2015). In the case of noisy data
containing signal with a low dimension representation, this com-
pression should retain the signal features and filter the noise. As
an autoencoder neural network is designed to identify a low di-
mension representation of the signal, it allows one to perform a
generic denoising operation. In particular, it generalizes the de-
noising operation that can be performed with a PCA in the case
where the signal features are nonlinearly correlated.

6.3. Estimating the intrinsic dimension of a dataset

When denoising by reduction dimension, the amount of denois-
ing is related to the redundancy in the input data, which allows
one to reduce the dimension without loosing relevant informa-
tion. If the dimension of the input data is called the extrinsic
dimension and the dimension of the bottleneck the intrinsic di-
mension, we thus wish to measure the intrinsic dimension of the
data. The extrinsic dimension is necessarily greater than or equal
to the intrinsic dimension.

An autoencoder neural network is interesting here because
it is a practical algorithm that encompasses the whole category
of methods that assumes a reduction of dimension to denoise the
data (see Sect. 1). We use the autoencoder to analyze the intrinsic
dimension of the signal with respect to the extrinsic dimension
of the data, and thus emphasize the amount of redundancy that
could be used to increase the S/N.

13CO (1 − 0) line cube Indian Pines dataset
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Fig. 10: Distance (mean absolute deviation) between input and
reconstructed data as a function of the bottleneck size for the
13CO (1 − 0) data (left) and the Indian Pines data (right).
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Fig. 11: Illustration of the non-invariance to rotation of the L1
norm as opposed to the L2 norm.

6.4. Implementation

We define a set of autoencoders whose bottleneck size varies
between one and the extrinsic dimension of the data (m). The
loss function is then minimized for each of these autoencoders.
Figure 10 shows the mean absolute deviation between the input
data and the denoised data as a function of the bottleneck size (l).
The intrinsic dimension is the smallest dimension of the bottle-
neck that allows us to reconstruct the signal without significant
loss of relevant information. Two regimes are expected for this
curve: A quick decrease of the mean absolute deviation as long
as increasing the bottleneck size adds useful information to re-
construct the signal, followed by a constant value of the mean
absolute deviation when further increasing the bottleneck size
starts to reconstruct the noise. The threshold between these two
regimes is interpreted as the intrinsic dimension of the data. This
method is directly inspired by the “elbow method” used when
denoising with a PCA (Ferré 1995).

The choice of the loss function is key to ensure a proper es-
timation of the intrinsic dimension. A desirable property is to
select encoders that will maintain independent input variables as
independent bottleneck neurons instead of encoding them as lin-
ear combinations. Using the mean absolute deviation instead of
the more usual mean squared error allows one to avoid mixing
independant inputs. Indeed, we shall assume that the data are
composed of two uncorrelated non-Gaussian (e.g., Laplacian)
variables of mean 0 and variance 1. The encoding of this pair
of variables with a single component (i.e., an autoencoder with a
single bottleneck neuron) consists in searching for the direction
that maximizes the norm of the projection in one direction. As il-
lustrated in Fig. 11, the L2 norm is invariant to rotation, implying
that the maximization of the projection is not sensitive to rota-
tion, so the encoder will mix the two components. In contrast,
the values of the L1 norm varies under rotation, so the autoen-
coder will thus avoids mixing the independent pair of variables.
In other words, if we try to encode the two independent variables
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(a) Optimized Autoencoder (b) Fully connected layer (c) Locally connected layer

Fig. 12: Optimized autoencoder architecture (a) where fully connected layers (b) are replaced by locally connected layers (c). The
number of entries is 5 and the bottleneck is size 3. The hidden layers of the network can be described by describing the small
encoders, here they are of dimension [3, 2] with input and output windows of the same size 3.

with a bottleneck made of a single neuron, the MSE loss function
will constrain the autoencoder to pay attention to the largest val-
ues of the two random variables and to combine them linearly
in order to minimize its value. In contrast, the mean absolute
deviation will enforce a solution where only one of the two in-
dependent variables is encoded in the bottleneck, the other one
being ignored.

6.5. Comparison of the intrinsic dimension between the
ORION-B cubes and a typical hyperspectral cube

Figure 10 compares the evolution of the mean absolute deviation
as a function of the dimension of the bottleneck for two datasets:
The ORION-B 13CO (1 − 0) line cube on the left panel, and a
Earth remote sensing hyperspectral cube, named Indian Pines4,
that is used to benchmark denoising algorithms on the right
panel. This comparison is useful because Licciardi & Chanussot
(2018) showed that dimension reduction with a neural autoen-
coder is particularly efficient to denoise the latter dataset.

The intrinsic dimension of Indian Pines can be estimated at
around 4. In constrast, the curve for 13CO (1 − 0) only has a clear
elbow at about 27. This implies that the intrinsic dimension of
the signal is close to its extrinsic dimension. This confirms our
previous finding that the measured mutual information scale is
small for the ORION-B line data (see Sect. 4.3).

Two main properties explain the different behaviors of the
13CO (1 − 0) and Indian Pine cubes. The astronomy line cube
contains many signal-less channels that are irrelevant for scien-
tific purpose but can be used to characterize the noise proper-
ties. Moreover, the achieved spectral resolution still limits the
amount of redundancy inside the sampled line profile. In con-
trast, almost all the channels of Indian Pine cube are scientifi-
cally relevant and (anti-)correlated. In this respect, denoising by
dimension reduction would be easier for astronomy hyperspec-
tral cubes observed with direct detection imaging spectrometers
used to study the spectral energy distribution of the sources, in-

4 The latter dataset, named Indian Pines, has been acquired with
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sen-
sor over an agricultural area located at northwestern Indiana, USA.
This cube is composed of 220 spectral channels ranging from 400 nm
to 2500 nm. Its spatial linear resolution is 20 × 20 m. It is pub-
licly available here https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes.

cluding the continuum and and low to medium resolution spec-
tral line emission, such as the SPIRE and PACS spectrometers
on-board Herschel (Pilbratt et al. 2010) or the MIRI and NIR-
Spec instruments on-board JWST (Rigby et al. 2022), because
such instruments provide hyperspectral cubes with scientifically
relevant information for each spectral channel.

7. A locally connected autoencoder with prior
information to denoise line data

As discussed in the previous section, the reduction dimension
of the ORION-B line cubes is more difficult than in the case of
Earth remote sensing cubes. It is thus all the more important to
optimize the structure of the used autoencoder neural network
with sound assumptions to help it converge on the correct solu-
tion. In this section, we propose an innovative autoencoder struc-
ture adapted to the properties of the line cubes. We first describe
the geometry of the autoencoder that takes into account the fact
that the mutual information scale is small compared to the ex-
trinsic dimension of the data. We then propose a loss function
that ensures that channels without signal are set to zero instead
of some arbitrary (small) value.

7.1. Locally connected autoencoder

A typical autoencoder is composed of fully connected layers,
which means that all the input neurons of the layer are connected
to each output neuron (see Fig. 9). This ensures that all potential
correlations between the input data are explored. In line cubes,
only channels at nearby frequencies are correlated. This means
that an autoencoder would try to learn the numerous combina-
tions of uncorrelated channels. Figure 12 shows an architecture
where a set of multilayer perceptrons connects adjacent input
neurons to adjacent bottleneck and output neurons. In our case,
this means that only adjacent channels will be encoded together.
This change introduces a major difference compared to a typi-
cal autoencoder. The latter would deliver the same result (within
numerical approximations) whatever the ordering of the input
neurons. In contrast, our tailored autoencoder assumes that adja-
cent channels are linked together. This means that we introduce
the notion of proximity in frequency of the channels inside the
autoencoder architecture.
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As a comparison, a convolutional layer5 (O’Shea & Nash
2015) would in addition take into account the order of the chan-
nels. However, the applied convolution filter would be identical
for all observed spectra. In other words, a convolutional layer
assumes spectral translation invariance with respect to the ob-
served spectra while the proposed architecture does not. In par-
ticular, the fact that the S/N and the amount of signal information
can vary significantly with the frequency would be ignored with
a convolutional layer.

For simplicity, we choose a symmetric autoencoder which
has a total of four hyperparameters that must be chosen: 1) l, the
size of the bottleneck layer; 2) p, the size of the sliding window
that connects nearby channels; 3) q, the size of each perceptron
layer; and 4) h, the number of hidden layers of each perceptron.
We have the following relations: l < m and p < q < m, where m
is the number of input and output channels in the spectrum. The
hyperparameters of the tailored autoencoder may depend on the
studied line. For instance, it is likely that the model for a line
such as 13CO (1 − 0) is more complex than for the C17O (1 − 0)
line, implying larger values for l and h. The data analysis per-
formed in Sect. 4.3 imposes some constraints. If r is the mu-
tual information scale in channel units, the optimal window size
is p = 2r + 1. Moreover, m

r is a (potentially optimistic) lower
bound for the size of the bottleneck because it represents the
number of groups of channels that are decorrelated from each
other.

In practice, the simplest implementation of our tailored au-
toencoder is to perform a matrix product for each window. How-
ever, the autoencoder will then perform a large number of con-
secutive matrix products leading to large overheads. We in-
stead choose to encode the set of locally connected perceptrons
as a unique fully connected perceptron, where the superfluous
weights are set to 0 during the initialization and the associated
gradients are multiplied by 0 during the training. This requires
a single (tailored) matrix multiplication per layer. The number
of free (i.e., nonzero) parameters in this optimized autoencoder
can be computed directly from the Python implementation that
is available on the project GitHub repository. In our application,
the number of free parameters is only 6% of the total number of
matrix elements. This eases the training of the optimized autoen-
coder.

7.2. Adding prior information to the optimization problem

As described in Sect. 2.3.2, denoising by dimension reduction
is an optimization problem that tries to find the autoencoding
functionA that will minimize the distance between the data and
its autoencoding, averaged over all the data samples: see Eq. 9
and 10. The presence of noise implies three adaptations of the
autoencoder about the definition of its training loss function. The
first one will take into account the important variation of the S/N
(from < 1 to a few 100) in radio-astronomy data. The second one
will address the potential unbalance between the number of vox-
els that only contain noise and the number of voxels that actually
contain relevant signal. The third one will ensure that the au-
toencoder attributes a zero-valued intensity (instead of any other
randomly chosen systematic value) for voxels that only contain
noise.

To handle varying S/N values the distance is usually weighted
by the standard deviation of the noise. In our case, the base-
line part of the spectrum enables us to easily estimate the

5 Unlike a dense layer used in a perceptron which is composed of a
matrix product, a convolutional layer is composed of a linear filter.

noise standard deviation σk for the spectrum dk at pixel
k = ix + nx (iy − 1). We thus will modify the loss function as

L(A, d) =
1
K

K∑
k=1

(A(dk) − dk

σk

)2

. (21)

This normalization avoids the variation of the data “energy”
just caused by noise, which would overweight the noisiest
pixels. We recognize here the reduced χ-squared merit func-
tion that is regularly used in astronomy. In contrast, the ma-
chine learning community mostly uses the MSE.

To address the problem of sparsity of the signal inside the
cube, we balance the loss function by giving prior informa-
tion about the channels that have a large probability to be
just noise. To do this, we first segment the position-position-
frequency cube into signal and noise samples (see Sect. 7.3).
We then modify the loss function as

L(A, d) =
1
K

K∑
k=1


1∑J

j=1 w jk

∑J
j=1 w jk

(A(d jk)−d jk

σk

)2

+
1∑J

j=1(1−w jk)

∑J
j=1

(
1 − w jk

) ∣∣∣∣A(d jk)−0
σk

∣∣∣∣q
 ,
(22)

where w jk = 1 for a channel j of spectrum k dominated by
signal, and w jk = 0, elsewhere. The normalization factors en-
sure that noise-only (S/N < 1) samples do not dominate the
loss function. This solves the potential unbalance between
signal and noise samples inside each spectrum. While the
architecture of the optimized autoencoder does not use the
spatial information, the segmentation used in the proposed
loss function introduces some spatial information as it is a
method that works in the position-position-frequency space.

To ensure that noise-only samples deliver 0 instead of a small
random value, we use the Lq norm6, with q ∈]0, 2], for sam-
ples that are mostly noise. This enforces the training to
choose either 0 or the autoencoded (denoised) value of the
data,A(d jk). The denoised value of the data will be selected
when the data sample has a statistical signature too far from
random Gaussian noise. The hyperparameter q allows one to
finely control the asymptotic behavior of the penalty of vox-
els containing only noise: The closer q is to 0, the larger the
penalty applied to an autoencoded value close to zero. In this
study, we chose q = 1.

7.3. Detecting significant signal

The C17O (1 − 0) is characterized by a low S/N. The best way
to detect signal in such a condition is to correlate the noisy mea-
surement with the expected shape of the signal and to thresh-
old the output because the probability that random noise repro-
duces the expected shape is negligible. This technique, named
matched filtering, is all the more effective when the shape of the
signal is accurately known. For example, if one aims at detecting
a point source, we just need to know the point spread function
of the instrument. Correlating the noisy measurement with the
point spread function thus not only delivers an optimal way to
detect point sources, but it also improves the detection of spa-
tially resolved sources. Indeed, adjacent pixels can be thought
as measurements of the same source where the noise is uncorre-
lated from one pixel to another. As the pixel size is chosen to at
6 The Lq norm of the vector x = (x1, ..., xn) is defined as
||x||q =

(∑n
i=1 |xi|q)1/q .
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Fig. 13: Maps of the maximum (top) and minimum (bottom) S/N per spectrum before (left) and after (right) convolution of the
C17O (1 − 0) line cube by the telescope point spread function.
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Fig. 14: Properties of the segments obtained on the cube of S/N for the C17O (1 − 0) line. This cube was segmented into contiguous
position-position-velocity regions above a minimum S/N value. The segments are ordered by decreasing value of the S/N summed
over the segment (total S/N). The shown properties are, from top to bottom, the total number of pixels inside the segment, the total
S/N, and the mean S/N of the segment. These properties are shown for two different S/N thresholds: 1 and 2. The blue plain vertical
lines show the segments that are selected to compute the moment maps in Fig. 15. The red dashed horizontal lines show the typical
mean S/N reached for the segment # 200.

least Nyquist-sample the point spread function, any source will
be spread over at least four contiguous pixels, and the S/N after
correlating with the point spread function will be much higher
than the S/N per pixel of the original image. As this makes no
assumption on the shape of the source, this is a simple way to
optimize the detection of any kind of a resolved source. In sum-

mary, while matched filtering is the optimal way to detect point
sources, it also improves the detection of resolved sources be-
cause it smoothes the data to an angular resolution larger by

√
2

and thus naturally increases the S/N per pixel.

Figure 13 shows the map of the maximum and minimum S/N
per spectrum before and after correlation of the C17O (1 − 0) line
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Fig. 15: Maps of the moments of the spectrum for two different values (1 at left, and 2 at right) of the S/N threshold used to compute
the position-position-velocity mask of significant emission. From top to bottom, the peak intensity (maximum of the spectrum), line
integrated intensity (moment 0 of the spectrum), and centroid velocity (moment 1 of the spectrum) are shown.

cube by the telescope point spread function. In both cases, the
S/N is defined as

S/N(ix, iy, ic) =
d(ix, iy, ic)
σ(ix, iy, ic)

, (23)

where d(ix, iy, ic) and σ(ix, iy, ic) are the position-position-
velocity cubes of intensities and noise RMS, respectively. The
computation of the noise RMS is described in Sect. 5.1. When
correlating the cube by the instrument response, the maximum
of the S/N improves by a factor on the order of 2 from 9.7 to
16.8, and the percentage of pixels whose maximum S/N value is
above 5 increases from 0.13 to 0.75%. In contrast, the minimum
S/N value is relatively stable (−6.7 vs −6.1) as expected when
the noise is (mostly) uncorrelated between adjacent pixels.

The S/N cube can then be thresholded to yield a 3D mask
of detected pixels. On one hand, we wish to reduce the number

of false positives. This requires to use a relatively high thresh-
old value. Indeed, for a Gaussian additive noise, even using a
S/N threshold value of 3 yields about 0.3% of false positives,
that is approximately 105 voxels even when assuming that the
signal can be present only between −5 and 20 km s−1. On the
other hand, we wish to reduce the number of false negatives. In
millimeter radio-astronomy, a large fraction of the source flux
frequently has S/N values lower than 3. Using a too high S/N
threshold value thus implies a large quantity of false negative
pixels.

The first way to improve the tradeoff between the require-
ments to minimize the number of false positives and negatives
uses again the fact that the noise distribution is (mostly) uncorre-
lated between contiguous pixels. It is indeed possible to segment
the cube in regions contiguous in the position-position-velocity
space and for which all pixels have a S/N value above a given
threshold. In practice, we define segments of voxels contiguous
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Fig. 16: Comparison of the denoising performances of the taylored autoencoder and ROHSA for four different velocity channels
belonging to the line wings. For each channel, the raw (left) and denoised (middle) images are shown with the same intensity scale
and the residual (right) image is displayed with an optimized intensity scale. The top and bottom rows show the results for the
autoencoder and ROHSA algorithms, respectively.

in the position-position-velociy space, which satisfy the S/N cri-
terion. When a voxel is added to the current segment, we check
whether the segment should be merged with a segment already
defined in the previous row of the current image or the previous
image of the cube. The pixels that do not satisfy the criterion are
put in a specific segment regardless of their position in the cube.
Segmenting in contiguous regions above a given threshold was
proposed by Pety & Falgarone (2003) along the spectral axis and
Rosolowsky & Leroy (2006) in 3D. When adjacent samples have
uncorrelated noise levels, the probability of a false negative de-
creases when the total S/N of the region (defined as the sum of
the S/N over all the pixels of the region) increases. Hence sort-
ing the segmented regions by decreasing total S/N and selecting
the first few ones minimizes the chance 1) to overlook large re-
gions at relatively low values of the mean S/N, and 2) to yield
too many false positive regions.

Figure 14 shows the evolution of three properties of the
3D segments obtained for the C17O (1 − 0) line, and sorted by
decreasing value of the S/N summed over their voxels (here-
after named segment total S/N). The three properties are the
number of voxels inside each segment, the segment total and
mean S/N. These properties are shown for two different S/N
thresholds (1 and 2) used during the cube segmentation pro-
cess. Figure 15 shows maps of the peak intensity maxic I(ic),
the line integrated intensity

∑
ic I(ic)dv, and the centroid velocity{∑

ic v(ic)I(ic)
}
/
{∑

ic I(ic)
}
. We compute them by including the

voxels that belong to the first 200 segments. In all generality, the
number of segments included is a compromise between includ-

ing only the segments with the highest total S/N and enough seg-
ments with a mean S/N larger than 3. Two hundred segments is a
good compromise when the S/N threshold is 2. We here use the
same number of segments when the S/N threshold is 1 in order
to make a comparison without changing too many parameters at
a time.

For the C17O (1 − 0) line, the number of voxels per segment
varies from more than 10 millions to about 1, in comparison with
the 195 millions of voxels present in the cube. The total S/N
follows a similar trend because the mean S/N per voxel is low.
In contrast, the mean S/N and images have a different behavior
depending on the S/N threshold.

For a threshold of 1, the segment mean S/N is always smaller
than 3. It is constant at about 1.5 before oscillating. Voxels
have been selected over almost all the field of view and it is
difficult to see any structured signal in the three associated
maps.

For a threshold of 2, the segment mean S/N starts to decrease
or oscillates above 3 before converging to about 2.5 with an
increasing dispersion. The signal is now pretty well defined
in the three associated maps, even though some vertical strip-
ing is sometimes still visible.

These properties can be understood by the fact that for uncor-
related Gaussian noise, the probability to have the intensity of
one of the 6th closest neighbors to any voxels above 1, 2 or 3σ
is 0.90 = (1 − 0.6836), 0.25, and 0.02 respectively. This implies
that any voxel has a large chance to be part of the first segment
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Fig. 17: Comparison of the properties of the residuals after denoising by our autoencoder (top) and ROHSA (bottom). The right
column shows the map of the residual RMS, and the left column shows the map of the residual RMS normalized by the noise
standard deviation.

for an S/N threshold of 1, a minor chance for a threshold of 2,
and a negligible chance for a threshold of 3.

8. Denoising performances

We here compare the denoising performances between our tai-
lored autoencoder and the ROHSA algorithm7 that we shortly
summarized in Sect. 2.3.2. We do this comparison on the
13CO (1 − 0) cube that displays a large S/N range. Our autoen-
coder neural network and ROHSA share several properties. They
propose a representation of the data that can be interpreted as
denoising by dimension reduction. They work mainly on indi-
vidual spectra with a regularization term that introduces some
spatial information about the data. They nevertheless differ in
the family of functions assumed to encode the data. ROHSA as-
sumes that the signal is composed of a limited number of Gaus-
sian functions whose amplitude, position, and standard deviation
are spatially regularized. Our autoencoder assumes that the data
can be approximately classified as noise and signal pixels, and
that the scale of mutual information between channels is small
compared to the number of channels in the spectra.

7 We also compared with the GAUSSPY+ algorithm (Riener et al.
2019), which guesses the number of fitted Gaussian components per
pixels instead of fixing it over the full field of view as ROHSA does.
While both algorithms deliver solutions with slightly different system-
atic deviations, the differences are not compelling enough to warrant
presenting both of them.

8.1. Detailed setups of the autoencoder and ROHSA

We use the Python framework PyTorch to implement our numer-
ical neural network experiments 8. The segmentation of the line
cubes is implemented in a new IRAM software named CUBE
and distributed inside GILDAS9. The associated Python and
CUBE scripts are available in a GitHub repository10.

We use the approximately 800 000 spectra of 240 channels
as input to the autoencoder. We tagged as mostly signal the vox-
els that belong to the first 200 segments obtained with a S/N
threshold of 2, and the reminders as mostly noise. The hyper-
parameters of the autoencoder were optimized as follows. The
width of the sliding window is set at 7 channels according to
the mutual information scale (see Sect. 4.3). Most of the other
hyperparameters were set with a typical cross validation proce-
dure (Refaeilzadeh et al. 2009). In short, we first defined a set of
possible values to explore. For each set of hyperparameters, we
then optimized the network on a training dataset and we com-
pute its performance on a different validation dataset. In order
to reduce the variability of the results depending on the choice
of the training and validation sets, this procedure is performed
several times, varying the test and validation sets so that each
sample has been selected once in the validation set during the
procedure. This gives for the local encoder: A bottleneck size of
75% the number of input channels (here 180), and 3 hidden lay-
ers of size [35, 14, 7] per perceptron. During this cross validation
procedure, the hyperparameters that are assumed noncritical are

8 https://pytorch.org/
9 The GILDAS software are distributed here https://www.iram.
fr/IRAMFR/GILDAS/.
10 https://github.com/einigl/line-cubes-denoising
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Fig. 18: Comparison of the denoising performances of the tay-
lored autoencoder (top) and ROHSA (bottom). Each panel
shows the joint histogram of the denoised intensities vs the data
intensities. The left and right columns display the full dynamic
range of intensities and a zoom into the low intensities. A arcsinh
transform was applied in order to show the intensities below 5σ
(lower dashed square) with a linear scale and above 20σ with
a logarithm scale (upper dashed square). The dotted line high-
lights the identity function.

fixed to usual values: The Adam stochastic optimizer (Kingma &
Ba 2014) was used with a batch size of 100, 50 epochs, and a
learning rate that decreases exponentially from 10−3 to 10−6.

Instead of trying to optimize the hyperparameters of ROHSA
for denoising, we used the ones derived by Gaudel et al. (2022)
when trying to decompose the spectra into a set of coherent ve-
locity layers in order to study the velocity field around the fil-
aments of gas where stars will form. The number of Gaussians
was set to 5 for the 13CO (1 − 0) cube, and the Lagrangian mul-
tipliers used to regularize the maps of Gaussian amplitude, posi-
tion, and standard deviation were λa = λµ = λσ = 100.

8.2. Results

Figure 16 compares the raw images with the denoised ones ob-
tained with the autoencoder and ROHSA for four different veloc-
ity channels that were chosen in the line wings because denois-
ing of the additive component is expected to act mostly at low
to intermediate S/N. The two algorithms produce similar results
to first order. They both set noise-only voxels to a value close
to zero. The shape of significant signal is kept, and the residu-
als mostly look like noise. A closer look suggests that ROHSA
delivers signals that are more spatially coherent than the autoen-
coder at low S/N but this stays within the noise level. At interme-
diate S/N, ROHSA deforms the signal more than the autoencoder
as can be seen in the residuals of the channels at 13.5 km s−1.

A more quantitative comparison can be seen in Fig. 17 that
shows the spatial variations of the spectral RMS of the residual
cubes and their ratio with the spectral RMS of the raw data. The
spatial variations of the spectral RMS show that both algorithms
recover the rectangular pattern coming from the ON-REF acqui-
sition method. However, a significant part of the signal appears
in the ROHSA residuals, while only a few point sources appear

Fig. 19: Comparison of the spectral profiles and residuals for the
autoencoder (left) and ROHSA (right) algorithms. Top: Com-
parison of the input (in black) and output (in red) intensities.
Bottom: Comparison of the residuals between the input and de-
noised data.

in the autoencoder residuals. The signal that remains in the au-
toencoder residuals is coming from defaults in the signal tagging
procedure. The better preservation of the signal by the autoen-
coder goes hand in hand with a slight under-denoising. Indeed,
the map of the spectral RMS of the residuals normalized by the
spectral RMS of the noise is on average lower than 1 in regions
that have been tagged as mostly signal. In other words, the de-
noised output is closer to the raw input than it should be in case
of perfect denoising. In contrast, the residuals of ROHSA better
recover the noise level at low S/N at the price of more distortion
of the signal at high S/N.

Figure 18 compares the joint histogram of the denoised vs
the raw intensities. A perfect denoising of the noise additive
component would deliver a joint histogram along the diagonal at
large S/N and an histogram whose dispersion is very asymmetric
around zero: The distribution should have the same dispersion
as the noise along the raw intensity axis and a narrow dispersion
along the denoised intensity axis. The autoencoder succeeds in
mimicking the identity function with a good approximation for
signal above 20σ, that is a much lower value than ROHSA. The
two algorithms have different behaviors around zero intensity.
On one hand, ROHSA biases the denoising to positive intensi-
ties resulting into a larger vertical size of the histogram, which
means a larger dispersion along the denoised intensity axis for
positive values. On the other hand, the autoencoder slightly bi-
ases the denoising to positive values for positive raw intensities
and to negative values for negative raw intensities. The bias is
more significant for the negative part and can be tracked in the
raw cube to voxels in the surrounding of obviously positive sig-
nal. We interpret this as the consequence of the matched filtering
step that includes in the mostly signal mask negative intensities
at the edges of strong signal.

The denoising quality must also be judged on quantitative
estimators that strongly differ from the loss function. Figure 19
compares the averaged spectra before and after denoising for the
autoencoder and ROHSA. Both the autoencoder and ROHSA
deliver an overall positive bias on spectral regions that contain
the signal but the bias is about twice lower for the autoencoder.
This means that the algorithms slightly bias positively the total
flux of the source. Finally, Figs. 20 and 21 compare the spatial
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Fig. 20: Maps of the properties of the 13CO (1 − 0) line before (left) and after denoising with the autoencoder (middle) and ROHSA
(right). From top to bottom, the properties are the maximum of the line, the line integrated intensity, the velocity of the maximum,
the centroid velocity, a robust estimation of the line width, and the velocity dispersion.

Article number, page 18 of 26



Lucas Einig et al.: Deep learning denoising by dimension reduction: Application to the ORION-B line cubes

Fig. 21: Maps and histograms of the residuals of the properties of the 13CO (1 − 0) line. The properties are the same as for Fig. 20.
The first, second, and third columns show the maps of residuals between the autoencoder denoised and raw data, the ROHSA
denoised and raw data, and the ROHSA and autoencoder denoised data, respectively. The color scales are saturated in order to
emphasize the differences where some signal is detected. The fourth column shows the associated histograms. The brown and green
lines show the residuals from the autoencoder and ROHSA denoising, respectively. The black lines show the difference between the
autoencoder and ROHSA results.

variations of the properties of the 13CO (1 − 0) line before and
after denoising. The results on the raw data cube can be consid-
ered as unbiased. The properties are computed on the raw and
denoised data in exactly the same way. In particular, we used
the same spectral window [−5, 21 km s−1] to compute the line
moments. In addition to the peak intensity, line integrated in-

tensity, and centroid velocity defined in Sect. 7.3, we compute
the robust line width that is the ratio of the line integrated in-
tensity by the peak intensity. This value would be equal to the
line full width at half maximum for a Gaussian shape. We also
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compute the line velocity dispersion, defined as the square root
of

{∑
ic [v(ic) −C]2 I(ic)

}
/
{∑

ic I(ic)
}
.

Denoising has a higher impact on the higher order moments
of the line, namely the centroid velocity and the velocity dis-
persion. To first order, the autoencoder and ROHSA algorithms
give similar results. In particular, the histograms of the residu-
als between these two methods are all centered on zero. More-
over, they both set low maximum intensities closer to zero than
the raw data, as expected for a denoising algorithm. Looking in
more detail, differences appear in regions of low to intermediate
S/N. ROHSA better removes the striping pattern of the noise in
regions devoid of signal but it does this by biasing positively the
maximum intensity and the line integrated intensity. The veloc-
ity of the maximum is better preserved by the autoencoder than
by ROHSA, but the two algorithms deliver similar centroid ve-
locity results. Finally, the line width estimator delivers narrower
linewidths on the autoencoder data than on ROHSA data, in par-
ticular in regions of low S/N.

8.3. Perspectives

Our autoencoder does not rely on the spatial information, in par-
ticular, the spatial correlations of the noise. Wavelet scattering
transforms and wavelet phase harmonic transforms are recent
tools that allow the spatial texture of data to be characterized
in statistical ways with only a few hundred coefficients (Allys
et al. 2019; Levrier et al. 2021). This can be used to denoise as-
trophysical data as proposed by Regaldo-Saint Blancard et al.
(2020). Investigating whether this would improve the denoising
performances achieved here will be the subject of a forthcoming
paper.

9. Conclusion

In this paper, we have proposed a promising approach to de-
noise radio-astronomy line data cubes, inspired by a method de-
veloped to denoise hyperspectral cubes in Earth remote sens-
ing. To do this, we first characterized in-depth the properties of
the noise and signal for two radio-astronomy position-position-
velocity cubes that are part of the ORION-B IRAM 30m large
program, namely the 13CO (1 − 0) and C17O (1 − 0) cubes.

– The additive noise is well represented by a Gaussian random
variable. Its RMS value varies spatially and spectrally. It can
be modeled as the product of a spatial and a spectral contri-
bution.

– The spatial variations come from a combination of the source
scanning strategy, variations of the atmospheric conditions
between winter and summer runs, for example, and the
source elevation during each observing session.

– The spectral variations mostly have two origins. First, the re-
sampling (currently) required to correct for Doppler effects
in wide-bandwidth observations implies a sinusoidal oscil-
lation of the noise level with frequency. Second, the inter-
polation of the polynomial fit of the baseline also slightly
increases the noise RMS in the line frequency range.

– The noise spatial power distribution can be modeled as the
sum of two components: i) the square of the Fourier trans-
form of the telescope point spread function, and ii) the mod-
eling of the noise correlation introduced by sharing the same
reference spectra among many on-source spectra.

– The noise spectral autocorrelation can be modeled by the au-
tocorrelation of a finite impulse response filter with a shape
of [0.18 0.97 0.18]. This implies that the noise between pairs

of channels is uncorrelated as long as their distance is larger
than two channels.

Moreover, the signal is sparse along the spectral axis. This al-
lows an easy estimation of the noise level and the associated S/N.
This S/N varies from less than one to several hundred, mostly
because of the large intensity dynamic range. The uncertainty
budget is dominated by additive noise at a low S/N, but it be-
comes dominated by multiplicative noise due to the uncertain
calibration when the S/N is larger than the inverse of the RMS
of the calibration uncertainty: on the order of 20 in our case. For
this study, we only denoised the low S/N part of the observations
dominated by additive noise.

We then looked at the cube as a set of spectra that were indi-
vidually denoised by dimension reduction. This method assumes
that there is linear or nonlinear redundancy between the data fea-
tures (here the channels of any spectrum). This hypothesis is well
verified by standard hyperspectral cubes usually produced in
Earth remote sensing. A mutual information computation shows
that this hypothesis is more problematic for radio-astronomy line
cubes, because the signal information decorrelates quickly from
one channel to another at the obtained spectral resolution. From
this viewpoint, denoising by dimension reduction would be more
adapted to astronomy hyperspectral cubes observed with direct
detection imaging spectrometers used to study the spectral en-
ergy distribution of the sources. When dealing with cubes that
only contain spectrally resolved line emission, any denoising
method by dimension reduction must thus take into account the
fast decorrelation of channels that characterize these cubes.

An autoencoder is a nonlinear low rank deep learning de-
noising method whose goal is to minimize the distortion of the
signal. We adapted the typical architecture to our line data as
follows.

1. The proposed architecture took the fast decorrelation of the
signal into account as a function of frequency.

2. We took the sparsity of the signal into account inside the
spectrum by adapting the loss function of the autoencoder
depending on whether the voxels contain mostly signal or
mostly noise. This implies an a priori position-position-
frequency classification algorithm.

3. For signal voxels, we weighed the distance between the data
and the autoencoded data by the inverse of the noise vari-
ance. For noise voxels, we used the L1 norm between the
autoencoded data and zero to ensure that the autoencoder
would not create or destroy flux for low S/N voxels.

We finally compared the denoising performance to that
achieved by the ROHSA algorithm that represents the spectra
as a set of Gaussian fits. While ROHSA allows one to decom-
pose the signal into velocity layers (e.g., Gaudel et al. 2022), the
denoising performances of the proposed autoencoder are higher.
The latter allowed us to increase the S/N in pixels with a low S/N
while preserving the shape of spectra in high S/N pixels.
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Appendix A: Doppler effect and implied spectral
resampling

The observed lines are emitted in the source frame at the line
rest frequency, for example f rest = 110.20135 GHz for the 13CO
(1 − 0) line. The relative motion between the observatory and the
Orion B molecular cloud in the Milky Way implies that the lines
are recorded in the observatory frame at a frequency shifted by
the Doppler effect. Pety & Bardeau (2011) describe in depth the
consequences of this effect on the spectral data. In short, this ef-
fect can be approximated to first order in the Doppler parameter
v
c (radio velocity convention) as

f rest − f obs

f rest =
vsou/obs

c
, (A.1)

where c is the speed of light, vsou/obs the component of the source
velocity along the line of sight in the observatory frame, and f obs

the observed frequency.
Moreover, the spectrum is regularly sampled in frequency.

Its frequency axis is thus described as

f (i) = fref + (i − iref) δ f , (A.2)

where fref is the reference frequency at the reference channel iref ,
and δ f the frequency channel spacing. The astronomer is inter-
ested by the description of the velocity variations in the source
rest frame. However, the spectrum is recorded in the observa-
tory frame. The same intensity I(i) of the spectrum can thus be
attributed to two different frequencies, f obs(i) and f rest(i). Equa-
tion A.2 can thus be written in the two frames for the same chan-
nel i as

f obs(i) = f obs
ref + (i − iref) δ f obs, (A.3)

f rest(i) = f rest
ref + (i − iref) δ f rest. (A.4)

Applying Eq. A.1 yields

f obs
ref = f rest

ref

(
1 − vsou/obs

c

)
, and δ f obs = δ f rest

(
1 − vsou/obs

c

)
.

(A.5)

On one hand, the channel spacing in the observatory frame
(δ f obs) is fixed by the spectrometer hardware. On the other
hand, there is an infinite number of (iref , f obs

ref , f rest
ref ) values to de-

scribe the same spectrum. The simplest choice is to set f rest
ref to

the rest frequency of the line of interest, for example f rest =
110.20135 GHz for the 13CO (1 − 0) line, and to use f obs

ref as
the tuning frequency of the receiver, implying that the reference
channel and thus the associated line will be localized at the mid-
dle of the spectrum frequency axis.

The Doppler frequency shift ( f rest − f obs) of Eq. A.1 varies
with time during the day because of the Earth rotation around its
axis and during the year because of the Earth rotation around the
Sun. To remove this time dependency at the tuning frequency,
radio-observatories slightly shift the tuning frequency with time
according to the relative velocity between the observatory and
the inertial frame, named Kinematic Local Standard of Rest
(LSRK). The remaining Doppler effect between the LSRK frame
and the source rest frame is dealt with in the data reduction soft-
ware because it is independent of the observing time. However,
the hardware correction, called real-time Doppler tracking, has
two main limitations.

– First, as it is only applied to the tuning frequency,
it exactly corrects only the rest frequency at the ref-
erence channel while the radio-astronomy receivers ob-
serve wide bandwidth at high spectral resolution. The
frequency scale in the source frame thus experiences a
time-dependent frequency dilation around the reference
frequency: δ f rest = δ f obs/

{
1 − vsou/obs(t)/c

}
, with δ f obs the

channel spacing fixed by the spectrometer hardware in the
observatory frame. The order of magnitude of the Earth ve-
locity in the LSRK frame, |∆v| ≤ 30 km s−1, implies that the
dilation effect, δ f rest, becomes on the order of the channel
spacing every few tens of thousands channels. No observa-
tory is yet proposing a hardware solution to correct for this
dilation effect.

– Second, when scanning the receiver over a portion of the sky
to obtain wide-field imaging, the Doppler tracking correction
is computed only once at the start of each scan. This is to en-
sure that potential standing wave associated with the cavity
composed of, for example, the primary and secondary mir-
rors, have a periodicity along the frequency axis that is fixed
during the scan duration. The Doppler tracking correction
is thus only approximate because it is computed only once
every few minutes in a particular sky direction, while the
Doppler effect continuously depends both on the time and
sky direction. The dependence on the sky direction is most
problematic when scanning a wide portion of sky during a
single scan.

Correcting for the time and space dependence of the Doppler ef-
fect implies a shift of the reference channel (iref) at constant ref-
erence frequency ( f rest

line ) in the source frame (for details, see, e.g.,
Pety & Bardeau 2011). The observed spectra are thus slightly
shifted in frequency. Moreover, current heterodyne receivers
cover two frequency bands located below (lower side band) and
above (upper side band) the frequency of the local oscillator. Due
to the difference in frequency between the two bands (16 GHz
for the EMIR receiver), the velocity scales are slightly differ-
ent for these two side bands. Furthermore the separation of the
signals from the two bands is not perfect. This may lead to the
apparition of “ghost” lines from the rejected band at frequencies
that depend on the local oscillator frequency. We refer the reader
to Pety & Bardeau (2011) for associated details. All in all, the
spectra thus need to be resampled to a common frequency axis
before merging them to avoid blurring the spectral response in
the science-ready product.

Appendix B: Calibration in a nutshell

In this appendix, we summarize the calibration of the raw data,
which combines the determination and application of the time
varying calibration factor with the removal of the contribution
of the atmosphere to the measured intensity. For simplicity, we
start with assuming that the gain of the measurement is constant
with time before generalizing to the case where the gain actually
varies with time. We finally look at the impact of this calibration
scheme on the measured noise. We do not speak about impor-
tant additional subtleties, such as the impact of the mixing of
the image sideband into the signal sideband or the usefulness of
smoothing the frequency bandpass response when determining
the calibration gain.
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B.1. Time independent gain

The intensity measured (Imeas) by the receiver can be written be-
fore calibration and to zero order as the sum of the contribution
of the astronomical signal (S astro) and of the atmospheric emis-
sion (S atm), multiplied by a gain (g)

Imeas = g.
(
S astro + S atm

)
. (B.1)

The astronomer is interested to recover the astronomical signal.
However, the contribution of the atmosphere most often com-
pletely dominates the astronomical signal at millimeter wave-
lengths, in other words S astro � S atm. It is thus required to mea-
sure independently the contribution of the atmosphere in order
to subtract it. A common way to do this is to regularly observe
a reference line of sight in between the observations of the on-
source lines of sight. This method is called position switching.
Writing the two observations as

ON = g.
(
S astro

on + S atm
on

)
, (B.2)

REF = g.
(
S astro

ref + S atm
ref

)
, (B.3)

this gives

S astro
on =

1
g

(ON − REF) + S astro
ref +

(
S atm

on − S atm
ref

)
. (B.4)

When the reference line of sight is actually devoid of signal
(S astro

ref = 0), and the contribution from the atmosphere is stable
between the on-source and reference lines of sight, the last two
terms cancel and we obtain

S astro
on =

1
g

(ON − REF) . (B.5)

B.2. Time varying gain

This gain is a combination of the absorption of the atmosphere
and of the electronic amplification of the receiver. The electronic
gain is constant over a typical timescale of about 30 minutes. But
the atmosphere absorption varies on much shorter timescales.
Moreover the atmosphere absorption and receiver amplification
vary with frequency. In order to take into account the time vari-
ation of the system (atmosphere + receiver) gain, we model it as
the product of the atmosphere and the receiver gain

g = grec gatm. (B.6)

Using this expression in Eq. B.2 and B.3, we obtain

ON = grec gatm
on

(
S astro

on + S atm
on

)
, (B.7)

REF = grec gatm
ref

(
S astro

ref + S atm
ref

)
. (B.8)

In order to solve for S astro
on , we first remove the receiver depen-

dency because it dominates the spectral part of the gain varia-
tions, in particular at the edges of the observed bandpass. To do
this, we just take the ratio of the ON and REF measurements.
This yields

ON
REF

=
gatm

on

gatm
ref

[
S astro

on + S atm
on

][
S astro

ref + S atm
ref

] ∼ 1. (B.9)

This ratio is of order 1 for two reasons.

1. The astronomical signal is (most often) dominated by the at-
mospheric signal, in other words S astro � S atm.

2. The time variation of the gains are mostly due to variations
of the atmosphere absorption, which are to first order anticor-
related with the variations of the atmosphere emission. This
can be written as

gatm
on S atm

on ∼ gatm
ref S atm

ref . (B.10)

This is of course only true when the atmosphere varies only
slightly during the observation.

We thus subtract 1 to the ratio of Eq. B.9 in order to mimic a
Taylor decomposition. Solving for S astro

on then yields the sum of
three terms

S astro
on = Tsys

{
ON
REF

− 1
}

+ S cal,astro
ref + B, (B.11)

with Tsys =
REF
gatm

on
, (B.12)

S cal,astro
ref =

gatm
ref

gatm
on

S astro
ref ∼ 0, (B.13)

and B = S atm
on

{
gatm

ref S atm
ref

gatm
on S atm

on
− 1

}
∼ 0. (B.14)

Equation B.11 is a generalization of Eq. B.4 to the case where the
gain varies with time during the observations. Both have three
terms.

The baseline The term B is the residual that is nonzero when
the assumption that the atmosphere emission and absorp-
tion are anticorrelated, that is Eq. B.10, breaks. This term
is responsible for the typical continuum variations, called
baselines, seen around the lines. These baseline offsets
are removed through the baselining procedure described in
Sect. 5.1.

The reference signal The term S cal,astro
ref is exactly zero, except

when there exists some residual signal from the astronom-
ical source on the reference line of sight. This happens for
lines whose emission is extended over several degrees on
the plane of sky, for instance, the 12CO and 13CO (1 − 0)
emissions from local Giant Molecular Clouds. This is nev-
ertheless rather the exception than the rule. When this term
is nonzero, it can not be treated through baselining as the
previous continuum offset. Indeed, it has a similar shape as
the on-source line. It must thus be measured independently
at relatively large signal-to-noise ratio and added back to the
calibrated on-source signal. Contrary to common belief, this
is S cal,astro

ref that must be added, and not S astro
ref . In other words,

the astronomical signal toward the reference line of sight
must be added after multiplication by the time gain ratio be-
tween the on-source and reference observations.

The on-source signal Under perfect conditions, we recover an
equation whose shape is similar to Eq. B.5, that is

S astro
on = Tsys

{
ON
REF

− 1
}
. (B.15)

The term in parenthesis is unitless and the system tempera-
ture (Tsys) is the multiplicative calibration factor needed to
establish the correct intensity unit scale. The system temper-
ature depends both on frequency and time.
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Appendix C: Noise spatial power density

The spatial energy density of a 2D stochastic process D is de-
fined as

ED(u, v) = E
[∣∣∣F [D]

∣∣∣2(u, v)
]
, (C.1)

where F [D] is the Fourier transform of D, and E is the expec-
tation operator. In our case, the stochastic process is the mea-
surement of the signal affected by random noise over an image
of area Aima, and the expectation is measured as the average of
the images over a given number of channels. The spatial power
density of D is then defined as the spatial energy density divided
by the area of the image, that is

PD(u, v) =
ED(u, v)

Aima
. (C.2)

The reference spectrum is observed only in between the ob-
servation of two consecutive lines on source. The integration
time at the reference position is much larger than the one for each
ON spectrum. The contribution of the noise from the reference
position to the noise of the calibrated spectrum is thus negligible
when computing the noise RMS per ON position. However, the
noise of the reference spectrum is shared by all the ON spectra of
two consecutive lines, implying a noise energy level correlated
to the scanning configuration (rectangular patterns).

Here, we first compute the first order term of the Taylor de-
composition of Eq. B.15 at point S atm. This allow us to show
that the noise spatial power density is to first order the sum of
two components coming from the ON and REF noise spatial be-
haviors, respectively. We finally compute the quantitative impact
of the noise correlation introduced by the REF measurements.

C.1. Linearization of the measurement equation

We restart from Eq B.15 that relates the calibrated signal to the
ON and REF measurements to show that we have to first order
for channels devoid of signal

S astro
on (θl, θm, θl0, θm0) ' [B ? Non] (θl, θm) − [B ? Nref] (θl0, θm0),

(C.3)

where? is the convolution symbol, B is the point spread function
of the telescope, and (Non,Nref) are a couple of centered normal
random variables of same standard deviation as the atmospheric
signal on source or on reference, respectively.

To do this, we first redefine the ON and REF measurements
to take into account three things. First, we compute the noise
spatial power density only on channels devoid of line astronomi-
cal signal. In other words, we assume that S astro = 0. Second, the
coupling of the telescope to the sky is imperfect. This translates
into a convolution equation. Third, the telescope is scanning the
sky when observing on source, while it always comes back to the
same position, (θl0, θm0), devoid of astronomical signal, when ob-
serving the reference. Given coordinates (θl, θm) and (θl0, θm0) at
which ON and REF spectra are respectively measured, we obtain
the measurement expressions

ON(θl, θm) = grecgatm
on .

[
B ? S atm

on

]
(θl, θm), (C.4)

REF(θl0, θm0) = grecgatm
ref .

[
B ? S atm

ref

]
(θl0, θm0). (C.5)

The atmospheric signal S atm can be considered as a normal
random variable of expectation E

[
S atm]

and standard deviation

σatm. As explained above σatm/E
[
S atm] � 1 in millimeter radio-

astronomy. In order to prepare to compute the Taylor decompo-
sition of Eq. C.3 in E

[
S atm]

, we rewrite the atmospheric random
variable as

S atm = E
[
S atm

]
(1 + ∆) , with ∆ = N/E

[
S atm

]
, (C.6)

where ∆ is a centered normal random variable of standard devi-
ation� 1. Replacing the definitions C.6 in Eq. C.4 and C.5, and
using the fact that the integral of B is equal to one, we yield

ON(θl, θm)
REF(θl0, θm0)

=
gatm

on E
[
S atm

on (θl, θm)
]

gatm
ref E

[
S atm

ref (θl0, θm0)
] {

1 + [B ? ∆on] (θl, θm)
1 + [B ? ∆ref] (θl0, θm0)

}
.

Using again the fact that the first term of the product is of order 1,
and keeping only the first order term in the Taylor decomposition
of the second product term, we find

ON(θl, θm)
REF(θl0, θm0)

− 1 ' [B ? ∆on] (θl, θm) − [B ? ∆ref] (θl0, θm0).

(C.7)

We obtain Eq. C.3 by 1) replacing this equation in Eq. B.15,
2) using the definition of N in Eq. C.6, and 3) recognizing that
Tsys ∼ E [

S atm]
.

C.2. Normalization of the pixel variances

We plan to compute the spatial power density of S astro
on . Equa-

tion C.3 indicates that the measured signal is to first order the
subtraction of two central normal random variables of standard
deviation σon and σref . The standard deviation of S astro

on is thus

σ =

√
σ2

on + σ2
ref . (C.8)

As the weather and the source elevation is varying during the ob-
servations, σ varies with times and thus with the position in the
final map as shown on Fig. 6. Fortunately, the observing con-
ditions can be considered constant between the observation on
source and on reference. This implies that

σref = σon

√
dton

dtref
and σ = σon

√
1 +

dton

dtref
(C.9)

where dton and dtref are the integration time on source and on
reference. We can thus compute the spatial power density of the
ratio S astro

on /σ to get rid of the noise variations due to the weather
or the source elevation. This simplifies the interpretation of the
result. From this point on, we keep the notation of Eq. C.3, and
just note that the random variables Non and Nref have for standard
deviation σon/σ and σref/σ.

C.3. Relative contributions from the ON and REF
measurements

The spatial power density of the difference of two independent
random processes is the sum of the spatial power density of each
random process. We thus get

PS astro
on
' Pon + Pref , (C.10)

with

Pon(u, v) =

E
[∣∣∣F [B ? Non]

∣∣∣2(u, v)
]

Aima
(C.11)

= Apix

(
σon

σ

)2 ∣∣∣F [B]
∣∣∣2(u, v), (C.12)

Article number, page 24 of 26



Lucas Einig et al.: Deep learning denoising by dimension reduction: Application to the ORION-B line cubes

and

Pref(u, v) =

E
[∣∣∣F [B ? Nref]

∣∣∣2(u, v)
]

Aima
. (C.13)

The noise spatial power density of the on-source noise delivers
the usual result, that is, it is proportional to the Fourier trans-
form of the point spread function of the telescope. In the next
section, we compute the noise spatial power density of the ref-
erence noise. In particular, it is not proportional to |F [B]|2 (u, v)
because the reference position is always observed at the same
position on sky.

C.4. Quantitative impact of the noise correlation

Fig. C.1: Illustration of the 1D calibration noise decomposition
as the convolution between a random Dirac comb and a rectan-
gular filter.

We shall assume that all on-source pixels inside a rectangle
of area Arect share the same reference spectrum, and that these
rectangles form a chessboard pattern. The images are paved by
nrect rectangles. The impact (R) of the reference observations on
the observation procedure can be modeled by a convolution of a
random dirac comb X with a 2D rectangular shape Π

R(θl, θm) = [Π ?X](θl, θm), (C.14)

with X(θl, θm) = Arect

nrect∑
k=1

Nk δ(θl − θl,k, θm − θm,k), (C.15)

and

Π(θl, θm) =

{
1/Arect if |θl| < ∆θl

2 , and |θm| < ∆θm
2 ,

0 else, (C.16)

where k is the index of one rectangle over the chessboard,
(θl,k, θm,k) the position of center of each rectangle, and Nk is the
random variable associated with each measurement of the refer-
ence position. This random variable is assumed to be a normal
variable N(0, σref

k ). The factor 1/Arect that appears in the defini-
tion C.16 ensures that the integral of the 2D rectangular shape Π
is equal to 1 (unitless), and that all the energy of the stochastic
process R is contained into the energy of the random comb func-
tion X. Figure C.1 illustrates this decomposition in the 1D case.
We now show that the noise spatial power density of the process
R is

PR(u, v) =

[
sinC

(
∆θl u
λ

)
sinC

(
∆θm v
λ

)]2

Arect 〈σ2
k〉, (C.17)

where

〈σ2
k〉 =

1
nrect

nrect∑
k=1

σ2
k (C.18)

is the average of the noise variances of the reference measure-
ments. Indeed, the properties of the Fourier transform and the
deterministic nature of the Π function allow us to yield

PR(u, v) =
∣∣∣F [Π]

∣∣∣2(u, v) · PX(u, v). (C.19)

As the Fourier transform of a boxcar is a cardinal sine,

∣∣∣F [Π]
∣∣∣2(u, v) =

[
sinC

(
∆θl u
λ

)
sinC

(
∆θm v
λ

)]2

. (C.20)

As X is a white noise, its energy spectral density is a constant.
By using the energy conservation property of the Fourier trans-
form, we get

PX(u, v) =
A2

rect

AIma

nrect∑
k=1

E
[
N2

k

]
. (C.21)

Finally, using Eq. C.18 and the fact that Aima = Arect nrect, the
spatial power distribution of the 2D random comb is

PX(u, v) = nrect
A2

rect

Aima
〈σ2

k〉 = Arect 〈σ2
k〉. (C.22)

Appendix D: Calibration uncertainty

Fig. D.1: Relative variation of the fitted Gaussian area for the
13CO (1 − 0) line toward the Horsehead core in percentage. The
left panel shows the variations as a function of the time of the
measurements, while the right panel shows the histogram of the
variations. The black and red colors are used for the H and V po-
larizations of the EMIR receiver. The vertical error bars around
each point show the uncertainties on the fitted area due to ther-
mal noise. The horizontal dashed lines show the mean variation
for each polarization. The horizontal dotted lines show the ±1σ
level for all the measurements.

In order to monitor the calibration uncertainty, we observed
the same position with known and bright line intensities at the
start of each 8-hour block of observations. We choose the Horse-
head core position (located at (+20′′,+22′′) from the projec-
tion center of 05h40m54.270s,−02◦28

′
00.00

′′
) as this position

has been extensively studied in the framework of the Horsehead
WHISPER survey (see, e.g., Guzmán et al. 2012; Pety et al.
2012; Gratier et al. 2013; Guzmán et al. 2013). We used the
symmetric position switching observing mode with a reference
position located at (−100′′, 0′′) from the projection center. We
integrated 6 minutes in total (3 minutes on source and 3 minutes
on reference). This yields 55 measurements times two polariza-
tion spread over slightly more than 6 years and observed during
varying weather conditions.
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Calibration and reduction were done using standard meth-
ods of MRTCAL and CLASS. After extracting 11 MHz around
the 13CO (1 − 0) rest frequency, we averaged the 110 separate
spectra. The mean spectrum of all 110 measurements was fit-
ted with a single Gaussian to get a reference value for the 13CO
(1 − 0) line integrated intensity. In this fit, we only considered
the main component of Orion B, near 10 km s−1. We then fit a
single Gaussian for each 6-minutes measurement using the so-
lution for the averaged spectra as initial guess for the fit and we
visually checked that all fits were good. We then computed the
variation of each measurement relative to the value derived for
the average spectrum. Figure D.1 shows the relative variations
as a function of the time and their histograms for the H and V
EMIR polarizations separately.

The relative variations range from −25 to +10%. The vertical
polarization delivers almost systematically a larger intensity than
the horizontal polarization. This explains why the mean relative
variations are +1.01 and −1.09%, respectively. The RMS around
these means are 6.8 and 6.1%. The median absolute deviations
are 5.0 and 4.3%, respectively. The difference between the RMS
and median absolute deviation implies that a few measurements
are outliers. Overall, the calibration uncertainty for the IRAM
30m is on the order of 5% for an almost instantaneous observa-
tion at 3 mm, as is the case for the ORION-B project. Averag-
ing many such measurements when, for example, observing low
brightness sources, considerably reduces this uncertainty. This
experiment says nothing about the absolute calibration accuracy.

Appendix E: About the multilayer perceptron

Fig. E.1: Example of graphical representation of a multilayer
perceptron. The left part of the figure represents the network as
a flowchart, highlighting the successive operations applied to the
inputs. The right part shows the detailed architecture of the net-
work, in this case consisting of two inputs, ten outputs and two
hidden layers of four and height neurons, respectively.

A neural network is a graphical model that maps nonlinearly
outputs from inputs. A neural network architecture represents a
given class of function. Neural networks are composed of a suc-
cession of layers that perform nonlinear transformations. Fig-
ure E.1 shows an example of a forward propagation architecture,
named multilayer perceptron. Forward propagation means that
the output of one layer is always the input of the next layer, while
multilayer implies that there are at least two layers. In addition,

the layers are fully connected, which means that each output of a
layer is computed from all inputs. More precisely, for each layer,
the input x and the output y are related through

y = σ (Wx + b) , (E.1)

where W and b are respectively the weight matrix and the bias
vector, which are estimated during the learning step. The biases
enable one to shift the argument of a nonlinear activation func-
tion σ. Such a perceptron has the universal approximation prop-
erty. It is able to approximate as precisely as required any con-
tinuous function provided it has enough neurons.

Appendix F: A short introduction to mutual
information

In information theory, mutual information is a quantity that mea-
sures the statistical dependence of two variables. The mutual in-
formation in base 2 of two continuous real variables X and Y is
calculated as

I(X,Y) =

∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y) log2

fX,Y (x, y)
fX(x) fY (y)

, (F.1)

with fX , fY , and fX,Y respectively the probability density func-
tions of X, Y , and (X,Y).

Mutual information is a positive real quantity and it is sym-
metric. In other words, I(X,Y) = I(Y, X). If there exists a func-
tion f (linear or not) such that Y = f (X), then I(X,Y) = +∞.
Conversely, if the knowledge of one of the variables gives no
information about the other (i.e., the two variables are indepen-
dent) then I(X,Y) = 0. Mutual information is therefore a more
general indicator than Pearson or Spearman correlation coeffi-
cient since it takes into account nonlinear and nonmonotonic re-
lationships. In particular, it is possible for two variables to be
decorrelated but have nonzero mutual information.

Appendix G: Supplementary figures

Fig. G.1: Visualization of the 240 spectral images of the
13CO (1 − 0) cube sorted by increasing velocity.

Article number, page 26 of 26


	Introduction
	Denoising by dimension reduction
	Definition of a denoising algorithm
	Supervised versus self-supervised methods
	Generic denoising by dimension reduction
	Principle
	In practice


	Acquisition of radio-astronomy spectral line cubes by a ground-based single-dish telescope
	The ORION-B IRAM 30m Large Program
	Scanning strategy
	Calibration
	Spectral resampling and spatial gridding

	Properties of the signal in two ORION-B spectral line cubes
	Spatial and spectral means
	Histograms of the measured intensities
	Signal redundancy among the channels

	Noise properties
	Spatial and spectral levels
	Noise spatial power density
	Noise spectral power density
	Noise PDFs at low and large S/N

	The autoencoder neural network as a generic method of dimension reduction
	Neural networks
	Autoencoder neural network
	Estimating the intrinsic dimension of a dataset
	Implementation
	Comparison of the intrinsic dimension between the ORION-B cubes and a typical hyperspectral cube

	A locally connected autoencoder with prior information to denoise line data
	Locally connected autoencoder
	Adding prior information to the optimization problem
	Detecting significant signal

	Denoising performances
	Detailed setups of the autoencoder and ROHSA
	Results
	Perspectives

	Conclusion
	Doppler effect and implied spectral resampling
	Calibration in a nutshell
	Time independent gain
	Time varying gain

	Noise spatial power density
	Linearization of the measurement equation
	Normalization of the pixel variances
	Relative contributions from the ON and REF measurements
	Quantitative impact of the noise correlation

	Calibration uncertainty
	About the multilayer perceptron
	A short introduction to mutual information
	Supplementary figures

