
HAL Id: hal-04167855
https://hal.science/hal-04167855v3

Preprint submitted on 19 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Projectile shape optimization using data-based models
Alain Uwadukunze, Xavier Bombois, Marion Gilson, Marie Albisser

To cite this version:
Alain Uwadukunze, Xavier Bombois, Marion Gilson, Marie Albisser. Projectile shape optimization
using data-based models. 2024. �hal-04167855v3�

https://hal.science/hal-04167855v3
https://hal.archives-ouvertes.fr


Projectile Shape Optimization using data-based
Models

UWADUKUNZE Alaina,b, BOMBOIS Xavierc, GILSON Mariona,
ALBISSER Marieb

aDepartment of Control, Identification and Diagnostics, Centre de Recherche en
Automatique de Nancy, CNRS, Université de Lorraine, 2 Rue Jean

Lamour, Nancy, 54500, France
bDepartment of Aerodynamic and Exterior Ballistics, French-German Research Institute

of Saint-Louis, 5 rue du Général Cassagnou, Saint-Louis, 68300, France
cDépartement AIS, Laboratoire Ampère UMR CNRS 5005, Ecole Centrale de Lyon, 36

Av. Guy de Collongue, Ecully, 69134, France

Abstract

Aerodynamic design of projectiles is crucial to ensure that projectiles
have the best performance during their flight. Performing aerodynamic de-
sign boils down to determining the optimal values of certain design variables
of the projectile as the solution of a nonlinear optimization problem involv-
ing the stability derivatives of the projectile. Solving such an optimization
problem involves a heavy procedure since either costly experimental tests
or computationally intensive simulations are needed to obtain the stabil-
ity derivatives for different values of the design variables. In this paper, a
(cost-effective) Neural Network surrogate model is used to model the stabil-
ity derivatives. A procedure balancing exploitation and exploration is then
devised to determine, based on that surrogate model, the values of the de-
sign variables for which the stability derivatives have to be evaluated to both
improve the surrogate model and approach the optimal design of the projec-
tile. This framework is applied to optimize the geometrical configuration of
a rectangular finner for a classical flight scenario.
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1. Introduction

In many aerospace applications, the flight behaviour highly depends on
the shape, the dimension, the materials,... of the considered flying vehicles.
Consequently, the flight behaviour can be optimized by adjusting these quan-
tities. In the aerospace literature, such a problem is known as aerodynamic
design or aerodynamic optimization (Driver and Zingg, 2007).

In this paper, we will perform such task for (gun-launched) projectiles. In
particular, the geometrical configuration of a rectangular finner (Dupuis and
Hathaway, 1997) will be optimized to obtain an optimal flight behaviour for
a flat fire trajectory, i.e., for the case where the finner is launched with an
initial total angle of attack equal to zero. The flight behaviour will be here
deemed optimal when the projectile reaches its target in a minimum time.

As will be shown in the sequel, this aerodynamic optimization problem can
be formulated as a constrained optimization problem having as decision vari-
able the geometrical configuration X of the projectile and involving a number
of the so-called stability derivatives (McCoy, 1999a) of the projectile, which
are functions of the geometry X of the projectile and of its Mach number M .

This constrained optimization problem is a non-linear optimization problem
involving the static non-linear function F (X,M) relating X and M on the
one hand and the stability derivatives on the other hand. Two approaches
are generally used to determine the stability derivatives for a given configura-
tion, i.e., to evaluate F (X,M). The first one is an experimental one involving
wind-tunnel experiments or free flight tests (Albisser, 2015), and the second
one is to perform high-fidelity numerical simulations such as Computational
Fluid Dynamics (Anderson and Wendt, 1995). Evaluating F (X,M) for a
given configuration using these approaches is thus either financially costly or
time-consuming. In other words, the absence of simple and accurate models
for the complex function F (X,M) makes it extremely difficult to address the
non-linear optimization problem discussed in the previous paragraph using,
e.g., a classical gradient-based algorithm.

However, if we have access to a database containing different measurements
of stability derivatives associated to different configurations X at different
Mach numbers M , we can use it to derive a simple mathematical model
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F̂ (X,M) of the static function F (X,M). This simple mathematical model,
which is also called surrogate model in the literature (Forrester et al., 2008),
allows to predict F (X,M) for any values of X and M in a fast and efficient
way. Therefore, it can be used to solve efficiently the considered optimization
problem via, e.g., gradient-descent.

If the database does not cover the space of possible configurations X in a
sufficient manner, the model derived from this database may be inaccurate
and the optimal geometrical configuration deduced based on that model may
not have the desired properties. Nevertheless, if we have the possibility of
determining, via an experiment or via a simulation software, the values of
F (X,M) for a number Nsup of additional configurations X, we can use it to
improve the accuracy of the model F̂ (X,M). Every time a new configuration
is tested, the database contains an additional data point and the model can
therefore be updated. Given this fact, the additional configurations must be
chosen with the aim of improving the model accuracy (by selecting values
of X in the regions that have not yet been covered by the database), while
keeping in mind the objective of finding an optimal configuration (by select-
ing values of X that the current model predicts to be close to the optimum).
These two contradictory objectives are respectively called exploration and
exploitation in the literature (Frazier, 2018). We therefore propose to solve
this aerodynamic optimization problem using an approach balancing these
two objectives.

When the surrogate model is a Gaussian Process model, i.e., a probabilistic
model derived based on Gaussian prior assumptions on the unknown static
function (Rasmussen, 2003), an optimization approach as the one presented
in the previous paragraph is known as Bayesian Optimization (Frazier, 2018).
This method has already been applied to address aerodynamic optimization
problems for other flying vehicles than gun-launched projectiles (see, e.g.,
(Jeong et al., 2005; Renganathan et al., 2021; Arnoult et al., 2020; Priem
et al., 2020)).

As shown in our recent contribution (Uwadukunze et al., 2023), a Neural
Network can also be considered as surrogate model in an optimization algo-
rithm balancing the exploration and exploitation objectives. Moreover, such
models have proven their efficiency in modelling the aerodynamic coefficients
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and stability derivatives of diverse flying vehicles as proposed in (Tumse
et al., 2022),(Secco and Mattos, 2017), (Moin et al., 2022) and (Gomec and
Canibek, 2017). A contribution to the present paper is to extend these results
in (Uwadukunze et al., 2023) to the case where the considered optimization
problem is a constrained optimization problem.

The objective of this paper is to show that a procedure balancing the explo-
ration and the exploitation with a Neural Network as surrogate model can be
used to address the aerodynamic problem described above. It will be shown
that this approach provides very competitive results with respect to the more
classical Bayesian Optimization (which uses a Gaussian Process as surrogate
model).

The sequel of this paper will be organized as follows. In Section 2, the con-
sidered aerodynamic design problem will be presented in details. In Sections
3 and 4, we will present our procedure to address this aerodynamic design
problem via the identification of a Neural Network and via an approach bal-
ancing the exploration and exploitation objectives. Finally, in Section 5, the
results of this optimization procedure will be presented.

2. Aerodynamic design problem

We here consider a so-called rectangular finner of caliber 28 mm with
four rectangular fins. Such a projectile can be built with different geomet-
rical configurations, i.e., for different values of the five parameters1 X1, X2,
. . . ., X5 defined in Table 1 and represented in Figure 1 (X1, X3, X4, X5 will
be expressed in calibers and X2 in degrees).

In this paper, we wish to determine the geometrical configuration of the finner
in such a way that it reaches its target in a minimum time when the finner
is fired with an initial velocity Mmax (e.g., Mach 5) and then flies towards its
target with a total angle of attack of zero.

To address this problem, we have to consider the stability derivatives of the
finner which are coefficients associated to the forces and moments acting on

1Note that we will suppose that the building material of the finner is fixed. Its center
of gravity is thus entirely determined by the five parameters in Table 1.
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Figure 1: Finner projectile with rectangular fins

Table 1: Main characteristics of a rectangular finned projectile

Characteristic X Design Parameter Unit
X1 Total Length calibers
X2 Nose Angle degrees
X3 Fins Height calibers
X4 Fins Width calibers
X5 Position of fins calibers

the projectile during its flight. They depend on both the geometrical con-
figuration of the finner, determined by the vector X = (X1, X2, . . . , X5)

T )
and its velocity, the Mach number M . In particular, to minimize the time to
reach the target, it is well known that one of the solutions is to minimize the
drag coefficient (McCoy, 1999b) of the projectile. Since we suppose that the
finner flies with a total angle of attack equal to zero, the drag coefficient is
equal to the axial force coefficient first order stability derivative at zero yaw,
one of the stability derivatives denoted CA0 in the sequel (McCoy, 1999b).
Since CA0 not only depends on the geometrical configuration X, but also
on the Mach number M , we will in fact minimize the average value of CA0

over a velocity range [Mmin Mmax] with Mmin chosen in such a way that the
interval [Mmin Mmax] covers the possible velocities of the finner during its
flight (e.g., Mmin = 2 and Mmax = 5).
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The stability derivative CA0 is not the only stability derivative that is im-
portant for an optimal flight. We will also wish to guarantee strong flight
stability by making sure that the projectile will be dynamically and stati-
cally stable (McCoy, 1999b). To ensure static stability, the pitch moment
coefficient slope Cmα will have to be smaller than Cmax

mα
and to ensure dy-

namic stability the pitch damping moment coefficient Cmq will have to remain
smaller than Cmax

mq
. These two conditions have to be respected for all veloci-

ties in the interval [Mmin Mmax].

Our objective in this paper is therefore to determine the geometrical config-
uration of the finner, i.e., the value of the five parameters in Table 1, that
leads to the lowest average value of the drag coefficient CA0 while guarantee-
ing that, at all times, Cmα and Cmq remains smaller than Cmax

mα
and Cmax

mq
,

respectively.2

Let us formulate this objective in a mathematical form. For this purpose, let
us denote Y = (CA0 , Cmα , Cmq)

T the vector containing the stability deriva-
tives considered in this study. Since Y is a function of X and M , we can
therefore use the following notation:

Y = F (X,M), (1)

where F is a static function taking as inputs the vector X and the scalar M
and giving as output the vector Y . For the ith entry of Y (i = 1, ..., 3), the
notation Yi = Fi(X,M) will also be used.

For a given geometrical configuration X, the average value J(X) of CA0 over
the interval [Mmin Mmax] can thus be expressed as:

J(X) =
1

Mmax −Mmin

∫ Mmax

Mmin

F1(X,M)dM. (2)

Likewise, the stability constraints can be expressed by F2(X,Mmax) ≤ Cmax
mα

and F3(X,Mmax) ≤ Cmax
mq

. We here use the fact that, for rectangular finners
in supersonic regime, both Cmα = Y2 and Cmq = Y3 always reach their max-
imum at the highest velocity Mmax, i.e., the initial velocity of the flight.

2The quantities CA0
, Cmα

, Cmq
and M are dimensionless.
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The optimization problem considered in this paper can therefore be formu-
lated as follows:

X∗ = arg max
X∈X

−J(X) (3a)

s.t. F2(X,Mmax) ≤ Cmax
mα

and F3(X,Mmax) ≤ Cmax
mq

(3b)

Note that we here formulate the optimization problem (3) as a maximiza-
tion to facilitate the presentation in the sequel. Minimizing J(X) is indeed
equivalent to maximizing −J(X). In (3), X represents the allowed search
space: the set X can, e.g., contain all geometrical configurations X that are
achievable in practice or, alternatively, the set X can also be a subset of
the latter if, for some reasons, we wish to restrict the possible geometrical
configurations.

Solving the optimization problem (3) is not straightforward. Indeed, the
static function F is unknown, i.e., there is no readily available physical model
for this function (at least not one which does not require computationally
intensive simulations). However, there exist databases containing values of
this unknown static function, i.e., a set of data giving, for a number of geom-
etry configurations, the corresponding vector Y for different Mach numbers.
These databases are generally determined using experimental campaigns or
computationally intensive simulations.

In this paper, we will assume that we have access to such a database. This
database contains NX different geometrical configurations for which the sta-
bility derivatives Y have been computed for NM different Mach numbers in
the interval [Mmin Mmax] 3. In other words, the database contains the value of
the vector Y = F (Xk,M l) for all pairs (Xk,M l) with M l (l = 1, . . . NM) dif-
ferent values of M in the interval [Mmin Mmax] and with Xk (k = 1, . . . , NX)
different geometrical configurations. Let us denote by DX the set containing
these NX geometrical configurations for which we know Y at NM different
Mach numbers, i.e., DX = {Xk|k = 1, . . . NX}.

3The database may of course also contain the value of the stability derivatives for
velocities outside this interval.
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Using this database, J(X) can be approximated for all X ∈ DX using:

J(X) =
1

NM

NM∑
l=1

F1(X,M l) (4)

From now onwards, the expression (4) for J(X) will be used and we will
assume that Mmax is a velocity for which Y is given in the database. Then,
by restricting attention to the geometrical configurations X ∈ X that are
present in DX , we can derive an estimate X∗

DX
of the solution X∗ of the

optimization problem (3) :

X∗
DX

= arg max
X∈DX∩X

−J(X) (5a)

s.t. F2(X,Mmax) ≤ Cmax
mα

and F3(X,Mmax) ≤ Cmax
mq

(5b)

It is to be noted that DX ∩X = DX if X is the set of all achievable geomet-
rical configurations.

The solution X∗
DX

of the optimization problem (5) is only an approximation
of X∗. However, it is the best approximation that can be derived given the
information in the database. It is also clear that the larger the database, the
better the approximation X∗

DX
of X∗. In this paper, the objective is to im-

prove X∗
DX

by extending the set DX , i.e., the set of geometrical configurations
for which the value of Y , at different Mach numbers, is known. Extending
the set DX comes with a cost. Indeed, if the objective is to know the value
of Y at different Mach numbers for a geometrical configuration X ̸∈ DX , a
flight experiment has to be carried out with a projectile having that partic-
ular geometrical configuration or, alternatively, a computationally intensive
simulation has to be performed. Consequently, we wish to extend the set DX

in a smart way, i.e., by intelligently determining which configuration(s) will
be added to DX and for which a flight experiment or a simulation has to be
performed. Two cases are considered:

• In the first case, the situation where only one geometrical configuration
can be added to the set DX is considered.
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• In the second case, it is supposed that a number Nsup > 1 of geometrical
configurations can be added to the set DX (which will finally contain
NX +Nsup configurations).

To progressively introduce the concepts, these two cases will be presented
separately. Note however that the first case is obviously equivalent to the
second case with Nsup = 1.

Remark 1. The case study concerns a projectile with 4 rectangular fins (see
Figure 1) and a given flight scenario. However, the methodology presented in
this paper can easily be extended to other types of projectiles and for other
flight scenarios.

Remark 2. If X and/or DX is a small set, it may happen that the op-
timization problem (5) does not have any solution, i.e., the constraints are
not respected for all X in DX ∩ X . In this case, the approaches presented
in the next sections are absolutely necessary to determine the geometry of a
projectile satisfying the stability constraints.

3. Extending the database with one geometrical configuration

3.1. Procedure
In this section, we wish to add one geometrical configuration Xnew to DX

yielding the set DX,new = DX ∪Xnew with NX + 1 configurations.

The extended database allows to determine X∗
DX,new

, solution of the following
optimization problem:

X∗
DX,new

= arg max
X∈DX,new∩X

−J(X), (6a)

s.t. F2(X,Mmax) ≤ Cmax
mα

and F3(X,Mmax) ≤ Cmax
mq

, (6b)

which is the optimization problem (5) where DX,new is used instead of DX .

The new configuration Xnew should be chosen in such a way that X∗
DX,new

is a better approximation of X∗ than X∗
DX

. To find such a geometrical
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configuration Xnew, the database is used to derive a black-box model F̂ of
the unknown function F (see (1)):

Ŷ = F̂ (X,M) (7)

Using this model F̂ , the value of Y can now be predicted for configurations
X that are not in the database. In other words, for a configuration X ̸∈ DX ,
we can estimate F2(X,Mmax) and F3(X,Mmax) by, respectively, the second
and third entries of F̂ (X,Mmax), i.e., F̂2(X,Mmax) and F̂3(X,Mmax), and we
can estimate J(X) (see (4)) by :

Ĵ(X) =
1

NM

NM∑
l=1

F̂1(X,M l) (8)

Given this model F̂ of the unknown function F , the most promising value
for Xnew is:

Xnew = arg max
X∈X

−Ĵ(X) (9a)

s.t. F̂2(X,Mmax) ≤ Cmax
mα

and F̂3(X,Mmax) ≤ Cmax
mq

(9b)

In other words, Xnew is chosen as the geometrical configuration that would
be equal to X∗ if the model would be perfect, i.e., F̂ (X,M) = F (X,M) for
all X and M .

If the optimization problem (9) leads to a configuration Xnew ̸∈ DX , i.e., a
configuration for which the model F̂ predicts that Xnew outperforms X∗

DX
,

this new configuration Xnew should be tested via an experiment or a simu-
lation to obtain the actual values of F (Xnew,M

l) for the velocities M l (l =
1, . . . , NM). This allows to extend the original database to a new database
with NX + 1 configurations, i.e., the configurations in DX,new = DX ∪Xnew,
and to compute the solution X∗

DX,new
of the optimization problem (6). This

solution X∗
DX,new

will be given by Xnew if, as expected by the model of F , we
indeed have that:
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F2(Xnew,Mmax) ≤ Cmax
mα

and F3(Xnew,Mmax) ≤ Cmax
mq

(10a)

J(Xnew) < J(X∗
DX

) (10b)

If X∗
DX,new

= Xnew then Xnew is a better approximation of X∗ than X∗
DX

.

It may however happen that the solution of the optimization problem (6)
remains X∗

DX
. This happens when the model F̂ of F does not give an ad-

equate estimate of F (X,M) for X = Xnew, which, in turn, happens when
DX does not contain enough points in the vicinity of Xnew. In this case, the
approach which consists in adding more than one additional configurations
to the database (see Section 4) could be considered.

3.2. Identification of F̂
Let us now say a few words on how a model F̂ of F can be derived us-

ing the initial database. For this purpose, a model structure Fm(X,M, θ)
parametrized with a parameter vector θ is chosen. The value of this param-
eter vector is determined using the following identification criterion :

θ̂ = arg min
θ

V (θ), (11)

V (θ) =
1

NX NM

NX∑
k=1

NM∑
l=1

∥F (Xk,M l)− Fm(X
k,M l, θ)∥2, (12)

where F (Xk,M l) are the values of Y available in the original database and
∥A∥ =

√
ATA is the Euclidean norm4 of the vector A.

We have then Ŷ = F̂ (X,M) = Fm(X,M, θ̂).

4We can also use a weighted norm in the definition of V (θ) to account for differences
in the magnitude of the different entries of F .
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The model structure Fm(X,M, θ) has to be chosen as the simplest model
structure allowing to explain the data in the database 5. As mentioned in
the introduction, in this paper, the model structure is chosen as a Neural
Network. More details on the Neural Network model structure are given in
Appendix A.

4. Extending the database with Nsup geometrical configurations

4.1. Procedure
For the procedure described in Section 3.1, the quality of the model F̂ of

F which depends on the database with which F̂ has been identified is crucial.
This quality will be high if DX covers every region of X in a sufficient manner.

When we are allowed to extend the database with Nsup geometrical configu-
rations (Nsup > 1), this opportunity can be used to enrich the coverage of the
set DX by adding configurations in regions that have not been explored yet,
allowing in this way model improvement. Therefore, two contradictory ob-
jectives have to be distinguished when adding new geometrical configurations
Xnew to the database, i.e, the exploitation and the exploration objectives:

• When Xnew is chosen according to (9), it is selected according to the
exploitation objective (we choose the most promising configuration ac-
cording to the available model).

• When Xnew is chosen according to the exploration objective, it is se-
lected in such a way that DX ∪ Xnew covers the space of geometrical
configurations in a better way to improve the model.

Inspired by Bayesian Optimization, we here propose a framework where new
geometrical configurations are added to DX based on a trade-off between

5We can, e.g., first split the data in the database in a training data set and a validation
data set and determine, using, e.g., a grid search approach, the model structure for which
the model Fm(X,M, θ̂training) identified with the training data leads to the smallest value
of the cost function (12) when it is computed with the validation data. Once this model
structure has been determined, we re-identifiy the model using the whole data in the
database (via (11)-(12)).
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the exploitation and exploration objectives. This can be achieved using the
following optimization problem instead of the optimization problem (9) :

Xnew = arg max
X∈X

A(X), (13)

where A(X) is the so-called acquisition function that will be precisely defined
in the sequel. For the moment, it is sufficient to say that A(X) will be large:

• for values of X for which the current model predicts that the constraints
in (9) are respected and that Ĵ(X) is small (exploitation objective) ;

• for values of X far away from the configurations that are already in the
database (exploration objective).

The computation of the value of the acquisition function for a given X thus
requires the use of the current model and the use of the configurations present
in the current database.

The procedure to determine the Nsup new configurations is summarized in
Algorithm 1. We start with the initial database with the configurations in
the set DX from which we can deduce the model F̂ (see Section 3.1). Using
that model F̂ and the set DX , the acquisition function A(X) can thus be con-
structed and Xnew determined according to (13). Using a flight experiment
or a simulation, the actual values of F (Xnew,M

l) can be obtained for the
velocities M l (l = 1, . . . , NM). This allows to extend the original database
to a new database with NX + 1 configurations, i.e., the configurations in
DX,new = DX ∪ Xnew. Based on this new extended database, we can re-
identify the model F̂ of F . Using this updated model and the set DX,new,
the value of the acquisition function A(X) is modified and so is the solution
Xnew of the optimization problem (13). For this new geometrical configura-
tion, a flight experiment or a simulation is performed, leading to a database
containing the values of F (X,M) for NX + 2 configurations. Using this ex-
tended database, the model F̂ is once again updated etc. This procedure is
followed up to the moment where the database contains the values of F for
NX+Nsup−1 configurations and where the model F̂ has been identified using
this database. The last configuration is then determined based on a purely
exploitation objective using the optimization problem (9) such as in Section
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3.1. An eventual better model would indeed be of no use and exploration is
therefore no longer useful.

Algorithm 1 yields a database DX,new containing the information F (X,M l)
(l = 1, . . . , NM) for NX + Nsup geometrical configurations X. Optimization
problem (6) can then be used to determine the optimal configuration X∗

DX,new

within this extended database.

Algorithm 1 Selection of Nsup new configurations

Initialize: : Determine the Neural Network model F̂ (X,M) using the
database with the geometrical configurations in DX and pose DX,new = DX

Repeat Nsup − 1 times the following steps
1. Xnew = argmax

X
A(X) where the acquisition function A(X) for a given

configuration X is computed using the current model F̂ and using the
configurations in DX,new

2. Determine F (Xnew,M) for different Mach numbers and replace DX,new

by DX,new ∪Xnew

3. Determine the Neural Network model F̂ (X,M) using the database with
the geometrical configurations in DX,new

End Repeat
Do
Xnew is determined via the optimization problem (9)
Determine F (Xnew,M) for different Mach numbers and replace DX,new by
DX,new ∪Xnew

Remark 3. For Nsup = 1, Algorithm 1 reduces to the procedure presented
in Section 3.1. As already mentioned, we have nevertheless decided to first
present the case where Nsup = 1 for the sake of clarity.

4.2. Definition of the acquisition function
Let us now define precisely the acquisition function A(X). For this pur-

pose, let us suppose as in Algorithm 1 that the current database contains
the values of F (X,M l) (l = 1, . . . , NM) for the configurations X in DX,new

and that the model F̂ has been determined based on this current database.
Using this model, we can evaluate, for every X, Ĵ(X) (see (8)) as well as
F̂2(X,Mmax) and F̂3(X,Mmax). Then, we define A(X) as:
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A(X) = Aconst(X) Aobj(X), (14)

where

Aobj(X) = −Ĵ(X) + β δmin(X) + ρ, (15)

with

δmin(X) = min
Xdatabase∈DX,new

∥X −Xdatabase∥, (16)

Aconst(X) =

{
2− δscaledmin (X) if F̂2(X,Mmax) ≤ Cmax

mα
and F̂3(X,Mmax) ≤ Cmax

mq

δscaledmin (X) otherwise,
(17)

where

δscaledmin (X) =
δmin(X)

max
X̃∈X

δmin(X̃)
(18)

In the expression of Aobj(X), ρ is an offset chosen to ensure that Aobj(X) > 0
for all X ∈ X . This offset is necessary since Aconst(X) will be a positive scalar
with a value close to zero when it is likely that the constraints on Cmα and
Cmq are not respected for a particular X (see below). Otherwise, we note
that Aobj is made up of two other terms:

• The first term, −Ĵ(X) ,reflects the exploitation objective (beneficial to
configurations X for which the model predicts a small average value
for CA0).

• The second term, δmin(X), reflects the exploration objective (beneficial
to configurations X in regions where few data points are available in
the database).

The quantity δmin(X) is indeed small for configurations X that are close
(in an Euclidean norm6 sense) to the configurations in DX,new and increases

6Other distance measures than the Euclidean norm can also be considered.
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for configurations X that are far from the configurations in DX,new. The
user-chosen scalar β realizes the trade-off between the exploration and ex-
ploitation objectives.

The term Aconst(X) in (14) is a penalty term pertaining to the constraints.
As mentioned above, Aconst(X) is a positive scalar with a value close to zero
when it is likely that the constraints on Cmα and Cmq are not respected for
a particular X.

The expression (17) of Aconst(X) uses the quantity δscaledmin (X) which is a scaled
version of δmin(X) (δscaledmin (X) varies between 0 and 1) and is based on the
rationale that, if δscaledmin (X) is close to 1 for a given X, the current model
F̂ may not be very accurate to predict F (X,M) since the model has been
identified with data far away from X.

Let us now explain expression (17). The variable Aconst(X) will be close to
zero for a given X if the current model F̂ predicts that the constraints on
Cmα and Cmq are not respected for that value of X and if δscaledmin (X) is close
to 0 (i.e., if X is close to the data in DX,new). Indeed, in this case, it is very
likely that X does not respect the constraints and this value of X must be
strongly penalized in the acquisition function A(X).

For values of X further away from the data in DX,new and for which the cur-
rent model predicts that the constraints on Cmα and Cmq are not respected,
this penalization will be less strong, since Aconst(X) = δscaledmin (X) will be
larger (while being always smaller than one).

Let us now analyse the value of Aconst(X) for values of X for which the cur-
rent model predicts that the constraints on Cmα and Cmq are respected. We
observe that Aconst(X) will be then maximal (close to 2) if the value of X for
which the current model predicts that the constraints are respected is such
that δscaledmin (X) is close to zero, i.e., a value of X close to the data in DX,new

and thus for which F̂ (X) is likely to be close to F (X). These are the values
of X that will be less penalized by Aconst(X). The values of X for which
the current model predicts that the constraints are respected, but that are
further away from the data in DX,new will be (slightly) more penalized (value
of Aconst(X) between 1 and 2).
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Remark 4. As mentioned above, Algorithm 1 is inspired from Bayesian
Optimization. The main differences between Bayesian Optimization and
the approach in this paper are the type of model F̂ that is considered
and the definition of the acquisition function A(X). Indeed in classical
Bayesian Optimization, the model of the static function F is a Gaussian
Process (Rasmussen, 2003), i.e., a probabilistic model. The probabilistic
nature of the Gaussian Process model allows to define the acquisition func-
tion A(X) = Aconst(X)Aobj(X) in a different way than in (14)-(18). More
precisely, Aconst(X) is defined as the probability that the constraints are re-
spected for a given value of X, while Aobj(X) can be defined in a similar way
as in (15), but with δmin(X) replaced by the standard deviation of Ĵ(X) (Fra-
zier, 2018). As explained before, a Neural Network is chosen here as surrogate
model instead of a Gaussian Process. However, since a Neural Network is
not a probabilistic model, the definition of A(X) needed to be modified. Our
definition of A(X) in (14)-(18) nevertheless shows strong similarities with the
definition of A(X) in Bayesian Optimization. As an example, the quantity
δmin(X) used in (15) is a relevant alternative for the standard deviation of
Ĵ(X) used in Bayesian Optimization since this standard deviation for Gaus-
sian Process models will also be large for values of X far away from the data
with which the Gaussian Process model has been identified.

Remark 5. The scalar β in the definition of Aobj (see (15)) must be chosen
with care. One possibility is to choose β in such a way that the term Ĵ(X)
and the term β δmin(X) have the same order of magnitude for all X ∈
X . Moreover, while respecting this general objective, we can also opt for a
different value of β at each of the Nsup − 1 iterations of the repeat loop in
Algorithm 1. One could, e.g., start with a relatively high value of β in the
first iterations (to enforce more exploration when the model is less accurate)
and decrease β in the subsequent iterations (to enforce more exploitation
when the model becomes more accurate).

5. Numerical illustration

5.1. Setup and initial database
In this section, the methodology presented in Sections 3 and 4 is applied

to determine the optimal geometrical configuration X of a rectangular finner
(see Figure 1) for the flight scenario described in Section 2 with Mmin = 2
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and Mmax = 5. The search set X is here limited to enable that the projectile
can be fired by a specific field gun (see Table 2 for the formal definition of
the set X ). For the stability constraints in (3), the upper bounds are fixed
to the following realistic values:

• Cmax
mα

is fixed at -10.

• Cmax
mq

is fixed at -100.

During this research, there was no possibility to conduct many Computa-
tional Fluid Dynamics (CFD) evaluations or experiments in order to de-
termine aerodynamic coefficients for a given configuration due to various
constraints. Consequently, the optimization procedures in sections 3.1 and 4
were tested using a simulation environment as ground truth. The simulation
code, named PRODAS i.e., Projectile Rocket Ordnance Design & Analysis
System (See www.prodas.com for further informations), allows to compute
the values of the aerodynamic coefficients for different geometrical configu-
rations of projectiles.

For this type of finners and this flight scenario, we have a database giving the
vector Y for NX = 324 different configurations X and for NM = 8 different
Mach numbers in the interval [2 5].

Note that out of the NX = 324 different configurations in DX , only 144 are
in the restricted set X . Among these configurations X ∈ X ∩ DX , none has
a value of F2(X,M) ≤ −10. Consequently, X∗

DX
does not exist. However,

among the configurations X ∈ X ∩ DX that almost respect the constraints,
the one leading to the smallest value of J(X) is the configuration :

X∗
DX,almost

= (20, 20, 1.5, 1.5, 0)T . (19)

More specifically for X = X∗
DX,almost

, we have:

J(X) = 0.45 (20a)
F2(X,M = 5) = −8 (20b)
F3(X,M = 5) = −1400, (20c)
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which shows that Cmα is only slightly too high.

Let us now see whether the procedures presented in Section 3 and in Sec-
tion 4 allows to determine configurations X that are more acceptable than
X∗

DX,almost
.

Table 2: Definition of the set X for each characteristic Xi of the geometry (X1, X3, X4

and X5 are expressed in calibers and X2 in degrees)

Dimension X Minimum Maximum
X1 : Total Length 10 25
X2 : Nose Angle 10 34.5
X3 : Fins Height 0.5 2.5
X4 : Fins Width 0.5 1.72

X5 : Position of fins 0 1

5.2. Adding one additional configuration
Let us first consider the procedure of Section 3 consisting in determining

one single new configuration. This procedure relies on a Neural Network
model identified with the data in the original database. As a first step, we
split these data to determine a suitable structure Fm(X,M, θ) for the Neural
Network (see the footnote in Section 3.2). This leads to a Neural Network
with 1 hidden layer, 128 neurons and a reLu activation function on each neu-
ron output (seeAppendix A). The criterion (11)-(12) is subsequently used
to determine the values of the different weightings and offsets in this Neu-
ral Network structure, i.e., the parameter vector θ̂. This criterion is solved
using a machine learning library known as Scikit-learn (Buitinck et al., 2013).

The model F̂ (X,M) = Fm(X,M, θ̂) can now be used in the procedure of
Section 3. The new configuration Xnew is thus determined using the opti-
mization problem (9) that we here solve using the Sequential Least Square
Programming algorithm given in (Virtanen et al., 2020). This leads to:

Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T . (21)
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This solution Xnew is such that the model F̂ (X,M) predicts a value of 0.32
for J(Xnew), i.e., Ĵ(Xnew) = 0.32 (see (8)). By construction, we have also
that F̂2(Xnew,M = 5) ≤ −10 and F̂3(Xnew,M = 5) ≤ −100. More precisely:

F̂2(Xnew,M = 5) = −10 (22a)

F̂3(Xnew,M = 5) = −419. (22b)

See the blue curve in Figures 2, 3 and 4 for other characteristic values of
F̂i(Xnew,M

l) (i = 1, . . . 3, l = 1, . . . , NM).

Let us now verify whether the predictions of F̂ about Xnew are confirmed in
reality. For this purpose, we use PRODAS to compute Y new = F (Xnew,M)
at different Mach numbers M (see the green curve in Figures 2, 3 and 4 for
characteristic values).

Figure 2: Case Nsup = 1: Neural Network prediction F̂1(Xnew,M) (blue) and
F1(Xnew,M) evaluated with PRODAS (green) for Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T

and for characteristic values of M ∈ [2 5].

20



Figure 3: Case Nsup = 1: Neural Network prediction F̂2(Xnew,M) (blue) and
F2(Xnew,M) evaluated with PRODAS (green) for Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T

and for characteristic values of M ∈ [2 5]. The yellow line represents the threshold
Cmax

mα
= −10.
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Figure 4: Case Nsup = 1: Neural Network prediction F̂3(Xnew,M) (blue) and
F3(Xnew,M) evaluated with PRODAS (green) for Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T

and for characteristic values of M ∈ [2 5].

This allows to observe that:

J(Xnew) = 0.33 (see (4)) (23a)
F2(Xnew,M = 5) = −6 (23b)
F3(Xnew,M = 5) = −360 (23c)

In other words, as opposed to what was predicted by the model F̂ , the
constraint on Cmα is not respected for the configuration Xnew. Since the
optimization problem (5) did not have a solution, the optimization problem
(6) pertaining to DX,new = DX ∪ Xnew has also no solution. The apparent
contradiction between the results of optimization problems (9) and (6) can
certainly be explained by the fact that the model F̂ has been trained with
too few data in the vicinity of Xnew.

We therefore proceed with the methodology of Section 4. We here decide to
determine Nsup = 20 new configurations, allowing for model improvement.
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Note that this corresponds to an increase of 6% of the number of configura-
tions in the database.

5.3. Adding 20 new additional configurations using Algorithm 1
Algorithm 1 is now applied7 with Nsup = 20. To apply Algorithm 1, we

have to specify two parameters in the definition of the acquisition function
A(X): the offset ρ and the parameter β balancing the exploitation and ex-
ploration objectives. While the choice of the offset ρ is not crucial, we here
choose ρ = 1, the parameter β has to be chosen with care. Following the
philosophy introduced in Remark 5 in Section 4, β must be chosen in such a
way that the term Ĵ(X) and β δmin(X) have the same order of magnitude
for all X ∈ X . In our case, this means that β must be chosen in the interval
[0.5 4]. As proposed in Remark 5, we therefore choose to start with β = 4 in
the first iteration of the repeat loop of Algorithm 1 and linearly decrease this
value at each iteration in such a way that, at the last iteration, β = 0.5.

With this choice for ρ and β, Algorithm 1 delivers an extended database
containing the values of Y for NX + 20 = 344 configurations gathered in the
set denoted as X∗

DX,new
.

The optimization problem (6) can thus be used to determine the best con-
figuration X∗

DX,new
∈ DX,new. The solution of this optimization problem is:

X∗
DX,new

= (10.8, 13.42, 1.45, 1.72, 0)T . (24)

This configuration X∗
DX,new

is such that :

J(X∗
DX,new

) = 0.34 (25a)

F2(X
∗
DX,new

,M = 5) = −10 (25b)

F3(X
∗
DX,new

,M = 5) = −313 (25c)

7The optimization of the acquisition function A(X) (see (14)) in Step 1 of the repeat
loop of Algorithm 1 is performed using the dual annealing algorithm (Xiang et al., 1997)
in its Scipy Implementation (Virtanen et al., 2020).

23



Other characteristic values of Fi(X
∗
DX,new

,M l) (i = 1, . . . 3, l = 1, . . . , NM)
are given in green in Figures 5, 6 and 7.

Figure 5: F1(X,M) (evaluated with PRODAS) for characteristic values of M ∈ [2 5] and
for two values of X, i.e., X = X∗

DX,new
(green) and X = X∗

DX,almost
(red).

24



Figure 6: F2(X,M) (evaluated with PRODAS) for characteristic values of M ∈ [2 5] and
for two values of X, i.e., X = X∗

DX,new
(green) and X = X∗

DX,almost
(red). The yellow line

represents the threshold Cmax
mα

= −10.

Figure 7: F3(X,M) (evaluated with PRODAS) for characteristic values of M ∈ [2 5] and
for two values of X, i.e., X = X∗

DX,new
(green) and X = X∗

DX,almost
(red).
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Using Algorithm 1 with Nsup = 20, we have thus been able to determine, in
the restricted search set X , a configuration X∗

DX,new
that respects the stability

constraints. Recall that the initial database did not contain any projectile
with X ∈ X and that respected the constraints. Moreover, with respect
to X∗

DX,almost
(which is, among the configurations in the initial database that

almost respect the constraints, the one with the least average drag), the aver-
age drag with X∗

DX,new
is 25% smaller (J(X∗

DX,new
) = 0.34 and J(X∗

DX,almost
) =

0.45). This improvement of the drag is also evidenced by comparing the green
and red curves in Figure 5.

In Figure 8, we represent, in the right plot, the optimal finner, i.e., the finner
corresponding to the configuration X∗

DX,new
and we compare it to the one

having the configuration X∗
DX,almost

. With respect to X∗
DX,almost

, the optimal
finner has a smaller body and a larger nose length which helps decrease
the drag, while its fin length remains large enough to satisfy the stability
constraints.
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Figure 8: Representation of the projectile with configuration X∗
DX,almost

(left) and with
configuration X∗

DX,new
(right).

As mentioned above, the average drag for X∗
DX,new

is 25% smaller than the
one obtained with X∗

DX,almost
. It is important to note that this major im-

provement in the capacity of the projectile is obtained by considering the
set DX,new which merely contains 6% more configurations (Nsup = 20) than
the initial set DX . It should also be emphasized that, among the Nsup = 20
additional configurations that are added to the database via Algorithm 1, 14
configurations respect the stability constraints. Consequently, if we would
have chosen Nsup < 20, we would have also obtained an acceptable projec-
tile, e.g., with Nsup = 2, we would have obtained a stable projectile achieving
an average drag of 0.47. With Nsup = 11 and Nsup = 17 this average drag
would have been of 0.41 and 0.37, respectively.

5.4. Robustness of Algorithm 1 w.r.t β
To analyse the robustness of Algorithm 1 with respect to the choice of

the parameter β, we have run this algorithm with other choices of β in the
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interval [0.5 4]. More specifically, it is ran for Nsup = 20 with different
constant values of β at each iteration in the repeat loop. Table 3 presents the
values of β considered, the values of the average drag J obtained with each
value of β and the number of configurations which respect the constraints
among the ones tested for each value of β.

Table 3: Robustness of Algorithm 1 w.r.t β

β Average drag J Number of configurations
which respect the constraints

0.5 0.35 8
1 0.37 12
2 0.38 17
4 0.36 18

As shown in table 3, when Algorithm 1 is performed with different choices
of β, we can observe that they all lead to an optimal configuration respect-
ing the stability constraints with a good average drag J . Moreover, among
the Nsup = 20 additional configurations that are added to the database via
Algorithm 1, a relatively large number respect the stability constraints.

5.5. Comparison to alternative approaches
As shown above, the procedure introduced in Section 4 and implement-

ing, via Algorithm 1, a trade-off between exploitation and exploration to
generate Nsup = 20 additional configurations for the database, delivers ef-
ficient results. To determine how efficient these results really are, let us
compare the results obtained with Algorithm 1 with alternative approaches
to generate the Nsup = 20 additional configurations. Recall for comparison
purpose that, using Algorithm 1 with Nsup = 20 and a decaying β, 14 of the
20 additional configurations (i.e., 70%) respect the stability constraints and,
among these configurations respecting the constraints, we have a projectile
for which the average drag is equal to 0.34.

Alternative approach 1 (Random generation). In this first alternative
approach, we choose to generate, in a random manner, 60 new configurations
X ∈ X , i.e., three times more than Nsup = 20. Only 20% of the randomly
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generated configurations respect the constraints (which is much smaller than
the 70% obtained with Algorithm 1) and, among these configurations re-
specting the constraints, the smallest J is 0.42 (which is 20% larger than
what is obtained with Algorithm 1).

Alternative approach 2 (Exploration only). Instead of balancing ex-
ploitation and exploration, we choose in this second alternative approach
to uniquely favour the exploration objective. This can, e.g., be achieved
by performing Algorithm 1 with an alternative definition for the acquisition
function A(X), i.e., A(X) = δmin(X). When we follow this approach with
Nsup = 20, the extended database does not improve the initial one. Indeed,
none of the additional configurations respects the stability constraints.

Alternative approach 3 (Exploitation only). Instead of balancing ex-
ploitation and exploration, we choose in this third alternative approach to
uniquely favour the exploitation objective. This can be achieved by per-
forming a modified Algorithm 1 where, in step 1 of the repeat loop, Xnew is
determined using optimization problem (9). When we follow this approach
with Nsup = 20, we obtain 20 additional configurations of which only one re-
spects the constraints. This configuration X = (13.23, 10, 1.34, 1.72, 0)T also
achieves an average drag of 0.34. Since this particular configuration (the only
one respecting the constraints) is obtained at iteration 19 of the repeat loop,
this means that, as opposed to the initially proposed approach, this third
alternative would not lead to any configuration respecting the constraints if
Nsup < 19.

Alternative approach 4 (classical Bayesian Optimization). As in-
dicated in the introduction, the problem considered in this paper can also
be tackled using the so-called Bayesian Optimization approach which uses
a Gaussian Process as surrogate model. If we apply such an approach8 to
generate Nsup = 20 additional configurations, we are able to derive a config-
uration X = (12.6, 10.4, 1.3, 1.72, 0)T respecting the constraints and having
the same average drag (i.e., 0.34) as with the approach using a Neural Net-
work as surrogate model. Note however that, among the 20 configurations
selected via Bayesian Optimization, only 8 respect the constraints while there

8We will here use the BO formulation given in (Gardner et al., 2014)
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were 14 with the Neural Network approach.

Table 4: Comparison between the different alternatives

Approach J(X) at % of tested configurations
the optimum which respect the constraints

Proposed approach 0.34 70%
Random generation 0.42 20%
Exploration only - 0%
Exploitation only 0.34 5%

Bayesian Optimization 0.34 40%

Table 4 summarizes the results obtained from the different alternatives. As
we can see from this table and from the discussions above, it is clear that
the proposed approach balancing exploitation and exploration has the best
overall results for this particular geometrical configuration. Indeed, it is the
one which provides the configuration with the lowest average drag J(X) and
where there are the most tested configurations which respect the constraints.

6. Conclusion

In this paper, we optimize the geometrical configuration of a rectangular
finner to obtain the least drag under some stability constraints, for a flat
trajectory fire. This particular aerodynamic design problem is formulated as
an optimization problem involving the stability derivatives of the projectile.
Using an initial database, a (cost-effective) Neural Network surrogate model
is used to model the stability derivatives. A procedure balancing exploitation
and exploration is then devised to determine, based on that surrogate model,
the values of the design variables for which the stability derivatives have to
be evaluated to both improve the surrogate model and approach the optimal
design of the projectile. By increasing the size of the database by a mere 6%,
the proposed procedure allows to reduce by 25% the drag of the projectile
with respect to the best projectile in the initial database. On this particular
application, the proposed procedure is shown to yield a projectile with the
same drag as the one that would have been obtained using the classical
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Bayesian Optimization approach. However, using this approach, we are able
to test more configurations which are stable.
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Appendix A. Neural Networks

A Neural Network is a static mapping between a vector u of inputs (of
dimension nu) and a vector y of outputs (of dimension ny)9. Let us focus
on Neural Networks with one hidden layer since it is the structure that is
used in Section 5. In such a network, each entry yi (i = 1, . . . , ny) of y is
expressed as an affine combination of so-called neurons νk(u) (k = 1, . . . , nν)
(the number of neurons is denoted nν):

yi =
nν∑
k=1

wikνk(u) + bi, (A.1)

with bi a scalar offset and wik scalar weightings. The quantity νk(u) (k =
1, . . . , nν) is a nonlinear mapping of the entries of the input vector u =
(u1, . . . , unu)

T :

νk(u) = Φ

(
b̃k +

nu∑
l=1

w̃klul

)
, (A.2)

where Φ(x) is generally the so-called rectified linear unit (reLu) activation
function, i.e., Φ(x) = max(0, x) and where w̃kl and b̃k are scalar coefficients.
Since the coefficients bi, wik, w̃kl, b̃k are all free coefficients (that we can
gather in a vector θ as proposed in Section 3.2), the equations (A.1) and
(A.2) represent a parametrized (static) mapping between the input vector

9In the study case considered in this paper, we have that nu = 6 and ny = 3.
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and the output vector. As explained in Section 3.2, the value of the parame-
ter vector θ will be determined based on data (see the criterion (11) - (12)).
The criterion (11) - (12) is generally solved via the back-propagation method
which uses Gradient Descent (Ruder, 2016) to determine in an iterative man-
ner the solution θ̂ of (11) - (12).
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