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Aerodynamic design of projectiles is crucial to ensure that projectiles have the best per-

formance during their flight. Performing aerodynamic design boils down to determining the

optimal values of certain design variables of the projectile as the solution of a nonlinear opti-

mization problem involving the stability derivatives of the projectile. It therefore often requires

expensive resources, mainly associated to the experiments or numerical simulations needed to

obtain these stability derivatives for different values of the design variables. In this paper, a

(cheap to evaluate) neural network surrogate model is used to model the stability derivatives.

A procedure balancing exploitation and exploration is then devised to determine, based on that

surrogate model, the values of the design variables for which the stability derivatives have to

be evaluated to both improve the surrogate model and approach the optimal design of the pro-

jectile. This framework is applied to optimize the geometrical configuration of a rectangular

finner for a given flight scenario.

Nomenclature

𝐴 = Acquisition function

𝐶𝐴0 = Axial force coefficient first order stability derivative at zero yaw

𝐶𝑚𝛼
= Pitch moment coefficient slope
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𝐶𝑚𝑞
= Pitch damping moment coefficient

D𝑋 = Set containing the configurations X in the initial database

𝑀 = Mach number

𝐽 (𝑋) = Average 𝐶𝐴0 over the interval [𝑀𝑚𝑖𝑛 𝑀𝑚𝑎𝑥]

𝑋 = Vector containing the finner projectile design variables

X = Set in which the optimal configuration has to be determined

𝑋∗
D𝑋

= Optimal configuration in dataset D𝑋

𝑌 = Vector containing the stability derivatives 𝐶𝐴,0,𝐶𝑚𝛼
,𝐶𝑚𝑞

I. Introduction
In many aerospace applications, the flight behaviour highly depends on the shape, the dimension, the materials, . . .

of the considered flying vehicles. Consequently, one can optimize the flight behaviour by adjusting these quantities. In

the literature, such a problem is known as aerodynamic design or aerodynamic optimization (see e.g. [1],[2],[3],[4],[5],

[6]). In this paper, our contribution is to extend the literature on aerodynamic optimization towards the optimal design

of (field gun) projectiles. In particular, we will optimize the geometrical configuration of a rectangular finner (a classical

type of projectiles [7]) to obtain an optimal flight behaviour for a flat trajectory fire (i.e., for the case where the finner is

fired with a total angle of attack equal to zero). The flight behaviour will be here deemed optimal when the projectile

reaches its target in a minimum time.

As will be shown in the sequel, one can formulate this aerodynamic optimization problem as a constrained

optimization problem having as decision variable the geometrical configuration 𝑋 of the projectile and involving a

number of the so-called stability derivatives of the projectile (which are functions of the geometry 𝑋 of the projectile

and of its Mach number 𝑀 [8] [9]).

This constrained optimization problem is a nonlinear optimization problem. Solving such an optimization problem

using e.g. gradient-descent requires a large number of evaluations of the static nonlinear function 𝐹 (𝑋, 𝑀) relating 𝑋

and 𝑀 on the one hand and the stability derivatives on the other hand. The problem is that there does not exist a simple

physical model for 𝐹 (𝑋, 𝑀) which would allow to easily evaluate the function. One can of course use Computational

Fluid Dynamics (CFD) to compute 𝐹 (𝑋, 𝑀). However, using such a CFD simulation software in a gradient-descent

approach to solve the considered optimization problem would be extremely costly in computation time even if the

adjoint method [10], [11] is used [6]. Note furthermore that the baseline approach to derive the stability derivatives for

a given configuration is an experimental one, involving either wind-tunnel experiments or free flight tests as suggested

in [7] and [12]. Such an experimental baseline approach makes each evaluation of 𝐹 (𝑋, 𝑀) even more (economically)

costly. Nevertheless, many institutions have built databases gathering, for a number of configurations 𝑋 , the value
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𝐹 (𝑋, 𝑀) of the stability derivatives at different Mach numbers 𝑀 .

We will assume in this paper that we have access to such a database. The computational issue linked to the

complexity of the function 𝐹 (𝑋, 𝑀) can then indeed be circumvented by using the data contained in this database to

derive a simple mathematical model 𝐹̂ (𝑋, 𝑀) of the static function 𝐹 (𝑋, 𝑀). This simple mathematical model (called

surrogate model in the literature [13]) allows to predict 𝐹 (𝑋, 𝑀) for any values of 𝑋 and 𝑀 in a fast and efficient way

and can therefore be used to solve the considered optimization problem via gradient-descent. Surrogate models can take

different forms. We have here chosen a neural network for its relative simplicity, its flexibility and its good adaptability

to high dimensional problems. Moreover, neural networks have proven their efficiency in modelling the aerodynamic

coefficients of diverse flying vehicles (see e.g. [14] and [15]).

As mentioned above, the neural network model 𝐹̂ (𝑋, 𝑀) can be used to solve the considered optimization problem

via gradient-descent. However, if the database does not cover the space of possible configurations 𝑋 in a sufficient

manner, the model derived from the database may be inaccurate and the optimal geometrical configuration deduced

based on that model may not have the desired properties. We therefore propose a methodology that supposes that,

besides the access to the original database, we have the possibility of determining, via an experiment, the values of

𝐹 (𝑋, 𝑀) for a number 𝑁𝑠𝑢𝑝 of additional configurations 𝑋 . After each of these 𝑁𝑠𝑢𝑝 experiments, the database contains

an additional data point and the neural network model can therefore be updated. Given this fact, we will determine the

additional configurations with the aim of improving the model accuracy (by selecting values of 𝑋 in regions that have not

yet been covered in the database), while keeping in mind the objective of finding an optimal geometrical configuration

(by selecting values of 𝑋 that the current model predicts to be close to the optimum). Such an approach balancing

the so-called exploration and exploitation objectives is known in the literature under the name Bayesian Optimization

[16] when the surrogate model is a Gaussian Process model (i.e., a probabilistic model derived based on Gaussian

prior assumptions on the unknown static function) [17]. Our contribution in this paper is to extend the concept of

Bayesian Optimization for the case where a neural network model is used as surrogate model. For this purpose, we use

the philosophy that we have recently introduced in [18] and we extend it to the case where the considered optimization

problem is a constrained optimization problem. Note that, in [19], such an extension is also achieved for the case where

a so-called Inverse Distance Weighting (IDW) and radial basis function (RBF) models are used as surrogate models.

In the aerodynamic literature, Bayesian Optimization has already been used in the context of aerodynamic design,

but considering different flying vehicles than the projectile considered in this paper. For example, [5],[6] perform

the aerodynamic design of the shape of a specific airfoil while [20] considers a different type of projectile. Another

difference with the present paper is that a more classical Bayesian Optimization approach (where the surrogate model

is not a neural network, but a Gaussian Process∗) is used in [5],[6], [20]. Since both Gaussian processes and neural

networks allow to efficiently model the stability derivatives of flying vehicles (see [14] and [15] for one model structure
∗Note though that [6] models the expected value of the Gaussian Process model as a Neural Network.

3



and [5],[6], [20] for the other), we prefer the simplicity of the neural network concept upon the relative complexity of

the probabilistic Gaussian Process model to address the aerodynamic design problem in this paper.

The sequel of this paper will be organized as follows. In Section II, the considered aerodynamic design problem will be

presented in details. In Sections III and IV, we will present our procedure to address this aerodynamic design problem.

Finally, in Section V, this procedure will be tested on an example.

II. Aerodynamic design problem
As mentioned in the introduction, this paper presents a methodology to optimize the geometrical configuration of a

projectile to obtain a given flight behaviour for a given flight scenario.

For this purpose, we here consider a so-called rectangular finner of caliber 28 mm with four rectangular fins (see

Figure 1). Such a rectangular finner can be built with different geometrical configurations i.e., for different values of the

five parameters† 𝑋1, 𝑋2, . . . ., 𝑋5 defined in Table 1 and represented in Figure 1 (𝑋1, 𝑋3, 𝑋4, 𝑋5 will be expressed in

calibers and 𝑋2 in degrees).

Fig. 1 Finner projectile with rectangular fins

Table 1 Main characteristics of a rectangular finned projectile

Characteristic 𝑋 Design Parameter
𝑋1 Total Length
𝑋2 Nose Angle
𝑋3 Fins Height
𝑋4 Fins Width
𝑋5 Position of fins

In this paper, we wish to determine the geometrical configuration of the finner in such a way that it reaches its target
†Note that we will suppose that the building material of the finner is fixed. Its centre of gravity is thus entirely determined by the five parameters

in Table 1.

4



in a minimum time when the finner is fired with an initial velocity 𝑀𝑚𝑎𝑥 (e.g., Mach 5) and then flies towards its target

with a total angle of attack of zero.

To address this problem, we have to consider the stability derivatives of the finner. These stability derivatives depend

on both the geometrical configuration of the finner (determined by the vector 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋5)𝑇 ) and its velocity

(the Mach number 𝑀). In particular, to minimize the time to reach the target, it is well known that the drag coefficient

has to be minimized. Since we suppose that the finner flies with a total angle of attack equal to zero, the drag coefficient

is equal to the axial force coefficient first order stability derivative at zero yaw, one of the stability derivatives (denoted

𝐶𝐴0 in the sequel) [8]. Since 𝐶𝐴0 not only depends on the geometrical configuration 𝑋 , but also on the Mach number 𝑀 ,

we will in fact minimize the average value of 𝐶𝐴0 over a velocity range [𝑀𝑚𝑖𝑛 𝑀𝑚𝑎𝑥] with 𝑀𝑚𝑖𝑛 chosen in such a way

that the interval [𝑀𝑚𝑖𝑛 𝑀𝑚𝑎𝑥] covers the possible velocities of the finner during its flight (e.g. 𝑀𝑚𝑖𝑛=2 and 𝑀𝑚𝑎𝑥=5).

The stability derivative 𝐶𝐴0 is not the only stability derivative that is important for an optimal flight. We will also

wish to guarantee strong flight stability (dynamic and static stability [8]) by ensuring that the pitch moment coefficient

slope 𝐶𝑚𝛼
and the pitch damping moment coefficient 𝐶𝑚𝑞

remain smaller than 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐶𝑚𝑎𝑥
𝑚𝑞
, respectively, for all

velocities in the interval [𝑀𝑚𝑖𝑛 𝑀𝑚𝑎𝑥].

Our objective in this paper is therefore to determine the geometrical configuration of the finner (i.e., the value of the

five parameters in Table 1) that leads to the lowest average value of the drag coefficient 𝐶𝐴0 while guaranteeing that, at

all times, 𝐶𝑚𝛼
and 𝐶𝑚𝑞

remains smaller than 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐶𝑚𝑎𝑥
𝑚𝑞
, respectively.‡

Let us formulate this objective in a mathematical form. For this purpose, let us denote 𝑌 = (𝐶𝐴0 , 𝐶𝑚𝛼
, 𝐶𝑚𝑞

)𝑇 the

vector containing the stability derivatives considered in this study. Since 𝑌 is a function of 𝑋 and 𝑀 , we can therefore

use the following notation:

𝑌 = 𝐹 (𝑋, 𝑀), (1)

where 𝐹 is a static function taking as inputs the vector 𝑋 and the scalar 𝑀 and giving as output the vector 𝑌 . For the 𝑖𝑡ℎ

entry of 𝑌 (𝑖 = 1, ..., 3), we will also use the notation 𝑌𝑖 = 𝐹𝑖 (𝑋, 𝑀).

For a given geometrical configuration 𝑋 , the average value 𝐽 (𝑋) of 𝐶𝐴0 over the interval [𝑀𝑚𝑖𝑛 𝑀𝑚𝑎𝑥] can thus be

expressed as:

𝐽 (𝑋) = 1
𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛

∫ 𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

𝐹1 (𝑋, 𝑀)𝑑𝑀. (2)

Likewise, the stability constraints can be expressed by 𝐹2 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐹3 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝑞
. We here

use the fact that, for rectangular finners in supersonic regime, both 𝐶𝑚𝛼
= 𝑌2 and 𝐶𝑚𝑞

= 𝑌3 always reach their maximum

at the highest velocity 𝑀𝑚𝑎𝑥 (i.e., the initial velocity of the flight).
‡The quantities 𝐶𝐴0 , 𝐶𝑚𝛼 , 𝐶𝑚𝑞 and 𝑀 have no unit.
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The optimization problem considered in this paper can therefore be formulated as follows:

𝑋∗ = arg max
𝑋 ∈X

−𝐽 (𝑋) (3a)

s.t. 𝐹2 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐹3 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝑞

(3b)

Note that we here formulate the optimization problem (3) as a maximization to facilitate the presentation in the

sequel. Minimizing 𝐽 (𝑋) is indeed equivalent to maximizing −𝐽 (𝑋). In (3), X represents the allowed search space: the

set X can e.g., contain all geometrical configurations 𝑋 that are achievable in practice or, alternatively, the set X can

also be a subset of the latter if, for some reason, we wish to restrict the possible geometrical configurations.

Solving the optimization problem (3) is not straightforward. Indeed, the static function 𝐹 is unknown i.e., there is no

readily available physical model for this function (at least not one which does not require computationally intensive

simulations). However, there exist databases containing values of this unknown static function i.e., a set of data giving,

for a number of geometry configurations, the corresponding vector 𝑌 for different Mach numbers. These databases are

generally determined using experimental campaigns or computationally intensive CFD simulations.

In this paper, we will assume that such a database is available. This database contains 𝑁𝑋 different geometrical

configurations for which the stability derivatives 𝑌 have been computed for 𝑁𝑀 different Mach numbers in the interval

[𝑀𝑚𝑖𝑛 𝑀𝑚𝑎𝑥] §. In other words, the database contains the value of the vector 𝑌 = 𝐹 (𝑋 𝑘 , 𝑀 𝑙) for all pairs (𝑋 𝑘 , 𝑀 𝑙)

with 𝑀 𝑙 (𝑙 = 1, . . . 𝑁𝑀 ) different values of 𝑀 in the interval [𝑀𝑚𝑖𝑛 𝑀𝑚𝑎𝑥] and with 𝑋 𝑘 (𝑘 = 1, . . . , 𝑁𝑋 ) different

geometrical configurations. Let us denote by D𝑋 the set containing these 𝑁𝑋 geometrical configurations for which we

know 𝑌 at 𝑁𝑀 different Mach numbers i.e., D𝑋 = {𝑋 𝑘 |𝑘 = 1, . . . 𝑁𝑋 }.

Using this database, we can approximate 𝐽 (𝑋) for all 𝑋 ∈ D𝑋 using:

𝐽 (𝑋) = 1
𝑁𝑀

𝑁𝑀∑︁
𝑙=1

𝐹1 (𝑋, 𝑀 𝑙) (4)

From now onwards, we will use the expression (4) for 𝐽 (𝑋) and we will assume that 𝑀𝑚𝑎𝑥 is a velocity for which 𝑌

is given in the database. Then, by restricting attention to the geometrical configurations 𝑋 ∈ X that are present in D𝑋

§The database may of course also contain the value of the stability derivatives for velocities outside this interval.
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(i.e., in the database), we can derive an estimate 𝑋∗
D𝑋
of the solution 𝑋∗ of the optimization problem (3) :

𝑋∗
D𝑋

= arg max
𝑋 ∈D𝑋∩X

−𝐽 (𝑋) (5a)

s.t. 𝐹2 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐹3 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝑞

(5b)

It is to be noted that D𝑋 ∩ X = D𝑋 if X is the set of all achievable geometrical configurations.

The solution 𝑋∗
D𝑋
of the optimization problem (5) is only an approximation of 𝑋∗. However, it is the best

approximation that can be derived given the information in the database. It is also clear that the larger the database, the

better the approximation 𝑋∗
D𝑋
of 𝑋∗. In this paper, the objective is to improve 𝑋∗

D𝑋
by extending the set D𝑋 i.e., the

set of geometrical configurations for which the value of 𝑌 , at different Mach numbers, is known. Extending the set

D𝑋 comes with a cost. Indeed, if the objective is to know the value of 𝑌 at different Mach numbers for a geometrical

configuration 𝑋 ∉ D𝑋 , a flight experiment has to be carried out with a projectile having that particular geometrical

configuration or, alternatively, a computationally intensive simulation has to be performed. Consequently, we wish

to extend the set D𝑋 in a smart way i.e., intelligently determining which configuration(s) will be added to D𝑋 and

for which a flight experiment or a simulation has to be performed. Two cases are considered. In the first case, the

situation where only one geometrical configuration can be added to the set D𝑋 is considered. In the second case, it is

supposed that a number 𝑁𝑠𝑢𝑝 > 1 of geometrical configurations can be added to the set D𝑋 (which will finally contain

𝑁𝑋 + 𝑁𝑠𝑢𝑝 configurations). To progressively introduce the concepts, we will separately present these two cases. Note

however that the first case is obviously equivalent to the second case with 𝑁𝑠𝑢𝑝 = 1.

Remark. For the sake of illustration, we have here chosen a certain type of projectile (see Figure 1) and a given flight

scenario. However, the methodology presented in this paper can easily be extended to other types of projectiles and

other flight scenarios.

Remark. If X and/orD𝑋 is a small set, it may happen that the optimization problem (5) does not have any solution (i.e.,

the constraints are not respected for all 𝑋 in D𝑋 ∩ X). In this case, the approaches in the next sections are absolutely

necessary to determine the geometry of a projectile satisfying the stability constraints.
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III. Extending the database with one geometrical configuration

A. Procedure

In this section, we wish to add one geometrical configuration 𝑋𝑛𝑒𝑤 to D𝑋 yielding the set D𝑋,𝑛𝑒𝑤 = D𝑋 ∪ 𝑋𝑛𝑒𝑤

with 𝑁𝑋 + 1 configurations.

The extended database allows to determine 𝑋∗
D𝑋,𝑛𝑒𝑤

, solution of the following optimization problem:

𝑋∗
𝐷𝑋,𝑛𝑒𝑤

= arg max
𝑋 ∈D𝑋,𝑛𝑒𝑤∩X

−𝐽 (𝑋), (6a)

s.t. 𝐹2 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐹3 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝑞

, (6b)

which is the optimization problem (5) where D𝑋,𝑛𝑒𝑤 is used instead of D𝑋 .

The new configuration 𝑋𝑛𝑒𝑤 should be chosen in such a way that 𝑋∗
D𝑋,𝑛𝑒𝑤

is a better approximation of 𝑋∗ than 𝑋∗
D𝑋
.

To find such a geometrical configuration 𝑋𝑛𝑒𝑤 , the database is used to derive a black-box model 𝐹̂ of the unknown

function 𝐹 (see (1)):

𝑌 = 𝐹̂ (𝑋, 𝑀) (7)

Using this model 𝐹̂, the value of 𝑌 can now be predicted for configurations 𝑋 that are not in the database. In other

words, for a configuration 𝑋 ∉ D𝑋 , we can estimate 𝐹2 (𝑋, 𝑀𝑚𝑎𝑥) and 𝐹3 (𝑋, 𝑀𝑚𝑎𝑥) by, respectively, the second and

third entries of 𝐹̂ (𝑋, 𝑀𝑚𝑎𝑥) (i.e., 𝐹̂2 (𝑋, 𝑀𝑚𝑎𝑥) and 𝐹̂3 (𝑋, 𝑀𝑚𝑎𝑥)) and we can estimate 𝐽 (𝑋) (see (4)) by

𝐽 (𝑋) = 1
𝑁𝑀

𝑁𝑀∑︁
𝑙=1

𝐹̂1 (𝑋, 𝑀 𝑙) (8)

Given this model 𝐹̂ of the unknown function 𝐹, the most promising value for 𝑋𝑛𝑒𝑤 is:

𝑋𝑛𝑒𝑤 = arg max
𝑋 ∈X

−𝐽 (𝑋) (9a)

s.t. 𝐹̂2 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐹̂3 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝑞

(9b)

In other words, 𝑋𝑛𝑒𝑤 is chosen as the geometrical configuration that would be equal to 𝑋∗ if the model would be

perfect (i.e., 𝐹̂ (𝑋, 𝑀) = 𝐹 (𝑋, 𝑀) for all 𝑋 and 𝑀).
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If the optimization problem (9) leads to a configuration 𝑋𝑛𝑒𝑤 ∉ D𝑋 (i.e. a configuration for which the model 𝐹̂

predicts that 𝑋𝑛𝑒𝑤 outperforms 𝑋∗
D𝑋
), this new configuration 𝑋𝑛𝑒𝑤 should be tested (via an experiment or a CFD

simulation) to obtain the actual values of 𝐹 (𝑋𝑛𝑒𝑤 , 𝑀
𝑙) for the velocities 𝑀 𝑙 (𝑙 = 1, . . . , 𝑁𝑀 ). This allows to extend

the original database to a new database with 𝑁𝑋 + 1 configurations (i.e., the configurations in D𝑋,𝑛𝑒𝑤 = D𝑋 ∪ 𝑋𝑛𝑒𝑤 )

and to compute the solution 𝑋∗
D𝑋,𝑛𝑒𝑤

of the optimization problem (6). This solution 𝑋∗
D𝑋,𝑛𝑒𝑤

will be given by 𝑋𝑛𝑒𝑤 if,

as expected by the model of 𝐹, we indeed have that 𝐹2 (𝑋𝑛𝑒𝑤 , 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝛼

and 𝐹3 (𝑋𝑛𝑒𝑤 , 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥
𝑚𝑞

and that

𝐽 (𝑋𝑛𝑒𝑤 ) < 𝐽 (𝑋∗
D𝑋

).

If 𝑋∗
D𝑋,𝑛𝑒𝑤

= 𝑋𝑛𝑒𝑤 then 𝑋𝑛𝑒𝑤 is a better approximation of 𝑋∗ than 𝑋∗
D𝑋
.

It may however happen that the solution of the optimization problem (6) remains 𝑋∗
D𝑋
. This happens when the

model 𝐹̂ of 𝐹 does not give a good estimate of 𝐹 (𝑋, 𝑀) for 𝑋 = 𝑋𝑛𝑒𝑤 , which, in turn, happens when D𝑋 does not

contain enough points in the vicinity of 𝑋𝑛𝑒𝑤 . In this case, the approach which consists in adding more than one

additional configurations to the database (see Section IV) could be considered.

B. Identification of 𝐹̂

Let us now say a few words on how a model 𝐹̂ of 𝐹 can be derived using the initial database. For this purpose, a

model structure 𝐹 (𝑋, 𝑀, 𝜃) parametrized with a parameter vector 𝜃 is chosen. The value of this parameter vector is

determined using the following identification criterion :

𝜃 = arg min
𝜃

𝑉 (𝜃), (10)

𝑉 (𝜃) = 1
𝑁𝑋 𝑁𝑀

𝑁𝑋∑︁
𝑘=1

𝑁𝑀∑︁
𝑙=1

‖𝐹 (𝑋 𝑘 , 𝑀 𝑙) − 𝐹 (𝑋 𝑘 , 𝑀 𝑙 , 𝜃)‖2, (11)

where 𝐹 (𝑋 𝑘 , 𝑀 𝑙) are the values of 𝑌 available in the original database and ‖𝐴‖ =
√
𝐴𝑇 𝐴 is the Euclidean norm¶ of the

vector 𝐴. We have then 𝑌 = 𝐹̂ (𝑋, 𝑀) = 𝐹 (𝑋, 𝑀, 𝜃).

The model structure 𝐹 (𝑋, 𝑀, 𝜃) has to be chosen as the simplest model structure allowing to explain the data in the

database ‖. As mentioned in the introduction, in this paper, the model structure is chosen as a neural network. More

details on the neural network model structure are given in Appendix A.
¶We can also use a weighted norm in the definition of 𝑉 (𝜃) to account for differences in the magnitude of the different entries of 𝐹 .
‖We can e.g., first split the data in the database in a training data set and a validation data set and determine, using e.g., a grid search approach,

the model structure for which the model 𝐹 (𝑋, 𝑀, 𝜃𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) identified with the training data leads to the smallest value of the cost function (11)
when (11) is computed with the validation data [21]. Once this model structure has been determined, we re-identifiy the model using the whole data
in the database (via (10)-(11)).
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IV. Extending the database with 𝑁𝑠𝑢𝑝 geometrical configurations

A. Procedure

For the procedure described in Section III.A, the quality of the model 𝐹̂ of 𝐹 (which itself depends on the database

with which 𝐹̂ has been identified) is crucial. This quality will be high if D𝑋 covers every regions of X in a sufficient

manner.

When we are allowed to extend the database with 𝑁𝑠𝑢𝑝 geometrical configurations (𝑁𝑠𝑢𝑝 > 1), one could use

this opportunity to enrich the coverage of the set D𝑋 by adding configurations in regions that have not been explored

yet, allowing in this way model improvement. We have thus to distinguish two contradictory objectives when adding

new geometrical configurations 𝑋𝑛𝑒𝑤 to the database: the exploitation objective and the exploration objective. When

𝑋𝑛𝑒𝑤 is chosen according to (9), it is chosen according to the exploitation objective (we choose the most promising

configuration according to the available model). When 𝑋𝑛𝑒𝑤 is chosen according to the exploration objective, 𝑋𝑛𝑒𝑤 is

chosen in such a way that D𝑋 ∪ 𝑋𝑛𝑒𝑤 covers the space of geometrical configurations in a better way to improve the

model. Inspired by Bayesian Optimization, we here propose a framework where new geometrical configurations are

added to D𝑋 based on a trade-off between the exploitation and exploration objectives. This can be achieved using the

following optimization problem instead of the optimization problem (9):

𝑋𝑛𝑒𝑤 = arg max
𝑋 ∈X

𝐴(𝑋), (12)

where 𝐴(𝑋) is the so-called acquisition function that will be precisely defined in the sequel. For the moment, it is

sufficient to say that 𝐴(𝑋) will be large :

• for values of 𝑋 for which the current model predicts that the constraints in (9) are respected and that 𝐽 (𝑋) is small

(exploitation objective)

• for values of 𝑋 far away from the configurations that are already in the database (exploration objective).

The computation of the value of the acquisition function for a given 𝑋 thus requires the use of the current model and

the use of the configurations present in the current database.

The procedure to determine the 𝑁𝑠𝑢𝑝 new configurations is summarized in Algorithm 1. We start with the initial

database with the configurations in the set D𝑋 from which we can deduce the model 𝐹̂ (see Section III.A). Using that

model 𝐹̂ and the set D𝑋 , we construct the acquisition function 𝐴(𝑋) and we determine 𝑋𝑛𝑒𝑤 according to (12). Using

a flight experiment or a simulation, we obtain the actual values of 𝐹 (𝑋𝑛𝑒𝑤 , 𝑀
𝑙) for the velocities 𝑀 𝑙 (𝑙 = 1, . . . , 𝑁𝑀 ).

This allows to extend the original database to a new database with 𝑁𝑋 + 1 configurations (i.e., the configurations in

D𝑋,𝑛𝑒𝑤 = D𝑋 ∪ 𝑋𝑛𝑒𝑤 ). Based on this new extended database, we can re-identify the model 𝐹̂ of 𝐹. Using this updated

model and the set D𝑋,𝑛𝑒𝑤 , the value of the acquisition function 𝐴(𝑋) is modified and so is the solution 𝑋𝑛𝑒𝑤 of the

optimization problem (12). For this new geometrical configuration, a flight experiment or a simulation is performed,
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leading to a database containing the values of 𝐹 (𝑋, 𝑀) for 𝑁𝑋 + 2 configurations. Using this extended database, the

model 𝐹̂ is once again updated etc. This procedure is followed up to the moment where the database contains the

values of 𝐹 for 𝑁𝑋 + 𝑁𝑠𝑢𝑝 − 1 configurations and where the model 𝐹̂ has been identified using this database. The last

configuration is then determined based on a purely exploitation objective i.e., using the optimization problem (9) such

as in Section III.A. An eventual better model would indeed be of no use and exploration is therefore no longer useful.

Algorithm 1 yields a database D𝑋,𝑛𝑒𝑤 containing the information 𝐹 (𝑋, 𝑀 𝑙) (𝑙 = 1, . . . , 𝑁𝑀 ) for 𝑁𝑋 + 𝑁𝑠𝑢𝑝

geometrical configurations 𝑋 . Optimization problem (6) can then be used to determine 𝑋∗
D𝑋,𝑛𝑒𝑤

i.e., the optimal

configuration within this extended database.

Algorithm 1 Selection of 𝑁𝑠𝑢𝑝 new configurations

Initialize: : Determine the neural network model 𝐹̂ (𝑋, 𝑀) using the database with the geometrical configurations in
D𝑋 and pose D𝑋,𝑛𝑒𝑤 = D𝑋

Repeat 𝑁𝑠𝑢𝑝 − 1 times the following steps
1. 𝑋𝑛𝑒𝑤 = argmax

𝑋
𝐴(𝑋) where the acquisition function 𝐴(𝑋) for a given configuration X is computed using the

current model 𝐹̂ and using the configurations in D𝑋,𝑛𝑒𝑤

2. Determine 𝐹 (𝑋𝑛𝑒𝑤 , 𝑀) for different Mach numbers and replace D𝑋,𝑛𝑒𝑤 by D𝑋,𝑛𝑒𝑤 ∪ 𝑋𝑛𝑒𝑤

3. Determine the neural network model 𝐹̂ (𝑋, 𝑀) using the database with the geometrical configurations in D𝑋,𝑛𝑒𝑤

End Repeat
Do
𝑋𝑛𝑒𝑤 is determined via the optimization problem (9)
Determine 𝐹 (𝑋𝑛𝑒𝑤 , 𝑀) for different Mach numbers and replace D𝑋,𝑛𝑒𝑤 by D𝑋,𝑛𝑒𝑤 ∪ 𝑋𝑛𝑒𝑤

Remark. For 𝑁𝑠𝑢𝑝 = 1, Algorithm 1 reduces to the procedure presented in Section III.A. As already mentioned, we

have nevertheless decided to first present the case where 𝑁𝑠𝑢𝑝 = 1 for the sake of clarity.

B. Definition of the acquisition function

Let us now define precisely the acquisition function 𝐴(𝑋). For this purpose, let us suppose as in Algorithm 1 that

the current database contains the values of 𝐹 (𝑋, 𝑀 𝑙) (𝑙 = 1, . . . , 𝑁𝑀 ) for the configurations 𝑋 in D𝑋,𝑛𝑒𝑤 and that the

model 𝐹̂ has been determined based on this current database. Using this model, we can evaluate, for every 𝑋 , 𝐽 (𝑋) (see

(8)) as well as 𝐹̂2 (𝑋, 𝑀𝑚𝑎𝑥) and 𝐹̂3 (𝑋, 𝑀𝑚𝑎𝑥). Then, we define 𝐴(𝑋) as:

𝐴(𝑋) = 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) 𝐴𝑜𝑏 𝑗 (𝑋), (13)

where

𝐴𝑜𝑏 𝑗 (𝑋) = −𝐽 (𝑋) + 𝛽 𝛿𝑚𝑖𝑛 (𝑋) + 𝜌, (14)

with
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𝛿𝑚𝑖𝑛 (𝑋) = min
𝑋𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 ∈D𝑋,𝑛𝑒𝑤

‖𝑋 − 𝑋𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒‖, (15)

𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) =


2 − 𝛿𝑠𝑐𝑎𝑙𝑒𝑑

𝑚𝑖𝑛
(𝑋) if 𝐹̂2 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥

𝑚𝛼
and 𝐹̂3 (𝑋, 𝑀𝑚𝑎𝑥) ≤ 𝐶𝑚𝑎𝑥

𝑚𝑞

𝛿𝑠𝑐𝑎𝑙𝑒𝑑
𝑚𝑖𝑛

(𝑋) otherwise,
(16)

where

𝛿𝑠𝑐𝑎𝑙𝑒𝑑𝑚𝑖𝑛 (𝑋) = 𝛿𝑚𝑖𝑛 (𝑋)
max
𝑋̃ ∈X

𝛿𝑚𝑖𝑛 ( 𝑋̃)
(17)

In the expression of 𝐴𝑜𝑏 𝑗 (𝑋), 𝜌 is just an offset chosen to ensure that 𝐴𝑜𝑏 𝑗 (𝑋) > 0 for all 𝑋 ∈ X. This offset is

necessary since 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) will be a positive scalar with a value close to zero when it is likely that the constraints on

𝐶𝑚𝛼
and 𝐶𝑚𝑞

are not respected for a particular 𝑋 (see below). Otherwise, we see that 𝐴𝑜𝑏 𝑗 is made up of two other

terms. The first term is the one reflecting the exploitation objective (beneficial to configurations 𝑋 for which the model

predicts a small average value for 𝐶𝐴0) and the second term, 𝛿𝑚𝑖𝑛 (𝑋), reflects the exploration objective (beneficial to

configurations 𝑋 in regions where few data points are available in the database). The quantity 𝛿𝑚𝑖𝑛 (𝑋) is indeed small

for configurations 𝑋 that are close (in an Euclidean norm∗∗ sense) to the configurations in D𝑋,𝑛𝑒𝑤 and increases for

configurations 𝑋 that are far from the configurations inD𝑋,𝑛𝑒𝑤 . The user-chosen scalar 𝛽 realizes the trade-off between

the exploration and exploitation objectives.

The term 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) in (13) is a penalty term pertaining to the constraints. As mentioned above, 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) is a

positive scalar with a value close to zero when it is likely that the constraints on 𝐶𝑚𝛼
and 𝐶𝑚𝑞

are not respected for

a particular 𝑋 . The expression (16) of 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) uses the quantity 𝛿𝑠𝑐𝑎𝑙𝑒𝑑𝑚𝑖𝑛
(𝑋) which is a scaled version of 𝛿𝑚𝑖𝑛 (𝑋)

(𝛿𝑠𝑐𝑎𝑙𝑒𝑑
𝑚𝑖𝑛

(𝑋) varies between 0 and 1) and is based on the rationale that, if 𝛿𝑠𝑐𝑎𝑙𝑒𝑑
𝑚𝑖𝑛

(𝑋) is close to 1 for a given 𝑋 , the

current model 𝐹̂ may not be very accurate to predict 𝐹 (𝑋, 𝑀) since the model has been identified with data far away

from X. Let us now explain expression (16). The variable 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) will be close to zero for a given 𝑋 if the current

model 𝐹̂ predicts that the constraints on 𝐶𝑚𝛼
and 𝐶𝑚𝑞

are not respected for that value of 𝑋 and if 𝛿𝑠𝑐𝑎𝑙𝑒𝑑
𝑚𝑖𝑛

(𝑋) is close to

0 (i.e., if 𝑋 is close to the data in D𝑋,𝑛𝑒𝑤 ). Indeed, in this case, it is very likely that 𝑋 does not respect the constraints

and this value of 𝑋 must be strongly penalized in the acquisition function 𝐴(𝑋). For values of 𝑋 further away from the

data in D𝑋,𝑛𝑒𝑤 and for which the current model predicts that the constraints on 𝐶𝑚𝛼
and 𝐶𝑚𝑞

are not respected, this

penalization will be less strong, since 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) = 𝛿𝑠𝑐𝑎𝑙𝑒𝑑
𝑚𝑖𝑛

(𝑋) will be larger (while being always smaller than one). Let

us now analyse the value of 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) for values of 𝑋 for which the current model predicts that the constraints on 𝐶𝑚𝛼

and 𝐶𝑚𝑞
are respected. We observe that 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) will be then maximal (i.e., close to 2) if the value of 𝑋 (for which

∗∗Other distance measures than the Euclidean norm can also be considered.
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the current model predicts that the constraints are respected) is such that 𝛿𝑠𝑐𝑎𝑙𝑒𝑑
𝑚𝑖𝑛

(𝑋) is close to zero (i.e., a value of 𝑋

close to the data in D𝑋,𝑛𝑒𝑤 and thus for which 𝐹̂ (𝑋) is likely to be close to 𝐹 (𝑋)). These are the values of 𝑋 that will

be less penalized by 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋). The values of 𝑋 for which the current model predicts that the constraints are respected,

but that are further away from the data inD𝑋,𝑛𝑒𝑤 will be (slightly) more penalized (value of 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) between 1 and 2).

Remark. As mentioned above, Algorithm 1 is inspired from Bayesian Optimization. The main differences between

Bayesian Optimization and the approach in this paper are the type of model 𝐹̂ that is considered and the definition of

the acquisition function 𝐴(𝑋). In classical Bayesian Optimization, the model of the static function 𝐹 is a Gaussian

Process (GP) [17] i.e., a probabilistic model. The probabilistic nature of the GP model allows one to define the

acquisition function 𝐴(𝑋) = 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋)𝐴𝑜𝑏 𝑗 (𝑋) in a different way than in (13)-(17). More precisely, 𝐴𝑐𝑜𝑛𝑠𝑡 (𝑋) is

defined as the probability that the constraints are respected for a given value of 𝑋 , while 𝐴𝑜𝑏 𝑗 (𝑋) can be defined in

a similar way as in (14), but with 𝛿𝑚𝑖𝑛 (𝑋) replaced by the standard deviation of 𝐽 (𝑋) [16]. As said before, we have

here chosen a neural network, instead of a Gaussian Process, for its relative simplicity, its flexibility and its good

adaptability to high dimensional problems. However, since a neural network is not a probabilistic model, the definition

of 𝐴(𝑋) needed to be modified, but our definition of 𝐴(𝑋) in (13)-(17) nevertheless shows strong similarities with the

definition of 𝐴(𝑋) in Bayesian Optimization. As an example, the quantity 𝛿𝑚𝑖𝑛 (𝑋) used in (14) is a good alternative

for the standard deviation of 𝐽 (𝑋) used in Bayesian Optimization since this standard deviation for Gaussian Process

models will also be large for values of 𝑋 far away from the data with which the Gaussian Processmodel has been identified.

Remark. The scalar 𝛽 in the definition of 𝐴𝑜𝑏 𝑗 (see (14)) must be chosen with care. One possibility is to choose 𝛽

in such a way that the term 𝐽 (𝑋) and the term 𝛽 𝛿𝑚𝑖𝑛(𝑋) have the same order of magnitude for all 𝑋 ∈ X. Moreover,

while respecting this general objective, we can also opt for a different value of 𝛽 at each of the 𝑁𝑠𝑢𝑝 − 1 iterations of the

repeat loop in Algorithm 1. One could e.g., start with a relatively high value of 𝛽 in the first iterations (to enforce more

exploration when the model is less accurate) and decrease 𝛽 in the subsequent iterations (to enforce more exploitation

when the model becomes more accurate).

V. Numerical illustration

A. Setup and initial database

In this section, we will apply the methodology presented in Sections III and IV on an example. We wish to determine

the optimal geometrical configuration 𝑋 of a rectangular finner (see Figure 1) for the flight scenario described in Section

II with 𝑀𝑚𝑖𝑛 = 2 and 𝑀𝑚𝑎𝑥 = 5. The search set X is here limited to enable that the projectile can be fired by a specific

field gun (see Table 2 for the formal definition of the set X). For the stability constraints in (3), we fix the upper bounds
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for 𝐶𝑚𝛼
(i.e. 𝐶𝑚𝑎𝑥

𝑚𝛼
) and for 𝐶𝑚𝑞

(i.e. 𝐶𝑚𝑎𝑥
𝑚𝑞
) to the realistic values of -10 and -100, respectively. For this type of finners

and this flight scenario, we have a database giving the vector 𝑌 for 𝑁𝑋 = 324 different configurations 𝑋 and for 𝑁𝑀 = 8

different Mach numbers in the interval [2 5]. This database is generated from a semi-empirical code named PRODAS

(Projectile Rocket Ordnance Design & Analysis System) [22]. Note that out of the 𝑁𝑋 = 324 different configurations

in D𝑋 , only 144 are in the restricted set X. Among these configurations 𝑋 ∈ X ∩ D𝑋 , there is not one which has a

value of 𝐹2 (𝑋, 𝑀) ≤ −10. Consequently, 𝑋∗
D𝑋
does not exist. However, among the configurations 𝑋 ∈ X ∩ D𝑋 that

almost respect the constraints, the configuration 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

= (20, 20, 1.5, 1.5, 0)𝑇 is the one leading the smallest value

of 𝐽 (𝑋). More specifically for 𝑋 = 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

, we have 𝐽 (𝑋) = 0.45, 𝐹2 (𝑋, 𝑀 = 5) = −8 and 𝐹3 (𝑋, 𝑀 = 5) = −1400,

which shows that 𝐶𝑚𝛼
is only slightly too high. Let us see whether the procedures presented in Section III and in Section

IV allows to determine configurations 𝑋 that are more acceptable than 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

.

Table 2 Definition of the set X for each characteristic 𝑋𝑖 of the geometry geometry (𝑋1, 𝑋3, 𝑋4 and 𝑋5 are
expressed in calibers and 𝑋2 in degrees)

Dimension X Minimum Maximum
𝑋1 : Total Length 10 25
𝑋2 : Nose Angle 10 34.5
𝑋3 : Fins Height 0.5 2.5
𝑋4 : Fins Width 0.5 1.72

𝑋5 : Position of fins 0 1

B. Adding one additional configuration

Let us first consider the procedure of Section III consisting in determining one single new configuration. This

procedure relies on a neural network model identified with the data in the original database. As a first step, we split these

data to determine a good structure 𝐹 (𝑋, 𝑀, 𝜃) for the neural network (see the footnote in Section III.B). This leads to a

neural network with 1 hidden layer, 128 neurons and a reLu activation function on each neuron output (see Appendix A).

The criterion (10)-(11) is subsequently used to determine the values of the different weightings and offsets in this neural

network structure (i.e., the parameter vector 𝜃). This criterion is solved using a machine learning library known as

Scikit-learn [23].

We can now use the model 𝐹̂ (𝑋, 𝑀) = 𝐹 (𝑋, 𝑀, 𝜃) in the procedure of Section III. The new configuration 𝑋𝑛𝑒𝑤 is

thus determined using the optimization problem (9) that we here solve using the Sequential Least Square Programming

algorithm given in [24]. This leads to 𝑋𝑛𝑒𝑤 = (12.6859, 10, 1.34, 1.72, 0.43)𝑇 . This solution 𝑋𝑛𝑒𝑤 is such that

the model 𝐹̂ (𝑋, 𝑀) predicts a value of 0.32 for 𝐽 (𝑋𝑛𝑒𝑤 ) i.e., 𝐽 (𝑋𝑛𝑒𝑤 ) = 0.32 (see (8)). By construction, we have

also that 𝐹̂2 (𝑋𝑛𝑒𝑤 , 𝑀 = 5) ≤ −10 and 𝐹̂3 (𝑋𝑛𝑒𝑤 , 𝑀 = 5) ≤ −100. More precisely, 𝐹̂2 (𝑋𝑛𝑒𝑤 , 𝑀 = 5) = −10 and

𝐹̂3 (𝑋𝑛𝑒𝑤 , 𝑀 = 5) = −419. See the blue curve in Figures 2, 3 and 4 for other characteristic values of 𝐹̂𝑖 (𝑋𝑛𝑒𝑤 , 𝑀
𝑙) (𝑖 =
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1, . . . 3, 𝑙 = 1, . . . , 𝑁𝑀 ). Let us now verify whether the predictions of 𝐹̂ about 𝑋𝑛𝑒𝑤 are confirmed in reality. For

this purpose, we use PRODAS to compute 𝑌𝑛𝑒𝑤 = 𝐹 (𝑋𝑛𝑒𝑤 , 𝑀) at different Mach numbers 𝑀 (see the green curve in

Figures 2, 3 and 4 for characteristic values).

Fig. 2 Case 𝑁𝑠𝑢𝑝 = 1: neural network prediction 𝐹̂1 (𝑋𝑛𝑒𝑤 , 𝑀) (blue) and 𝐹1 (𝑋𝑛𝑒𝑤 , 𝑀) evaluated with PRODAS
(green) for 𝑋𝑛𝑒𝑤 = (12.6859, 10, 1.34, 1.72, 0.43)𝑇 and for characteristic values of 𝑀 ∈ [2 5]

15



Fig. 3 Case 𝑁𝑠𝑢𝑝 = 1: neural network prediction 𝐹̂2 (𝑋𝑛𝑒𝑤 , 𝑀) (blue) and 𝐹2 (𝑋𝑛𝑒𝑤 , 𝑀) evaluated with PRODAS
(green) for 𝑋𝑛𝑒𝑤 = (12.6859, 10, 1.34, 1.72, 0.43)𝑇 and for characteristic values of 𝑀 ∈ [2 5]. The yellow line
represents the threshold 𝐶𝑚𝑎𝑥

𝑚𝛼
= −10.

Fig. 4 Case 𝑁𝑠𝑢𝑝 = 1: neural network prediction 𝐹̂3 (𝑋𝑛𝑒𝑤 , 𝑀) (blue) and 𝐹3 (𝑋𝑛𝑒𝑤 , 𝑀) evaluated with PRODAS
(green) for 𝑋𝑛𝑒𝑤 = (12.6859, 10, 1.34, 1.72, 0.43)𝑇 and for characteristic values of 𝑀 ∈ [2 5]
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This allows to observe that 𝐽 (𝑋𝑛𝑒𝑤 ) = 0.33 (see (4)), 𝐹2 (𝑋𝑛𝑒𝑤 , 𝑀 = 5) = −6 and 𝐹3 (𝑋𝑛𝑒𝑤 , 𝑀 = 5) = −360. In

other words, as opposed to what was predicted by the model 𝐹̂, the constraint on 𝐶𝑚𝛼
is not respected for the

configuration 𝑋𝑛𝑒𝑤 . Since the optimization problem (5) did not have a solution, the optimization problem (6) pertaining

toD𝑋,𝑛𝑒𝑤 = D𝑥 ∪ 𝑋𝑛𝑒𝑤 has also no solution. The apparent contradiction between the results of optimization problems

(9) and (6) can certainly be explained by the fact that the model 𝐹̂ has been trained with too few data in the vicinity

of 𝑋𝑛𝑒𝑤 . We therefore proceed with the methodology of Section IV. We here decide to determine 𝑁𝑠𝑢𝑝 = 20 new

configurations, allowing for model improvement. Note that this corresponds to an increase of just 6% of the number of

configurations in the database.

C. Adding 20 new additional configurations using Algorithm 1

We will therefore apply Algorithm 1 with 𝑁𝑠𝑢𝑝 = 20. To apply this algorithm, we have to specify two parameters

in the definition of the acquisition function 𝐴(𝑋): the offset 𝜌 and the parameter 𝛽 balancing the exploitation and

exploration objectives. While the choice of the offset 𝜌 is not crucial (we here choose 𝜌 = 1), the parameter 𝛽 has to be

chosen with care. Following the philosophy introduced in the last remark in Section IV, 𝛽 must be chosen in such a way

that the term 𝐽 (𝑋) and 𝛽 𝛿𝑚𝑖𝑛 (𝑋) has the same order of magnitude for all 𝑋 ∈ X. In our case, this means that 𝛽 must

be chosen in the interval [0.5 4]. As proposed in the remark, we therefore choose to start with 𝛽 = 4 in the first iteration

of the repeat loop of Algorithm 1 and linearly decrease this value at each iteration in such a way that, at the last iteration,

𝛽 = 0.5.

With this choice for 𝜌 and 𝛽, Algorithm 1 delivers an extended database containing the values of𝑌 for 𝑁𝑋 +20 = 344

configurations gathered in the set denoted 𝑋∗
D𝑋,𝑛𝑒𝑤

. We then use optimization problem (6) to determine the best

configuration 𝑋∗
D𝑋,𝑛𝑒𝑤

∈ D𝑋,𝑛𝑒𝑤 . The solution of this optimization problem is 𝑋∗
D𝑋,𝑛𝑒𝑤

= (10.8, 13.42, 1.45, 1.72, 0)𝑇 .

This configuration 𝑋∗
D𝑋,𝑛𝑒𝑤

is such that 𝐽 (𝑋∗
D𝑋,𝑛𝑒𝑤

) = 0.34, 𝐹2 (𝑋∗
D𝑋,𝑛𝑒𝑤

, 𝑀 = 5) = −10 and 𝐹3 (𝑋∗
D𝑋,𝑛𝑒𝑤

, 𝑀 = 5) =

−313. Other characteristic values of 𝐹𝑖 (𝑋∗
D𝑋,𝑛𝑒𝑤

, 𝑀 𝑙) (𝑖 = 1, . . . 3, 𝑙 = 1, . . . , 𝑁𝑀 ) are given in green in Figures 5, 6

and 7.
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Fig. 5 𝐹1 (𝑋, 𝑀) (evaluated with PRODAS) for characteristic values of 𝑀 ∈ [2 5] and for two values of 𝑋 i.e.,
𝑋 = 𝑋∗

D𝑋,𝑛𝑒𝑤
(green) and 𝑋 = 𝑋∗

D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡
(red)

Fig. 6 𝐹2 (𝑋, 𝑀) (evaluated with PRODAS) for characteristic values of 𝑀 ∈ [2 5] and for two values of 𝑋 i.e.,
𝑋 = 𝑋∗

D𝑋,𝑛𝑒𝑤
(green) and 𝑋 = 𝑋∗

D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡
(red). The yellow line represents the threshold 𝐶𝑚𝑎𝑥

𝑚𝛼
= −10.

18



Fig. 7 𝐹3 (𝑋, 𝑀) (evaluated with PRODAS) for characteristic values of 𝑀 ∈ [2 5] and for two values of 𝑋 i.e.,
𝑋 = 𝑋∗

D𝑋,𝑛𝑒𝑤
(green) and 𝑋 = 𝑋∗

D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡
(red)

Using Algorithm 1with 𝑁𝑠𝑢𝑝 = 20, we have thus been able to determine, in the restricted search setX, a configuration

𝑋∗
D𝑋,𝑛𝑒𝑤

that respects the stability constraints. Recall that the initial database did not contain any projectile with 𝑋 ∈ X

and that respected the constraints. Moreover, with respect to 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

(which is, among the configurations in the

initial database that almost respect the constraints, the one with the least average drag), the average drag with 𝑋∗
D𝑋,𝑛𝑒𝑤

is 25% smaller (𝐽 (𝑋∗
D𝑋,𝑛𝑒𝑤

) = 0.34 and 𝐽 (𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

) = 0.45). This improvement of the drag is also evidenced by

comparing the green and red curves in Figure 5.

In Figure 8, we represent, in the right plot, the optimal finner i.e., the finner corresponding to the configuration

𝑋∗
D𝑋,𝑛𝑒𝑤

and we compare it to the one having the configuration 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

. With respect to 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

, the optimal

finner has a smaller body and a larger nose length which helps decrease the drag, while its fin length remains large

enough to satisfy the stability constraints.
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Fig. 8 Representation of the projectile with configuration 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

(left) and with configuration 𝑋∗
D𝑋,𝑛𝑒𝑤

(right)

As mentioned above, the average drag for 𝑋∗
D𝑋,𝑛𝑒𝑤

is 25% smaller than the one obtained with 𝑋∗
D𝑋,𝑎𝑙𝑚𝑜𝑠𝑡

. It is

important to note that this important improvement in the capacity of the projectile is obtained by considering the set

D𝑋,𝑛𝑒𝑤 which merely contains 6% more configurations (𝑁𝑠𝑢𝑝 = 20) than the initial setD𝑋 . It is also important to note

that, among the 𝑁𝑠𝑢𝑝 = 20 additional configurations that are added to the database via Algorithm 1, 14 configurations

respect the stability constraints. Consequently, if we would have chosen 𝑁𝑠𝑢𝑝 < 20, we would have also obtained an

acceptable projectile e.g., with 𝑁𝑠𝑢𝑝 = 2, we would have obtained a stable projectile achieving an average drag of 0.47.

With 𝑁𝑠𝑢𝑝 = 11 and 𝑁𝑠𝑢𝑝 = 17 this average drag would have been of 0.41 and 0.37, respectively.

To analyse the robustness of Algorithm 1 with respect to the choice of the parameter 𝛽, we have run this algorithm

with other choices of 𝛽 in the interval [0.5 4]. More specifically, it is ran for 𝑁𝑠𝑢𝑝 = 20 with constant values of 𝛽 at

each iteration in the repeat loop. In this sense, we consider the following values of 𝛽 : 𝛽 = 0.5, 𝛽 = 1, 𝛽 = 2 and 𝛽 = 4.

When Algorithm 1 is performed with these choices, we observe that they all lead to an optimal configuration respecting

the stability constraints with a good average drag 𝐽 (i.e., 0.35, 0.37, 0.38 and 0.36 for 𝛽 = 0.5, 𝛽 = 1, 𝛽 = 2 and 𝛽 = 4,

respectively). Moreover, among the 𝑁𝑠𝑢𝑝 = 20 additional configurations that are added to the database via Algorithm 1,

a relatively large number respects the stability constraints (i.e., 8, 12, 17 and 18 for 𝛽 = 0.5, 𝛽 = 1, 𝛽 = 2 and 𝛽 = 4,

respectively).

As shown above, the procedure introduced in Section IV and implementing, via Algorithm 1, a trade-off between
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exploitation and exploration to generate 𝑁𝑠𝑢𝑝 = 20 additional configurations for the database, delivers good results.

To determine how good these results really are, let us compare the results obtained with Algorithm 1 with alternative

approaches to generate the 𝑁𝑠𝑢𝑝 = 20 additional configurations. Recall for comparison purpose that, using Algorithm 1

with 𝑁𝑠𝑢𝑝 = 20 and a decaying 𝛽, 14 of the 20 additional configurations (i.e., 70%) respect the stability constraints

and, among these configurations respecting the constraints, we have a projectile for which the average drag is equal to 0.34.

Alternative approach 1. In this first alternative approach, we choose to generate, in a random manner, 60 new

configurations 𝑋 ∈ X (i.e., three times more than 𝑁𝑠𝑢𝑝 = 20). Only 20% of the randomly generated configurations

respect the constraints (which is much smaller than the 70% obtained with Algorithm 1) and, among these configurations

respecting the constraints, the smallest 𝐽 is 0.42 (which is 20% larger than what is obtained with Algorithm 1).

Alternative approach 2. Instead of balancing exploitation and exploration, we choose in this second alternative

approach to uniquely favour the exploration objective. This can e.g., be achieved by performing Algorithm 1 with an

alternative definition for the acquisition function 𝐴(𝑋) i.e., 𝐴(𝑋) = 𝛿𝑚𝑖𝑛 (𝑋). When we follow this approach with

𝑁𝑠𝑢𝑝 = 20, the extended database does not improve the initial one. Indeed, none of the additional configurations

respects the stability constraints.

Alternative approach 3. Instead of balancing exploitation and exploration, we choose in this third alternative approach

to uniquely favour the exploitation objective. This can e.g., be achieved by performing a modified Algorithm 1 where, in

step 1 of the repeat loop, 𝑋𝑛𝑒𝑤 is determined using optimization problem (9). When we follow this approach with

𝑁𝑠𝑢𝑝 = 20, we obtain twenty additional configurations of which only one respects the constraints. This configuration

𝑋 = (13.23, 10, 1.34, 1.72, 0) also achieves an average drag of 0.34. Since this particular configuration (the only

one respecting the constraints) is obtained at iteration 19 of the repeat loop, this means that, as opposed to the ini-

tially proposed approach, this third alternative would not lead to any configuration respecting the constraints if 𝑁𝑠𝑢𝑝 < 19.

From the discussion above, it is clear that the proposed approach balancing exploitation and exploration has the best

overall results.

VI. Conclusion
In this paper, for a flat trajectory fire, we optimize the geometrical configuration of a rectangular finner to obtain the

least drag under some stability constraints. This particular aerodynamic design problem is formulated as an optimization

problem involving the stability derivatives of the projectile. Using an initial database, a (cheap to evaluate) neural

network surrogate model is used to model the stability derivatives. A procedure balancing exploitation and exploration

21



is then devised to determine, based on that surrogate model, the values of the design variables for which the stability

derivatives have to be evaluated to both improve the surrogate model and approach the optimal design of the projectile.

By increasing the size of the database by a mere 6%, the proposed procedure allows to reduce by 25% the drag of the

projectile with respect to the best projectile in the initial database.
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A. Neural networks
A neural network is a static mapping between †† a vector 𝑢 of inputs (of dimension 𝑛𝑢) and a vector 𝑦 of outputs (of

dimension 𝑛𝑦). Let us focus on neural networks with one hidden layer since it is the structure that is used in Section

V. In such a network, each entry 𝑦𝑖 (𝑖 = 1, . . . , 𝑛𝑦) of 𝑦 is expressed as an affine combination of so-called neurons

𝜈𝑘 (𝑢) (𝑘 = 1, . . . , 𝑛𝜈) (the number of neurons is denoted 𝑛𝜈):
††In the study case considered in this paper, we have that 𝑛𝑢 = 6 and 𝑛𝑦 = 3.
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𝑦𝑖 =

𝑛𝜈∑︁
𝑘=1

𝑤𝑖𝑘𝜈𝑘 (𝑢) + 𝑏𝑖 , (18)

with 𝑏𝑖 a scalar offset and 𝑤𝑖𝑘 scalar weightings. The quantity 𝜈𝑘 (𝑢) (𝑘 = 1, . . . , 𝑛𝜈) is a nonlinear mapping of the

entries of the input vector 𝑢 = (𝑢1, . . . , 𝑢𝑛𝑢 )𝑇 :

𝜈𝑘 (𝑢) = Φ

(
𝑏̃𝑘 +

𝑛𝑢∑︁
𝑙=1

𝑤̃𝑘𝑙𝑢𝑙

)
, (19)

where Φ(𝑥) is generally the so-called rectified linear unit (reLu) activation function i.e., Φ(𝑥) = 𝑚𝑎𝑥(0, 𝑥) and where

𝑤̃𝑘𝑙 and 𝑏̃𝑘 are scalar coefficients. Since the coefficients 𝑏𝑖 , 𝑤𝑖𝑘 , 𝑤̃𝑘𝑙 , 𝑏̃𝑘 are all free coefficients (that we can gather in a

vector 𝜃 as proposed in Section III.B), the equations (18) and (19) represent a parametrized (static) mapping between the

input vector and the output vector. As explained in Section III.B, the value of the parameter vector 𝜃 will be determined

based on data (see the criterion (10) - (11)). The criterion (10) - (11) is generally solved via the back-propagation

method which uses Gradient Descent [25] to determine in an iterative manner the solution 𝜃 of (10) - (11).
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