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Abstract

Aerodynamic design of projectiles is crucial to ensure that projectiles
have the best performance during their �ight. Performing aerodynamic de-
sign boils down to determining the optimal values of certain design variables
of the projectile as the solution of a nonlinear optimization problem involv-
ing the stability derivatives of the projectile. Solving such an optimization
problem involves a heavy procedure since either costly experimental tests
or computationally intensive simulations are needed to obtain the stabil-
ity derivatives for di�erent values of the design variables. In this paper, a
(cost-e�ective) neural network surrogate model is used to model the stabil-
ity derivatives. A procedure balancing exploitation and exploration is then
devised to determine, based on that surrogate model, the values of the de-
sign variables for which the stability derivatives have to be evaluated to both
improve the surrogate model and approach the optimal design of the projec-
tile. This framework is applied to optimize the geometrical con�guration of
a rectangular �nner for a classical �ight scenario and is shown to perform
better than the classical Bayesian Optimization approach.
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1. Introduction

In many aerospace applications, the �ight behaviour highly depends on
the shape, the dimension, the materials, . . . of the considered �ying vehicles.
Consequently, the �ight behaviour can be optimized by adjusting these quan-
tities. In the aerospace literature, such a problem is known as aerodynamic
design or aerodynamic optimization (see, e.g., Driver and Zingg (2007))).
In this paper, we will perform such task for (gun-launched) projectiles. In
particular, the geometrical con�guration of a rectangular �nner (a classical
type of projectiles (Dupuis and Hathaway, 1997)) will be optimized to obtain
an optimal �ight behaviour for a �at �re trajectory, i.e., for the case where
the �nner is launched with an initial total angle of attack equal to zero. The
�ight behaviour will be here deemed optimal when the projectile reaches its
target in a minimum time.

As will be shown in the sequel, this aerodynamic optimization problem
can be formulated as a constrained optimization problem having as deci-
sion variable the geometrical con�guration X of the projectile and involving
a number of the so-called stability derivatives of the projectile (which are
functions of the geometry X of the projectile and of its Mach number M
(McCoy, 1999; Anderson and Bowden, 2005)). Our contribution will be to
show that learning techniques balancing exploration and exploitation along
with the identi�cation of a neural network based on available data can be
bene�cial for such aerodynamic optimization problem.

The constrained optimization problem described in the previous para-
graph is a nonlinear optimization problem involving the static nonlinear
function F (X,M) relating X and M on the one hand and the stability
derivatives on the other hand. In the literature, two approaches are gen-
erally used to determine the stability derivatives for a given con�guration,
i.e., to evaluate F (X,M). The �rst approach is an experimental one involv-
ing wind-tunnel experiments or free �ight tests (Dupuis and Hathaway, 1997;
Albisser et al., 2017). The second approach is to perform high-�delity simula-
tions (Burnett et al., 1981; Renganathan et al., 2021). Evaluating F (X,M)
for a given con�guration using these approaches is thus either �nancially
costly or time-consuming. In other words, the absence of simple and accu-
rate models for the complex function F (X,M) makes it extremely di�cult
to address the non-linear optimization problem discussed in the previous
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paragraph using a classical gradient-based algorithm. Our �rst contribu-
tion will be to enable a gradient-based optimization algorithm by deriving
a simple model for F (X,M) using an existing database. Many institutions
have indeed built such databases gathering, for a number of con�gurations
X, the value F (X,M) of the stability derivatives at di�erent Mach numbers
M . For the database considered in this paper, F (X,M) has been evaluated
via the high-�delity ballistic simulation tool PRODAS, i.e., Projectile Rocket
Ordnance Design & Analysis System (See www.prodas.com for further infor-
mations).

Using the data contained in this database, a simple mathematical model
F̂ (X,M) of the static function F (X,M) can be derived. This simple mathe-
matical model (also called surrogate model in the literature (Forrester et al.,
2008)) allows to predict F (X,M) for any values of X and M in a fast and
e�cient way. Therefore, it can be used to solve the considered optimization
problem via gradient-descent. Surrogate models can take di�erent forms.
We have here chosen a neural network for its relative simplicity, its �exibility
and its e�cient adaptability to multivariable problems. Moreover, neural net-
works have proven their e�ciency in modeling the aerodynamic coe�cients
of diverse �ying vehicles (see, e.g., Gomec and Canibek (2017); Rajkumar
and Bardina (2002)).

As mentioned above, the neural network model F̂ (X,M) can be used to
solve the considered optimization problem via gradient-descent. However, if
the database does not cover the space of possible con�gurations X in a suf-
�cient manner, the model derived from the database may be inaccurate and
the optimal geometrical con�guration deduced based on that model may not
have the desired properties. We therefore propose a methodology that sup-
poses that, besides the access to the original database, we have the possibility
of determining, via an experiment or via a simulation software, the values
of F (X,M) for a number Nsup of additional con�gurations X. Every time a
new con�guration is tested, the database contains an additional data point
and the neural network model can therefore be updated. Given this fact, we
will determine the additional con�gurations with the aim of improving the
model accuracy (by selecting values of X in the regions that have not yet
been covered by the database), while keeping in mind the objective of �nding
an optimal con�guration (by selecting values of X that the current model
predicts to be close to the optimum). These two contradictory objectives
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are respectively called exploration and exploitation in the literature (Frazier,
2018).

When the surrogate model is a Gaussian Process model, i.e., a proba-
bilistic model derived based on Gaussian prior assumptions on the unknown
static function (see, e.g., Rasmussen (2003)), an optimization approach as
the one presented in the previous paragraph is known as Bayesian Optimiza-

tion (Frazier, 2018). This method has already been applied to address aero-
dynamic optimization problems for other �ying vehicles than gun-launched
projectiles (see, e.g., Jeong et al. (2005); Renganathan et al. (2021); Arnoult
et al. (2020)) and to many control engineering problems (see, e.g., Roveda
et al. (2020); Savaia et al. (2021); Dettù et al. (2023); Baheri et al. (2017)).

As shown in our recent contribution (Uwadukunze et al., 2023), a neu-
ral network can also be considered as surrogate model in an optimization
algorithm balancing the exploration and exploitation objectives. A second
contribution of the present paper is to extend these results to the case where
the considered optimization problem is a constrained optimization problem.
We also show that, for the aerodynamic optimization problem considered in
this paper, the use of this modi�ed version of Bayesian Optimization, i.e,
with a neural network surrogate, yields better results than the classical ver-
sion of Bayesian Optimization with a Gaussian Process surrogate.

Note �nally that we have here decided to use the high-�delity1 ballistic
simulation tool PRODAS to evaluate the function F (X,M) at the Nsup con-
�gurations X which are selected by the proposed optimization algorithm. An
experimental evaluation of this function via wind-tunnel experiments or free
�ight tests would indeed entail a �nancial cost which is much too important.

The sequel of this paper will be organized as follows. In Section 2, the con-
sidered aerodynamic design problem will be presented in details. In Sections
3 and 4, we will present our procedure to address this aerodynamic design
problem via the identi�cation of a neural network and via an approach bal-

1PRODAS is built upon an extensive database of experimental data, ensuring that the
outcomes from its simulations closely align with those derived from wind-tunnel experi-
ments or free �ight tests.
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ancing the exploration and exploitation objectives. Finally, in Section 5, the
results of this optimization procedure will be presented.

2. Aerodynamic design problem

We here consider a so-called rectangular �nner of caliber 28 mm with four
rectangular �ns. Such a projectile can be built with di�erent geometrical
con�gurations, i.e., for di�erent values of the �ve parameters2 X1, X2, . . . .,
X5 de�ned in Table 1 and represented in Figure 1 (X1, X3, X4, X5 will be
expressed in calibers and X2 in degrees).

Figure 1: Finner projectile with rectangular �ns

In this paper, we wish to determine the geometrical con�guration of the
�nner in such a way that it reaches its target in a minimum time when the
�nner is �red with an initial velocity Mmax (e.g., Mach 5) and then �ies
towards its target with a total angle of attack of zero.

To address this problem, we have to consider the stability derivatives of
the �nner which are coe�cients associated to the forces and moments acting
on the projectile during its �ight. They depend on both the geometrical
con�guration of the �nner (determined by the vector X = (X1, X2, . . . , X5)

T )
and its velocity (the Mach number M). In particular, to minimize the time
to reach the target, it is well known that one of the solutions is to minimize
the drag coe�cient (McCoy, 1999) of the projectile. Since we suppose that

2Note that we will suppose that the building material of the �nner is �xed. Its center
of gravity is thus entirely determined by the �ve parameters in Table 1.
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Table 1: Main characteristics of a rectangular �nned projectile

Characteristic X Design Parameter
X1 Total Length
X2 Nose Angle
X3 Fins Height
X4 Fins Width
X5 Position of �ns

the �nner �ies with a total angle of attack equal to zero, the drag coe�cient
is equal to the axial force coe�cient �rst order stability derivative at zero

yaw, one of the stability derivatives (denoted CA0 in the sequel) (McCoy,
1999). Since CA0 not only depends on the geometrical con�guration X, but
also on the Mach number M , we will in fact minimize the average value of
CA0 over a velocity range [Mmin Mmax] with Mmin chosen in such a way that
the interval [Mmin Mmax] covers the possible velocities of the �nner during
its �ight (e.g., Mmin = 2 and Mmax = 5).

The stability derivative CA0 is not the only stability derivative that is
important for an optimal �ight. We will also wish to guarantee strong �ight
stability by making sure that the projectile will be dynamically and statically
stable (McCoy, 1999). To ensure static stability, the pitch moment coe�cient

slope Cmα will have to be smaller than C
max
mα and to ensure dynamic stability

the pitch damping moment coe�cient Cmq will have to remain smaller than
Cmax
mq . These two conditions have to be respected for all velocities in the

interval [Mmin Mmax].
Our objective in this paper is therefore to determine the geometrical

con�guration of the �nner (i.e., the value of the �ve parameters in Table
1) that leads to the lowest average value of the drag coe�cient CA0 while
guaranteeing that, at all times, Cmα and Cmq remains smaller than Cmax

mα

and Cmax
mq , respectively.3

Let us formulate this objective in a mathematical form. For this pur-
pose, let us denote Y = (CA0 , Cmα , Cmq)

T the vector containing the stability
derivatives considered in this study. Since Y is a function of X and M , we

3The quantities CA0 , Cmα , Cmq and M are dimensionless.

6



can therefore use the following notation:

Y = F (X,M), (1)

where F is a static function taking as inputs the vector X and the scalar M
and giving as output the vector Y . For the ith entry of Y (i = 1, ..., 3), the
notation Yi = Fi(X,M) will also be used.

For a given geometrical con�guration X, the average value J(X) of CA0

over the interval [Mmin Mmax] can thus be expressed as:

J(X) =
1

Mmax −Mmin

∫ Mmax

Mmin

F1(X,M)dM. (2)

Likewise, the stability constraints can be expressed by F2(X,Mmax) ≤
Cmax
mα and F3(X,Mmax) ≤ Cmax

mq . We here use the fact that, for rectangular
�nners in supersonic regime, both Cmα = Y2 and Cmq = Y3 always reach
their maximum at the highest velocity Mmax (i.e., the initial velocity of the
�ight).

The optimization problem considered in this paper can therefore be for-
mulated as follows:

X∗ = arg max
X∈X
−J(X) (3a)

s.t. F2(X,Mmax) ≤ Cmax
mα and F3(X,Mmax) ≤ Cmax

mq (3b)

Note that we here formulate the optimization problem (3) as a maximiza-
tion to facilitate the presentation in the sequel. Minimizing J(X) is indeed
equivalent to maximizing −J(X). In (3), X represents the allowed search
space: the set X can, e.g., contain all geometrical con�gurations X that are
achievable in practice or, alternatively, the set X can also be a subset of
the latter if, for some reasons, we wish to restrict the possible geometrical
con�gurations.

Solving the optimization problem (3) is not straightforward. Indeed, the
static function F is unknown, i.e., there is no readily available physical model
for this function (at least not one which does not require computationally
intensive simulations). However, there exist databases containing values of
this unknown static function, i.e., a set of data giving, for a number of geom-
etry con�gurations, the corresponding vector Y for di�erent Mach numbers.
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These databases are generally determined using experimental campaigns or
computationally intensive simulations.

In this paper, we will assume that we have access to such a database.
This database contains NX di�erent geometrical con�gurations for which the
stability derivatives Y have been computed for NM di�erent Mach numbers
in the interval [Mmin Mmax]

4. In other words, the database contains the
value of the vector Y = F (Xk,M l) for all pairs (Xk,M l) with M l (l =
1, . . . NM) di�erent values of M in the interval [Mmin Mmax] and with Xk

(k = 1, . . . , NX) di�erent geometrical con�gurations. Let us denote by DX
the set containing these NX geometrical con�gurations for which we know Y
at NM di�erent Mach numbers, i.e., DX = {Xk|k = 1, . . . NX}.

Using this database, J(X) can be approximated for all X ∈ DX using:

J(X) =
1

NM

NM∑
l=1

F1(X,M
l) (4)

From now onwards, the expression (4) for J(X) will be used and we will
assume that Mmax is a velocity for which Y is given in the database. Then,
by restricting attention to the geometrical con�gurations X ∈ X that are
present in DX (i.e., in the database), we can derive an estimate X∗DX of the
solution X∗ of the optimization problem (3) :

X∗DX = arg max
X∈DX∩X

−J(X) (5a)

s.t. F2(X,Mmax) ≤ Cmax
mα and F3(X,Mmax) ≤ Cmax

mq (5b)

It is to be noted that DX∩X = DX if X is the set of all achievable geometrical
con�gurations.

The solution X∗DX of the optimization problem (5) is only an approxima-
tion of X∗. However, it is the best approximation that can be derived given
the information in the database. It is also clear that the larger the database,
the better the approximation X∗DX of X∗. In this paper, the objective is
to improve X∗DX by extending the set DX , i.e., the set of geometrical con-
�gurations for which the value of Y , at di�erent Mach numbers, is known.

4The database may of course also contain the value of the stability derivatives for
velocities outside this interval.
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Extending the set DX comes with a cost. Indeed, if the objective is to know
the value of Y at di�erent Mach numbers for a geometrical con�guration
X 6∈ DX , a �ight experiment has to be carried out with a projectile having
that particular geometrical con�guration or, alternatively, a computationally
intensive simulation has to be performed. Consequently, we wish to extend
the set DX in a smart way, i.e., intelligently determining which con�gura-
tion(s) will be added to DX and for which a �ight experiment or a simulation
has to be performed. Two cases are considered:

� In the �rst case, the situation where only one geometrical con�guration
can be added to the set DX is considered.

� In the second case, it is supposed that a numberNsup > 1 of geometrical
con�gurations can be added to the set DX (which will �nally contain
NX +Nsup con�gurations).

To progressively introduce the concepts, these two cases will be presented
separately. Note however that the �rst case is obviously equivalent to the
second case with Nsup = 1.

Remark 1. The case study concerns a projectile with 4 rectangular �ns (see
Figure 1) and a given �ight scenario. However, the methodology presented in
this paper can easily be extended to other types of projectiles and for other
�ight scenarios.

Remark 2. If X and/or DX is a small set, it may happen that the opti-
mization problem (5) does not have any solution (i.e., the constraints are
not respected for all X in DX ∩ X ). In this case, the approaches presented
in the next sections are absolutely necessary to determine the geometry of a
projectile satisfying the stability constraints.

3. Extending the database with one geometrical con�guration

3.1. Procedure

In this section, we wish to add one geometrical con�guration Xnew to DX
yielding the set DX,new = DX ∪Xnew with NX + 1 con�gurations.
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The extended database allows to determine X∗DX,new , solution of the fol-
lowing optimization problem:

X∗DX,new = arg max
X∈DX,new∩X

−J(X), (6a)

s.t. F2(X,Mmax) ≤ Cmax
mα and F3(X,Mmax) ≤ Cmax

mq , (6b)

which is the optimization problem (5) where DX,new is used instead of DX .
The new con�guration Xnew should be chosen in such a way that X∗DX,new

is a better approximation of X∗ than X∗DX . To �nd such a geometrical

con�guration Xnew, the database is used to derive a black-box model F̂ of
the unknown function F (see (1)):

Ŷ = F̂ (X,M) (7)

Using this model F̂ , the value of Y can now be predicted for con�gurations
X that are not in the database. In other words, for a con�guration X 6∈ DX ,
we can estimate F2(X,Mmax) and F3(X,Mmax) by, respectively, the second
and third entries of F̂ (X,Mmax), i.e., F̂2(X,Mmax) and F̂3(X,Mmax), and we
can estimate J(X) (see (4)) by :

Ĵ(X) =
1

NM

NM∑
l=1

F̂1(X,M
l) (8)

Given this model F̂ of the unknown function F , the most promising value
for Xnew is:

Xnew = arg max
X∈X
−Ĵ(X) (9a)

s.t. F̂2(X,Mmax) ≤ Cmax
mα and F̂3(X,Mmax) ≤ Cmax

mq (9b)

In other words, Xnew is chosen as the geometrical con�guration that would
be equal to X∗ if the model would be perfect, i.e., F̂ (X,M) = F (X,M) for
all X and M .

If the optimization problem (9) leads to a con�guration Xnew 6∈ DX , i.e.,
a con�guration for which the model F̂ predicts that Xnew outperforms X∗DX ,
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this new con�guration Xnew should be tested via an experiment or a simu-
lation to obtain the actual values of F (Xnew,M

l) for the velocities M l (l =
1, . . . , NM). This allows to extend the original database to a new database
with NX + 1 con�gurations, i.e., the con�gurations in DX,new = DX ∪Xnew,
and to compute the solution X∗DX,new of the optimization problem (6). This
solution X∗DX,new will be given by Xnew if, as expected by the model of F , we
indeed have that:

F2(Xnew,Mmax) ≤ Cmax
mα and F3(Xnew,Mmax) ≤ Cmax

mq (10a)

J(Xnew) < J(X∗DX ) (10b)

If X∗DX,new = Xnew then Xnew is a better approximation of X∗ than X∗DX .

It may however happen that the solution of the optimization problem
(6) remains X∗DX . This happens when the model F̂ of F does not give an
adequate estimate of F (X,M) for X = Xnew, which, in turn, happens when
DX does not contain enough points in the vicinity of Xnew. In this case, the
approach which consists in adding more than one additional con�gurations
to the database (see Section 4) could be considered.

3.2. Identi�cation of F̂

Let us now say a few words on how a model F̂ of F can be derived us-
ing the initial database. For this purpose, a model structure Fm(X,M, θ)
parametrized with a parameter vector θ is chosen. The value of this param-
eter vector is determined using the following identi�cation criterion :

θ̂ = arg min
θ
V (θ), (11)

V (θ) =
1

NX NM

NX∑
k=1

NM∑
l=1

‖F (Xk,M l)− Fm(Xk,M l, θ)‖2, (12)

where F (Xk,M l) are the values of Y available in the original database and
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‖A‖ =
√
ATA is the Euclidean norm5 of the vector A.

We have then Ŷ = F̂ (X,M) = Fm(X,M, θ̂).
The model structure Fm(X,M, θ) has to be chosen as the simplest model

structure allowing to explain the data in the database 6. As mentioned in the
introduction, in this paper, the model structure is chosen as a neural network.
More details on the neural network model structure are given in Appendix A.

4. Extending the database with Nsup geometrical con�gurations

4.1. Procedure

For the procedure described in Section 3.1, the quality of the model F̂ of
F which depends on the database with which F̂ has been identi�ed is crucial.
This quality will be high if DX covers every region of X in a su�cient manner.

When we are allowed to extend the database with Nsup geometrical con-
�gurations (Nsup > 1), this opportunity can be used to enrich the coverage of
the set DX by adding con�gurations in regions that have not been explored
yet, allowing in this way model improvement. Therefore, two contradictory
objectives have to be distinguished when adding new geometrical con�gura-
tions Xnew to the database, i.e, the exploitation and the exploration objec-
tives:

� When Xnew is chosen according to (9), it is selected according to the
exploitation objective (we choose the most promising con�guration ac-
cording to the available model).

� When Xnew is chosen according to the exploration objective, it is se-
lected in such a way that DX ∪ Xnew covers the space of geometrical
con�gurations in a better way to improve the model.

5We can also use a weighted norm in the de�nition of V (θ) to account for di�erences
in the magnitude of the di�erent entries of F .

6We can, e.g., �rst split the data in the database in a training data set and a validation
data set and determine, using, e.g., a grid search approach, the model structure for which
the model Fm(X,M, θ̂training) identi�ed with the training data leads to the smallest value
of the cost function (12) when it is computed with the validation data. Once this model
structure has been determined, we re-identi�y the model using the whole data in the
database (via (11)-(12)).
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Inspired by Bayesian Optimization, we here propose a framework where new
geometrical con�gurations are added to DX based on a trade-o� between
the exploitation and exploration objectives. This can be achieved using the
following optimization problem instead of the optimization problem (9) :

Xnew = arg max
X∈X

A(X), (13)

where A(X) is the so-called acquisition function that will be precisely de�ned
in the sequel. For the moment, it is su�cient to say that A(X) will be large:

� for values ofX for which the current model predicts that the constraints
in (9) are respected and that Ĵ(X) is small (exploitation objective) ;

� for values of X far away from the con�gurations that are already in the
database (exploration objective).

The computation of the value of the acquisition function for a given X
thus requires the use of the current model and the use of the con�gurations
present in the current database.

The procedure to determine the Nsup new con�gurations is summarized
in Algorithm 1. We start with the initial database with the con�gurations in
the set DX from which we can deduce the model F̂ (see Section 3.1). Using
that model F̂ and the set DX , the acquisition function A(X) can thus be con-
structed and Xnew determined according to (13). Using a �ight experiment
or a simulation, the actual values of F (Xnew,M

l) can be obtained for the
velocities M l (l = 1, . . . , NM). This allows to extend the original database
to a new database with NX + 1 con�gurations (i.e., the con�gurations in
DX,new = DX ∪ Xnew). Based on this new extended database, we can re-

identify the model F̂ of F . Using this updated model and the set DX,new,
the value of the acquisition function A(X) is modi�ed and so is the solution
Xnew of the optimization problem (13). For this new geometrical con�gura-
tion, a �ight experiment or a simulation is performed, leading to a database
containing the values of F (X,M) for NX + 2 con�gurations. Using this ex-
tended database, the model F̂ is once again updated etc. This procedure
is followed up to the moment where the database contains the values of F
for NX +Nsup− 1 con�gurations and where the model F̂ has been identi�ed
using this database. The last con�guration is then determined based on a
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purely exploitation objective, i.e., using the optimization problem (9) such
as in Section 3.1. An eventual better model would indeed be of no use and
exploration is therefore no longer useful.

Algorithm 1 yields a databaseDX,new containing the information F (X,M l)
(l = 1, . . . , NM) for NX + Nsup geometrical con�gurations X. Optimization
problem (6) can then be used to determine X∗DX,new , i.e., the optimal con�g-
uration within this extended database.

Algorithm 1 Selection of Nsup new con�gurations

Initialize: : Determine the neural network model F̂ (X,M) using the
database with the geometrical con�gurations in DX and pose DX,new = DX
Repeat Nsup − 1 times the following steps
1. Xnew = arg max

X
A(X) where the acquisition function A(X) for a given

con�guration X is computed using the current model F̂ and using the
con�gurations in DX,new
2. Determine F (Xnew,M) for di�erent Mach numbers and replace DX,new
by DX,new ∪Xnew

3. Determine the neural network model F̂ (X,M) using the database with
the geometrical con�gurations in DX,new
End Repeat
Do
Xnew is determined via the optimization problem (9)
Determine F (Xnew,M) for di�erent Mach numbers and replace DX,new by
DX,new ∪Xnew

Remark 3. For Nsup = 1, Algorithm 1 reduces to the procedure presented
in Section 3.1. As already mentioned, we have nevertheless decided to �rst
present the case where Nsup = 1 for the sake of clarity.

4.2. De�nition of the acquisition function

Let us now de�ne precisely the acquisition function A(X). For this pur-
pose, let us suppose as in Algorithm 1 that the current database contains
the values of F (X,M l) (l = 1, . . . , NM) for the con�gurations X in DX,new
and that the model F̂ has been determined based on this current database.
Using this model, we can evaluate, for every X, Ĵ(X) (see (8)) as well as
F̂2(X,Mmax) and F̂3(X,Mmax). Then, we de�ne A(X) as:
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A(X) = Aconst(X) Aobj(X), (14)

where

Aobj(X) = −Ĵ(X) + β δmin(X) + ρ, (15)

with

δmin(X) = min
Xdatabase∈DX,new

‖X −Xdatabase‖, (16)

Aconst(X) =

{
2− δscaledmin (X) if F̂2(X,Mmax) ≤ Cmax

mα and F̂3(X,Mmax) ≤ Cmax
mq

δscaledmin (X) otherwise,

(17)
where

δscaledmin (X) =
δmin(X)

max
X̃∈X

δmin(X̃)
(18)

In the expression ofAobj(X), ρ is an o�set chosen to ensure thatAobj(X) >
0 for all X ∈ X . This o�set is necessary since Aconst(X) will be a positive
scalar with a value close to zero when it is likely that the constraints on Cmα
and Cmq are not respected for a particular X (see below). Otherwise, we
note that Aobj is made up of two other terms:

� The �rst term, −Ĵ(X) ,re�ects the exploitation objective (bene�cial to
con�gurations X for which the model predicts a small average value
for CA0).

� The second term, δmin(X), re�ects the exploration objective (bene�cial
to con�gurations X in regions where few data points are available in
the database).

The quantity δmin(X) is indeed small for con�gurations X that are close
(in an Euclidean norm7 sense) to the con�gurations in DX,new and increases

7Other distance measures than the Euclidean norm can also be considered.
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for con�gurations X that are far from the con�gurations in DX,new. The
user-chosen scalar β realizes the trade-o� between the exploration and ex-
ploitation objectives.

The term Aconst(X) in (14) is a penalty term pertaining to the constraints.
As mentioned above, Aconst(X) is a positive scalar with a value close to zero
when it is likely that the constraints on Cmα and Cmq are not respected for a
particular X. The expression (17) of Aconst(X) uses the quantity δscaledmin (X)
which is a scaled version of δmin(X) (δscaledmin (X) varies between 0 and 1) and
is based on the rationale that, if δscaledmin (X) is close to 1 for a given X, the
current model F̂ may not be very accurate to predict F (X,M) since the
model has been identi�ed with data far away from X.

Let us now explain expression (17). The variable Aconst(X) will be close to
zero for a given X if the current model F̂ predicts that the constraints on
Cmα and Cmq are not respected for that value of X and if δscaledmin (X) is close
to 0 (i.e., if X is close to the data in DX,new). Indeed, in this case, it is very
likely that X does not respect the constraints and this value of X must be
strongly penalized in the acquisition function A(X).

For values of X further away from the data in DX,new and for which the cur-
rent model predicts that the constraints on Cmα and Cmq are not respected,
this penalization will be less strong, since Aconst(X) = δscaledmin (X) will be
larger (while being always smaller than one).

Let us now analyse the value of Aconst(X) for values of X for which the cur-
rent model predicts that the constraints on Cmα and Cmq are respected. We
observe that Aconst(X) will be then maximal (i.e., close to 2) if the value of
X for which the current model predicts that the constraints are respected is
such that δscaledmin (X) is close to zero (i.e., a value of X close to the data in
DX,new and thus for which F̂ (X) is likely to be close to F (X)). These are
the values of X that will be less penalized by Aconst(X). The values of X for
which the current model predicts that the constraints are respected, but that
are further away from the data in DX,new will be (slightly) more penalized
(value of Aconst(X) between 1 and 2).

Remark 4. As mentioned above, Algorithm 1 is inspired from Bayesian
Optimization. The main di�erences between Bayesian Optimization and
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the approach in this paper are the type of model F̂ that is considered
and the de�nition of the acquisition function A(X). Indeed in classical
Bayesian Optimization, the model of the static function F is a Gaussian
Process (Rasmussen, 2003), i.e., a probabilistic model. The probabilistic
nature of the Gaussian Process model allows to de�ne the acquisition func-
tion A(X) = Aconst(X)Aobj(X) in a di�erent way than in (14)-(18). More
precisely, Aconst(X) is de�ned as the probability that the constraints are re-
spected for a given value of X, while Aobj(X) can be de�ned in a similar

way as in (15), but with δmin(X) replaced by the standard deviation of Ĵ(X)
(Frazier, 2018). As explained before, a neural network is chosen here as sur-
rogate model instead of a Gaussian Process. However, since a neural network
is not a probabilistic model, the de�nition of A(X) needed to be modi�ed.
Our de�nition of A(X) in (14)-(18) nevertheless shows strong similarities
with the de�nition of A(X) in Bayesian Optimization. As an example, the
quantity δmin(X) used in (15) is a relevant alternative for the standard de-
viation of Ĵ(X) used in Bayesian Optimization since this standard deviation
for Gaussian Process models will also be large for values of X far away from
the data with which the Gaussian Process model has been identi�ed.

Remark 5. The scalar β in the de�nition of Aobj (see (15)) must be chosen

with care. One possibility is to choose β in such a way that the term Ĵ(X)
and the term β δmin(X) have the same order of magnitude for all X ∈
X . Moreover, while respecting this general objective, we can also opt for a
di�erent value of β at each of the Nsup − 1 iterations of the repeat loop in
Algorithm 1. One could, e.g., start with a relatively high value of β in the
�rst iterations (to enforce more exploration when the model is less accurate)
and decrease β in the subsequent iterations (to enforce more exploitation
when the model becomes more accurate).

5. Numerical illustration

5.1. Setup and initial database

In this section, the methodology presented in Sections 3 and 4 is applied
to determine the optimal geometrical con�guration X of a rectangular �nner
(see Figure 1) for the �ight scenario described in Section 2 with Mmin = 2
and Mmax = 5. The search set X is here limited to enable that the projectile
can be �red by a speci�c �eld gun (see Table 2 for the formal de�nition of
the set X ). For the stability constraints in (3), the upper bounds are �xed
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to the following realistic values:

� Cmax
mα is �xed at -10.

� Cmax
mq is �xed at -100.

For this type of �nners and this �ight scenario, we have a database giving
the vector Y for NX = 324 di�erent con�gurations X and for NM = 8 di�er-
ent Mach numbers in the interval [2 5]. As mentioned in the introduction,
this database has been here generated using the high �delity simulation code
PRODAS.

Note that out of the NX = 324 di�erent con�gurations in DX , only 144 are
in the restricted set X . Among these con�gurations X ∈ X ∩ DX , none has
a value of F2(X,M) ≤ −10. Consequently, X∗DX does not exist. However,
among the con�gurations X ∈ X ∩ DX that almost respect the constraints,
the one leading to the smallest value of J(X) is the con�guration :

X∗DX,almost = (20, 20, 1.5, 1.5, 0)T . (19)

More speci�cally for X = X∗DX,almost , we have:

J(X) = 0.45 (20a)

F2(X,M = 5) = −8 (20b)

F3(X,M = 5) = −1400, (20c)

which shows that Cmα is only slightly too high.
Let us now see whether the procedures presented in Section 3 and in Sec-
tion 4 allows to determine con�gurations X that are more acceptable than
X∗DX,almost .

5.2. Adding one additional con�guration

Let us �rst consider the procedure of Section 3 consisting in determining
one single new con�guration. This procedure relies on a neural network
model identi�ed with the data in the original database. As a �rst step, we
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Table 2: De�nition of the set X for each characteristic Xi of the geometry (X1, X3, X4

and X5 are expressed in calibers and X2 in degrees)

Dimension X Minimum Maximum
X1 : Total Length 10 25
X2 : Nose Angle 10 34.5
X3 : Fins Height 0.5 2.5
X4 : Fins Width 0.5 1.72

X5 : Position of �ns 0 1

split these data to determine a suitable structure Fm(X,M, θ) for the neural
network (see the footnote in Section 3.2). This leads to a neural network with
1 hidden layer, 128 neurons and a reLu activation function on each neuron
output (see Appendix A). The criterion (11)-(12) is subsequently used to
determine the values of the di�erent weightings and o�sets in this neural
network structure (i.e., the parameter vector θ̂). This criterion is solved using
a machine learning library known as Scikit-learn (Buitinck et al., 2013).

The model F̂ (X,M) = Fm(X,M, θ̂) can now be used in the procedure
of Section 3. The new con�guration Xnew is thus determined using the op-
timization problem (9) that we here solve using the Sequential Least Square
Programming algorithm given in (Virtanen et al., 2020). This leads to:

Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T . (21)

This solution Xnew is such that the model F̂ (X,M) predicts a value of
0.32 for J(Xnew), i.e., Ĵ(Xnew) = 0.32 (see (8)). By construction, we have
also that F̂2(Xnew,M = 5) ≤ −10 and F̂3(Xnew,M = 5) ≤ −100. More
precisely:

F̂2(Xnew,M = 5) = −10 (22a)

F̂3(Xnew,M = 5) = −419. (22b)

See the blue curve in Figures 2, 3 and 4 for other characteristic values of
F̂i(Xnew,M

l) (i = 1, . . . 3, l = 1, . . . , NM).
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Let us now verify whether the predictions of F̂ about Xnew are con�rmed
in reality. For this purpose, we use PRODAS to compute Y new = F (Xnew,M)
at di�erent Mach numbers M (see the green curve in Figures 2, 3 and 4 for
characteristic values).

Figure 2: Case Nsup = 1: neural network prediction F̂1(Xnew,M) (blue) and F1(Xnew,M)
evaluated with PRODAS (green) for Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T and for char-
acteristic values of M ∈ [2 5].
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Figure 3: Case Nsup = 1: neural network prediction F̂2(Xnew,M) (blue) and F2(Xnew,M)
evaluated with PRODAS (green) for Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T and for char-
acteristic values of M ∈ [2 5]. The yellow line represents the threshold Cmax

mα
= −10.
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Figure 4: Case Nsup = 1: neural network prediction F̂3(Xnew,M) (blue) and F3(Xnew,M)
evaluated with PRODAS (green) for Xnew = (12.6859, 10, 1.34, 1.72, 0.43)T and for char-
acteristic values of M ∈ [2 5].

This allows to observe that:

J(Xnew) = 0.33 (see (4)) (23a)

F2(Xnew,M = 5) = −6 (23b)

F3(Xnew,M = 5) = −360 (23c)

In other words, as opposed to what was predicted by the model F̂ , the
constraint on Cmα is not respected for the con�guration Xnew. Since the
optimization problem (5) did not have a solution, the optimization problem
(6) pertaining to DX,new = DX ∪ Xnew has also no solution. The apparent
contradiction between the results of optimization problems (9) and (6) can
certainly be explained by the fact that the model F̂ has been trained with
too few data in the vicinity of Xnew.

We therefore proceed with the methodology of Section 4. We here decide to
determine Nsup = 20 new con�gurations, allowing for model improvement.
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Note that this corresponds to an increase of 6% of the number of con�gura-
tions in the database.

5.3. Adding 20 new additional con�gurations using Algorithm 1

Algorithm 1 is now applied8 with Nsup = 20. To apply Algorithm 1, we
have to specify two parameters in the de�nition of the acquisition function
A(X): the o�set ρ and the parameter β balancing the exploitation and ex-
ploration objectives. While the choice of the o�set ρ is not crucial, we here
choose ρ = 1, the parameter β has to be chosen with care. Following the
philosophy introduced in Remark 5 in Section 4, β must be chosen in such a
way that the term Ĵ(X) and β δmin(X) have the same order of magnitude
for all X ∈ X . In our case, this means that β must be chosen in the interval
[0.5 4]. As proposed in Remark 5, we therefore choose to start with β = 4 in
the �rst iteration of the repeat loop of Algorithm 1 and linearly decrease this
value at each iteration in such a way that, at the last iteration, β = 0.5.

With this choice for ρ and β, Algorithm 1 delivers an extended database
containing the values of Y for NX + 20 = 344 con�gurations gathered in the
set denoted as X∗DX,new .

The optimization problem (6) can thus be used to determine the best
con�guration X∗DX,new ∈ DX,new. The solution of this optimization problem
is:

X∗DX,new = (10.8, 13.42, 1.45, 1.72, 0)T . (24)

This con�guration X∗DX,new is such that :

J(X∗DX,new) = 0.34 (25a)

F2(X
∗
DX,new ,M = 5) = −10 (25b)

F3(X
∗
DX,new ,M = 5) = −313 (25c)

Other characteristic values of Fi(X
∗
DX,new ,M

l) (i = 1, . . . 3, l = 1, . . . , NM)
are given in green in Figures 5, 6 and 7.

8The optimization of the acquisition function A(X) (see (14)) in Step 1 of the repeat

loop of Algorithm 1 is performed using the dual annealing algorithm (Xiang et al., 1997)
in its Scipy Implementation (Virtanen et al., 2020).
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Figure 5: F1(X,M) (evaluated with PRODAS) for characteristic values of M ∈ [2 5] and
for two values of X, i.e., X = X∗DX,new (green) and X = X∗DX,almost (red).

Figure 6: F2(X,M) (evaluated with PRODAS) for characteristic values of M ∈ [2 5] and
for two values of X, i.e., X = X∗DX,new (green) and X = X∗DX,almost (red). The yellow line
represents the threshold Cmax

mα
= −10.
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Figure 7: F3(X,M) (evaluated with PRODAS) for characteristic values of M ∈ [2 5] and
for two values of X, i.e., X = X∗DX,new (green) and X = X∗DX,almost (red).

Using Algorithm 1 with Nsup = 20, we have thus been able to deter-
mine, in the restricted search set X , a con�guration X∗DX,new that respects
the stability constraints. Recall that the initial database did not contain
any projectile with X ∈ X and that respected the constraints. Moreover,
with respect to X∗DX,almost (which is, among the con�gurations in the initial
database that almost respect the constraints, the one with the least average
drag), the average drag with X∗DX,new is 25% smaller (J(X∗DX,new) = 0.34 and

J(X∗DX,almost) = 0.45). This improvement of the drag is also evidenced by
comparing the green and red curves in Figure 5.

In Figure 8, we represent, in the right plot, the optimal �nner, i.e., the
�nner corresponding to the con�guration X∗DX,new and we compare it to the
one having the con�guration X∗DX,almost . With respect to X∗DX,almost , the opti-
mal �nner has a smaller body and a larger nose length which helps decrease
the drag, while its �n length remains large enough to satisfy the stability
constraints.
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Figure 8: Representation of the projectile with con�guration X∗DX,almost (left) and with

con�guration X∗DX,new (right).

As mentioned above, the average drag for X∗DX,new is 25% smaller than
the one obtained with X∗DX,almost . It is important to note that this major
improvement in the capacity of the projectile is obtained by considering the
set DX,new which merely contains 6% more con�gurations (Nsup = 20) than
the initial set DX . It should also be emphasized that, among the Nsup = 20
additional con�gurations that are added to the database via Algorithm 1, 14
con�gurations respect the stability constraints. Consequently, if we would
have chosen Nsup < 20, we would have also obtained an acceptable projectile,
e.g., with Nsup = 2, we would have obtained a stable projectile achieving an
average drag of 0.47. With Nsup = 11 and Nsup = 17 this average drag would
have been of 0.41 and 0.37, respectively.

5.4. Robustness of Algorithm 1 w.r.t β

To analyse the robustness of Algorithm 1 with respect to the choice of
the parameter β, we have run this algorithm with other choices of β in the
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interval [0.5 4]. More speci�cally, it is ran for Nsup = 20 with di�erent
constant values of β at each iteration in the repeat loop. Table 3 presents the
values of β considered, the values of the average drag J obtained with each
value of β and the number of con�gurations which respect the constraints
among the ones tested for each value of β.

Table 3: Robustness of Algorithm 1 w.r.t β

β Average drag J Number of con�gurations
which respect the constraints

0.5 0.35 8
1 0.37 12
2 0.38 17
4 0.36 18

As shown in table 3, when Algorithm 1 is performed with di�erent choices
of β, we can observe that they all lead to an optimal con�guration respect-
ing the stability constraints with a good average drag J . Moreover, among
the Nsup = 20 additional con�gurations that are added to the database via
Algorithm 1, a relatively large number respect the stability constraints.

5.5. Comparison to alternative approaches

As shown above, the procedure introduced in Section 4 and implement-
ing, via Algorithm 1, a trade-o� between exploitation and exploration to
generate Nsup = 20 additional con�gurations for the database, delivers ef-
�cient results. To determine how e�cient these results really are, let us
compare the results obtained with Algorithm 1 with alternative approaches
to generate the Nsup = 20 additional con�gurations. Recall for comparison
purpose that, using Algorithm 1 with Nsup = 20 and a decaying β, 14 of the
20 additional con�gurations (i.e., 70%) respect the stability constraints and,
among these con�gurations respecting the constraints, we have a projectile
for which the average drag is equal to 0.34.

Alternative approach 1 (Random generation). In this �rst alternative
approach, we choose to generate, in a random manner, 60 new con�gurations
X ∈ X , i.e., three times more than Nsup = 20. Only 20% of the randomly
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generated con�gurations respect the constraints (which is much smaller than
the 70% obtained with Algorithm 1) and, among these con�gurations re-
specting the constraints, the smallest J is 0.42 (which is 20% larger than
what is obtained with Algorithm 1).

Alternative approach 2 (Exploration only). Instead of balancing ex-
ploitation and exploration, we choose in this second alternative approach
to uniquely favour the exploration objective. This can, e.g., be achieved
by performing Algorithm 1 with an alternative de�nition for the acquisition
function A(X), i.e., A(X) = δmin(X). When we follow this approach with
Nsup = 20, the extended database does not improve the initial one. Indeed,
none of the additional con�gurations respects the stability constraints.

Alternative approach 3 (Exploitation only). Instead of balancing ex-
ploitation and exploration, we choose in this third alternative approach to
uniquely favour the exploitation objective. This can be achieved by per-
forming a modi�ed Algorithm 1 where, in step 1 of the repeat loop, Xnew is
determined using optimization problem (9). When we follow this approach
with Nsup = 20, we obtain 20 additional con�gurations of which only one re-
spects the constraints. This con�guration X = (13.23, 10, 1.34, 1.72, 0) also
achieves an average drag of 0.34. Since this particular con�guration (the only
one respecting the constraints) is obtained at iteration 19 of the repeat loop,
this means that, as opposed to the initially proposed approach, this third
alternative would not lead to any con�guration respecting the constraints if
Nsup < 19.

Alternative approach 4 (classical Bayesian Optimization). Another
alternative approach to generate the Nsup = 20 additional con�gurations is
to use classical Bayesian Optimization with a Gaussian Process model as sur-
rogate model (see the remark 4 at the end of Section 4). We will here use the
Bayesian Optimization formulation given in (Gardner et al., 2014). When
this approach is applied9 to generate Nsup = 20 additional con�gurations,
we obtain a con�guration for which the average drag is equal to 0.37 which
is approximately 10% higher than the optimal average drag obtained with

9We have run the corresponding algorithm a number of times and we here report the
best case result.
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Algorithm 1. Moreover, among the 20 con�gurations selected via Bayesian

Optimization, only 3 respect the constraints while there were 14 with Algo-
rithm 1.

Table 4: Comparison between the di�erent alternatives

Approach J(X) at % of tested con�gurations
the optimum which respect the constraints

Proposed approach 0.34 70%
Random generation 0.42 20%
Exploration only - 0%
Exploitation only 0.34 5%

Bayesian Optimization 0.37 15%

Table 4 summarizes the results obtained from the di�erent alternatives.
As we can see from this table and from the discussions above, it is clear that
the proposed approach balancing exploitation and exploration has the best
overall results for this particular geometrical con�guration. Indeed, it is the
one which provides the con�guration with the lowest average drag J(X) and
where there are the most tested con�gurations which respect the constraints.

6. Conclusion

In this paper, we optimize the geometrical con�guration of a rectangular
�nner to obtain the least drag under some stability constraints, for a �at
trajectory �re. This particular aerodynamic design problem is formulated as
an optimization problem involving the stability derivatives of the projectile.
Using an initial database, a (cost-e�ective) neural network surrogate model
is used to model the stability derivatives. A procedure balancing exploitation
and exploration is then devised to determine, based on that surrogate model,
the values of the design variables for which the stability derivatives have to
be evaluated to both improve the surrogate model and approach the optimal
design of the projectile. By increasing the size of the database by a mere 6%,
the proposed procedure allows to reduce by 25% the drag of the projectile
with respect to the best projectile in the initial database. Moreover, on this
particular application, the proposed procedure is shown to yield a projectile
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with 10% less drag than the one that would have been obtained using classical
Bayesian Optimization.
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Appendix A. Neural networks

A neural network is a static mapping between a vector u of inputs (of
dimension nu) and a vector y of outputs (of dimension ny)

10. Let us focus on
neural networks with one hidden layer since it is the structure that is used in
Section 5. In such a network, each entry yi (i = 1, . . . , ny) of y is expressed as
an a�ne combination of so-called neurons νk(u) (k = 1, . . . , nν) (the number
of neurons is denoted nν):

yi =
nν∑
k=1

wikνk(u) + bi, (A.1)

with bi a scalar o�set and wik scalar weightings. The quantity νk(u) (k =
1, . . . , nν) is a nonlinear mapping of the entries of the input vector u =
(u1, . . . , unu)T :

νk(u) = Φ

(
b̃k +

nu∑
l=1

w̃klul

)
, (A.2)

10In the study case considered in this paper, we have that nu = 6 and ny = 3.
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where Φ(x) is generally the so-called recti�ed linear unit (reLu) activation
function, i.e., Φ(x) = max(0, x) and where w̃kl and b̃k are scalar coe�cients.
Since the coe�cients bi, wik, w̃kl, b̃k are all free coe�cients (that we can
gather in a vector θ as proposed in Section 3.2), the equations (A.1) and
(A.2) represent a parametrized (static) mapping between the input vector
and the output vector. As explained in Section 3.2, the value of the parame-
ter vector θ will be determined based on data (see the criterion (11) - (12)).
The criterion (11) - (12) is generally solved via the back-propagation method
which uses Gradient Descent (Ruder, 2016) to determine in an iterative man-
ner the solution θ̂ of (11) - (12).

33


