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Franche-Comté, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex, France

bDepartment of Mathematics and Statistics, University of Nebraska at Kearney, Kearney, USA

Abstract

We present a formal development of the tensorial rotational Hamiltonian using symbolic
calculations. Algebraic manipulations thanks to the open-source Maxima software allow
us to get formal expressions of use for various molecular spectroscopy problems. We first
present some simple applications to the so-called semi-classical approach that allows the
study of level structures in the molecular rotational energy spectrum. Then, we perform
some comparisons between the tensorial approach and Watson’s Hamiltonian, giving exact
effective molecular parameter correspondance formula between the two formalisms.
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1. Introduction

The expression of the vibration-rotation Hamiltonian operator of polyatomic molecules
is the essential starting point for high-resolution molecular spectroscopy studies. This ex-
pression is quite complex and has been the subject of many papers since the very beginning
of quantum mechanics almost a century ago, with the first article on this subject by Born
and Heisenberg [1]. A few years later, Born and Oppenheimer separated the electronic
and vibration-rotation motions, leading to the famous Born-Oppenheimer approximation
[2]. The detailed expansion mathematically relies on perturbation theory and especially
benefited of its so-called contact transformation version as defined by Van Vleck [3]. Since
then, the detailed form of the Hamiltonian has been adapted many times. In particular,
a widely-used standard form has been defined by Watson in a seminal paper [4] and this
was refined a few years later by Aliev and Watson [5, 6]. The final form to which authors
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nowadays refer to is the one given in the famous book of Papoušek and Aliev [7]. This
molecular Hamiltonian is sometimes referred to as the Watsonian. More details about the
Hamiltonian and its symmetry properties can be found in Ref. [8], which is another classical
textbook on the subject.

This is, however, not the end of this story. For some molecules, a different form may be
more adapted in practice. This is especially the case for species with a high-symmetry at
equilibrium like spherical-top molecules with Td or Oh symmetry, as for instance methane
(CH4) or sulfur hexafluoride (SF6). This requires the intensive use of group theory and
tensorial development methods and was investigated first in 1938-39 by Jahn [9, 10, 11].
Later on, Moret-Bailly set up a more general spherical-top version [12, 13] that was further
refined by Champion [14, 15] and other authors in Russia and France [16, 17, 18, 19, 20]; this
makes intensive use of tensorial formalism [15, 21, 22]. In 1998, Mourbat and Loëte gave
analytical expressions of some tensorial effective Hamiltonian parameters for tetrahedral
XY4 molecules as a function of molecular constants (inertia, Coriolis and potential energy
constants). A similar tensorial development approach has also been set up for the develop-
ment of the dipole moment operator, which is essential for the calculation of absorption line
intensities [23, 24, 25].

In fact, it appears that the tensorial approach is not necessarily restricted to spherical-
top molecules. Sartakov et al. made use of this technique for the ethylene molecule with
D2h symmetry [26]. Our group in Dijon has set up a number of tensorial approaches for
species with C4v [27, 28, 29], C2v [30, 31] and C3v [32, 33, 34] symmetry. It should be also
recalled that the famous molecular spectrum calculation and fit programs SPCAT/SPFIT
by Pickett also rely on a tensorial development [35].

All these expansions are nowadays implemented in various programs that perform nu-
merical calculations of Hamiltonian matrix elements. In this context, however, it is also very
useful to be able to express these general developments in a formal algebraic way. This is
for instance the basis of the so-called semi-classical approach that studies the topology of
rotational energy surfaces for a qualitative understanding of spectral structures like cluster-
ing of energy levels [36, 37, 38, 39, 40, 41, 42, 43, 44]. This requires a literal expression of
rotational operators as a function of elementary angular momentum components (Jx, Jy, Jz).
Algebraic expressions are also of great importance to perform analytical contact transfor-
mations for perturbational treatments [19, 20] and, finally, for term-to-term comparisons of
effective Hamiltonian parameters expressed using different formalisms [45, 46]

In this paper, we consider this problem for the purely rotational Hamiltonian. We present
an algebraic expansion of the tensorial Hamiltonian using the Maxima [47] open-source
symbolic calculation software. The method employed here makes use of non-commutative
multiplication of operators ; commutation relations of angular momentum operators are used
to reorder factors in each term in a standardized form in order to allow easy comparisons
with other developments.

The paper is organized as follows. In section 2 we present the expression of tensorial
rotational operators. Then, in Section 3, we detail the methods employed for formal calcu-
lations. Section 4 outlines how this could be used for semi-classical analyses and Section 5
gives comparisons between tensorial Hamiltonians and the Watsonian.
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2. Definition of rotational tensorial operators

Rotational operators in the so-called “Dijon” tensorial formalism are symmetrized poly-
nomials of the elementary rotational angular momentum operators, Jx, Jy and Jz. The
construction described below was introduced by Moret-Bailly [48, 49] and further formal-
ized by Zhilinskíı [50], based on an original method from Buckmaster et al. [51]. Some more
details can be found in a book chapter [15]. But all essential definitions are given here.

We start from the rank 1 spherical tensor in the O(3) group:

J
(1)
+1 = − 1√

2
(Jx − iJy) , (1)

J
(1)
0 = Jz, (2)

J
(1)
−1 =

1√
2

(Jx + iJy) . (3)

We then define:
R1(1)
m = 2J (1)

m , (4)

where m = −1, 0 or +1 and the factor 2 allows to match with Buckmaster’s definition [51].
Then, a rotational operator of maximum degree Ω, rank K and component m in O(3),

with
K = Ω,Ω− 2,Ω− 4, . . . 0 or 1 (5)

and
−K ≤ m ≤ +K (6)

(Ω, K and m being integers) is written as:

RΩ(K)
m = R

Ω−K(0)
0 ×RK(K)

m , (7)

where

R
Ω−K(0)
0 =

(
R

2(0)
0

)Ω−K
2

(8)

and

R
2(0)
0 =

(
R1(1) ⊗R1(1)

) (0)
0 = − 4√

3

(
J2
x + J2

y + J2
z

)
= − 4√

3
J2. (9)

Here, J represents the angular momentum vector with components (Jx, Jy, Jz). R
K(K)
m is

defined recursively as:
RK(K)
m =

(
RK−1(K−1) ⊗R1(1)

)
(K)
m . (10)

In previous equations, the tensor product ⊗ of two operators is obtained through:(
RΩ1(K1) ⊗RΩ2(K2)

)
(K)
m =

√
2K + 1

∑
m1,m2

(−1)K1+K2−m
(
K1 K2 K
m1 m2 −m

)
RΩ1(K1)
m1

RΩ2(K2)
m2

. (11)
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In this formula, (
K1 K2 K
m1 m2 −m

)
is a 3j −m symbol of Wigner [52, 53]. Non-zero symbols obey the two following rules:

|K1 −K2| ≤ K ≤ K1 +K2, (12)

m1 +m2 −m = 0. (13)

An essential point is that the Jx, Jy and Jz operators do not commute with each other,
so that the order of terms is important. As usual, we have (in atomic units, so that ~ = 1),

[Jα, Jβ] = iεαβγJγ, (14)

where εαβγ is the Levi-Civita permutation symbol over coordinates (α, β, γ), those ones being
any permutation of (x, y, z).

These rotational operators can then be symmetrized into the molecular point group of the
molecule at equilibrium, which is a subgroup of O(3). In the case of spherical-top molecules
that have been considered at high-resolution up to now, this is either Td (for molecules like
CH4, SiH4, GeH4, . . . ) or Oh (for molecules like SF6, UF6, . . . ). This symmetrization is
realized thanks to:

RΩ(K,nC)
σ =

∑
m

(K)Gm
nCσR

Ω(K)
m . (15)

In this expression, C is an irreducible representation of Td or Oh, σ is one of its compo-
nents and n is a multiplicity index. The coefficients of matrix (K)Gm

nCσ that performs this
transformation are determined through the method explained in Refs. [54, 55]. As we show
below (see Section 5), such a symmetrization can also be performed in other point groups
or pushed further in Td or Oh subgroups (like C2v, C4v, . . . ) for less-symmetrical molecular
species. But let us first concentrate on spherical-top molecules.

3. Formal calculations

In order to express tensorial rotational operators as functions of Jx, Jy and Jz we use
the Maxima formal calculation software [47]. Its Web site contains the full documentation.
We outline here some specific elements used for the present calculations.

Wigner’s symbols can be calculated by loading the built-in “Clebsch-Gordan” library
through the command

load("clebsch gordan");

Then, one can use functions like

wigner 3j(K1,K2,K,m1,m2,-m);
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to calculate the necessary 3j −m symbols(
K1 K2 K
m1 m2 −m

)
.

In Maxima, the asterisk (*) is used for normal multiplication, while the dot (.) is
used for non-commutative multiplication, which is convenient (and mandatory) for operator
calculations. For instance, we can use:

(Jx+%i*Jy).(Jx-%i*Jy);

where %i is the imaginary unit. In the same way,,the caret (^) is used for the standard ex-
ponent, while the double caret (^^) is used for the non-commutative exponent. For instance
we can use:

(Jx+%i*Jy)^^2;

We have built a Maxima program applying the operator construction rules presented
in the previous Section. The source is given as supplementary material to this paper, as
explained in the Appendix. We now give some results as examples. The outputs presented
in the following are formatted in LATEX using the tex() command in Maxima, without any
further change.

3.1. Expression of R
K(K)
m operators

The program expands all operators in terms of Jx, Jy and Jz polynomials, firstly in their

O(3) form. For instance, the operator R
3(3)
0 is:

R
3(3)
0 = −2

5
2 Jz · Jy

2

√
5

− 2
5
2 Jz · Jx

2

√
5

+
2

7
2 Jz

3

√
5
− 8
√

3 Jy
2 · Jz√

5
√

6

−2
5
2 Jy · Jz · Jy√

5
− 8
√

3 Jx
2 · Jz√

5
√

6
− 2

5
2 Jx · Jz · Jx√

5
. (16)

All R
K(K)
m operators are obtained through the recursive rule (10).

3.2. Expression of R
Ω(K)
m operators

Then, rule (7) leads to the expansion of any operator R
Ω(K)
m with Ω > K. For example:

R
5(3)
0 =

2
9
2 Jz

3 · Jy
2

√
3
√

5
+

2
9
2 Jz

3 · Jx
2

√
3
√

5
+

32 Jz
2 · Jy

2 · Jz√
5
√

6
+

2
9
2 Jz

2 · Jy · Jz · Jy√
3
√

5

+
32 Jz

2 · Jx
2 · Jz√

5
√

6
+

2
9
2 Jz

2 · Jx · Jz · Jx√
3
√

5
− 2

11
2 Jz

5

√
3
√

5
+

32 Jy
4 · Jz√

5
√

6

5



+
2

9
2 Jy

3 · Jz · Jy√
3
√

5
− 2

11
2 Jy

2 · Jz
3

√
3
√

5
+

2
9
2 Jy

2 · Jz · Jy
2

√
3
√

5
+

2
9
2 Jy

2 · Jz · Jx
2

√
3
√

5

+
32 Jy

2 · Jx
2 · Jz√

5
√

6
+

2
9
2 Jy

2 · Jx · Jz · Jx√
3
√

5
+

32 Jx
4 · Jz√

5
√

6
+

2
9
2 Jx

3 · Jz · Jx√
3
√

5

−2
11
2 Jx

2 · Jz
3

√
3
√

5
+

2
9
2 Jx

2 · Jz · Jy
2

√
3
√

5
+

2
9
2 Jx

2 · Jz · Jx
2

√
3
√

5
+

32 Jx
2 · Jy

2 · Jz√
5
√

6

+
2

9
2 Jx

2 · Jy · Jz · Jy√
3
√

5
. (17)

3.3. Expression of (K)Gm
nCσ coefficients

The Td symmetrization matrix (K)Gm
nCσ calculation has not yet been implemented in the

Maxima program. At present, since we use it for a few low K values only, we enter the
values by hand. At a later stage, a program implementing the algorithm defined in Ref. [55]
should be implemented.

3.4. Expression of R
K(K,nC)
σ operators

To illustrate the use of the (K)Gm
nCσ coefficients, here is the example of the R4(4,A1)

operator [55]:

R4(4,A1) =

√
5

24

(
R

4(4)
4 +R

4(4)
−4

)
+

√
7

12
R

4(4)
0 . (18)

This one is the first non-scalar purely rotational operator for a tetrahedral molecule, i.e.
the first one that is not a simple combination of J2 powers (we recall that the Hamiltonian
operators for a molecule of a given point group symmetry must transform according to the
totally symmetric irreducible representation of this point group; this is A1 in the case of Td).

The expansion of this important operator R4(4,A1) is:

R4(4,A1) = −16
√

7 (Jz · Jy)2

√
14
√

15
− 16

√
7 (Jz · Jx )2

√
14
√

15
− 16

√
7 Jz

2 · Jy
2

√
3
√

5
√

14
− 16

√
7 Jz

2 · Jx
2

√
3
√

5
√

14

−2
7
2 Jz · Jy

2 · Jz√
3
√

5
− 2

7
2 Jz · Jx

2 · Jz√
3
√

5
+

2
9
2 Jz

4

√
3
√

5
− 2

7
2 (Jy · Jz )

2

√
3
√

5

+
4
√

7 (Jy · Jx )2

√
14
√

15
− 4
√

5 (Jy · Jx )2

√
6

− 16 Jy
2 · Jz

2

√
5
√

6
− 4
√

7 Jy
2 · Jx

2

√
14
√

15

+
2

7
2

√
7 Jy

2 · Jx
2

√
5
√

6
√

14
− 4
√

5 Jy
2 · Jx

2

√
6

− 16
√

7 Jy · Jz
2 · Jy√

14
√

15
+

4
√

7 Jy · Jx
2 · Jy√

14
√

15

−4
√

5 Jy · Jx
2 · Jy√

6
+

4
√

7 Jy
4

√
14
√

15
+

2
7
2

√
7 Jy

4

√
5
√

6
√

14
+

4
√

5 Jy
4

√
6

−2
7
2 (Jx · Jz )

2

√
3
√

5
+

4
√

7 (Jx · Jy)2

√
14
√

15
− 4
√

5 (Jx · Jy)2

√
6

− 16 Jx
2 · Jz

2

√
5
√

6

−4
√

7 Jx
2 · Jy

2

√
14
√

15
+

2
7
2

√
7 Jx

2 · Jy
2

√
5
√

6
√

14
− 4
√

5 Jx
2 · Jy

2

√
6

− 16
√

7 Jx · Jz
2 · Jx√

14
√

15
6



+
4
√

7 Jx · Jy
2 · Jx√

14
√

15
− 4
√

5 Jx · Jy
2 · Jx√

6
+

4
√

7 Jx
4

√
14
√

15
+

2
7
2

√
7 Jx

4

√
5
√

6
√

14

+
4
√

5 Jx
4

√
6

. (19)

4. Semi-classical analysis

The full expansion of rotational operators is very convenient to perform semi-classical
analyses as proposed by Harter and co-workers, see for instance [56] and references therein,
as well as the references cited in the Introduction of the present paper. In short, it consists
in considering the Jx, Jy and Jz operators as classical continuous variables. If we then
express them in spherical coordinates, the Hamiltonian for a given J value of the rotational
quantum number spans a rotational energy surface, whose topology gives some information
about the molecular behavior.

Figure 1 shows a formal example of the rotational energy surfaceE(Jx, Jy, Jz) = E(J, θ, φ)
for a tetrahedral molecule at some high value of the rotational quantum number J (θ and φ
being the usual spherical coordinates angles).

[Figure 1 about here.]

The energy on extremal points (maxima, minima, saddle points, lying on symmetry
axes) of the rotational energy surface, plotted as a function of the J rotational quantum
number, follow the quantum energies obtained through the diagonalization of the quantum
Hamiltonian, as illustrated on Figure 2.

[Figure 2 about here.]

Graphics in this section were obtained using the draw package in Maxima. See the source
code given as supplementary material to this paper, as explained in the Appendix.

The two examples above use fictive effective rotational Hamiltonian values, for illustra-
tion purpose only. Real examples of such semiclassical analyses can be found in previous
papers for GeF4 [57], P4 [44], Mo(CO)6 [58], or CF4 [59]. It should be noticed that these
papers present such semiclassical curves and surfaces for excited vibrational states. The ex-
pansion of vibrational operators is not yet implemented in the present approach which thus
does not allow this directly at present; but it is our next development goal, as we explain it
in the Conclusion of this paper below.

5. Rotational Hamiltonian comparisons

The above-described R operators can also be used to construct effective rotational Hamil-
tonians for lower-symmetry molecules like symmetric- or asymmetric-tops. It is then possible
to compare the result with Watson’s Hamiltonian (see for instance Ref. [7]) and to express
the relations between the parameters in both formalisms.
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We can use this for:

• The “distorted” Td tensorial formalism that we use for asymmetric C2v-top molecules
[30, 31] like SO2F2 [60, 45].

• The symmetric C3v-top tensorial formalism [32, 33, 34] we use for molecules like CH3D,
CH3I [46], trioxane [61], . . .

The problem here is that although the Hamiltonian expressed in our formalism and
Watson’s expression should be fully equivalent (same number of operators), their expressions
in terms of Jx, Jy and Jz operators are different. Thus, a one-to-one comparison needs to
write both on the same standard form, that is all factors in each term should be reordered
like:

Jmx J
n
y J

p
z ,

(with m, n and p integers). This is performed using commutators as defined in Eq. (14).

5.1. Implementation of factor reordering in Maxima
The Maxima operator package described above is written in the Maxima language. Al-

though the package was primarily created to solve the computational problems in this paper,
it is adaptable to a variety of symbolic operator computations. Users can define their own
operators and extend Maxima’s general simplifier with rules for simplifying compositions of
operators. The simplification rules, for example, replace pq by qp− i~ or JyJx by JxJy− i~Jz
are handled by writing procedural Maxima code, not by using pattern matching.

The operator package has utilities for applying operators to functions and for converting
from a Maxima dot (.) form (for example, q.p.Ψ) to a functional form (for example, q(p(Ψ))).
Users can attach a formula to an operator (for example, attach −i~ d

dx
to the momentum

operator). A utility in the operator package dispatches the operator formulae and is based
on this conversion technique.

The source code of this utility named “angular” and that performs reordering of factors
in the form Jmx J

n
y J

p
z is given as supplementary material to this paper, as explained in the

Appendix.

5.2. Example for an asymmetric-top molecule
As a first example, let us consider the SO2F2 case from Ref. [45] that uses an O(3) ⊃

Td ⊃ C2v symmetrization, this amounts to compare:

HC2v
tensorial = −t1

√
3

4
R2(0,A1) + t2R

2(2,E)
1 + t3R

2(2,F2)
z + t4

3

16
R4(0,A1)

+t5R
4(2,E)
1 + t6R

4(2,F2)
z + t7R

4(4,A1) + t8R
4(4,E)
1

+t9R
4(4,F2)
z − t10

3
√

3

64
R6(0,A1) + t11R

6(2,E)
1 + t12R

6(2,F2)
z

+t13R
6(4,A1) + t14R

6(4,E)
1 + t15R

6(4,F2)
z + t16R

6(6,A1)

+t17R
6(6,E)
1 + t18R

6(6,0F2)
z + t19R

6(6,1F2)
z , (20)

8



(where the factors multiplying t1, t4 and t10 are used to match with the standard terms in
J2, J3, J6, . . . , see Refs. [15, 62, 21]) with the non-reduced Watsonian (see Eq. (17.3.1) of
Ref. [7]):

HC2v
Watson = B200J

2 +B020J
2
Z + T400(J2)2 + T220J

2J2
Z + T040J

4
Z

+Φ600(J2)3 + Φ420(J2)2J2
Z + Φ240J

2J4
Z + Φ060J

2
Z

+
1

2
[B002 + T202J

2 + T022J
2
Z + Φ402(J2)2 + Φ222J

2J2
Z

+Φ042J
4
Z , J

2
+ + J2

−]+

+
1

2
[T004 + Φ204J

2 + Φ024J
2
Z , J

4
+ + J4

−]+

+Φ006(J6
+ + J6

−), (21)

where [A,B]+ = AB+BA denotes the anticommutator and the ladder operators are defined
as:

J± = JX ± iJY . (22)

In this case, as explained by Eq. (14) in Ref. [45], it is necessary to perform a rotation
between the Td frame (x, y, z) used for tetrahedral molecules and the C2v asymmetric-top
frame (X, Y, Z) used for the Watsonian.

Once everything is expanded and all terms reordered as explained above, it is easy to
express the constants in one formalism as a function of those in the other one by simply
identifying the coefficients of identical Jmx J

n
y J

p
z terms in both Hamiltonians and then solve

the resulting linear equation system.
As an example, the comparison of (20) and (21) leads to:

t1 =
C

3
+
B

3
+
A

3
+

Φ060

21
− T040

15

t2 = − C

4
√

6
− B

4
√

6
+

A

2
√

6
+

Φ060

2
√

6
− 5T040

14
√

6

t3 = − C
2

5
2

+
B

2
5
2

− 3 Φ042

7
√

2
+

5T022

7
√

2

t4 = T400 −
Φ240

15
+
T220

3
− Φ060

7
+
T040

5

t5 =
5 Φ240

7 2
7
2

− T220

2
7
2

+
5 Φ060

7 2
5
2

− 3T040

7 2
5
2

t6 = −5
√

3 Φ222

7 2
5
2

−
√

3T202

2
5
2

− 13 Φ042

28
√

6
−
√

3T022

7 2
5
2

t7 = −7
√

5 Φ060

88
√

6
+

T040

8
√

30
− 19

√
5 Φ024

11
√

6
−
√

5T004

4
√

6

t8 =
5
√

7 Φ060

88
√

6
− T040

8
√

42
− 19

√
7 Φ024

11
√

6
−
√

7T004

4
√

6
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t9 =
41 Φ042

44
√

14
+

T022

4
√

14

t10 = Φ600 +
Φ420

3
+

Φ240

5
+

Φ060

7

t11 =

√
3 Φ420

2
11
2

+
3

3
2 Φ240

7 2
9
2

+
5
√

3 Φ060

7 2
11
2

t12 =
3 Φ402

2
9
2

+
3 Φ222

7 2
9
2

+
Φ042

7 2
9
2

t13 = − Φ240

32
√

10
+

√
5 Φ204

2
9
2

− 3
√

5 Φ060

11 2
11
2

+

√
5 Φ024

11 2
7
2

t14 =
Φ240

32
√

14
+

√
7 Φ204

2
9
2

+
15 Φ060

352
√

14
+

√
7 Φ024

11 2
7
2

t15 = −
√

3 Φ222

16
√

14
− 3

3
2 Φ042

88
√

14

t16 = − Φ060

32
√

462
−
√

7 Φ024

8
√

66

t17 =
Φ060

32
√

66
− Φ024

8
√

66

t18 =

√
79
√

421 + 1684
(√

421 Φ042 +
(
79
√

421− 1684
)

Φ006

)
20208

√
5
√

11

t19 = −

√
79
√

421 + 1684
((

79
√

421− 1684
)

Φ042 − 495
√

421 Φ006

)
3334320

These relations can easily be inverted.

5.3. Example for a symmetric-top molecule

Our recent work on the trioxane molecule [61] with C3v point group symmetry led us
to perform a comparison between our C3v tensorial formalism with the usual Watsonian
expansion of the rotational Hamiltonian up to octic terms [5, 7, 63]. Thus, in this case,
we compare the “Dijon” C3v tensorial formalism in the O(3) ⊃ C∞v ⊃ C3v group chain
[32, 33, 34]:

HC3v
tensorial = −t1

√
3

4
R2(0,Σ+A1) + t2R

2(2,Σ+A1) + t3
3

16
R4(0,Σ+A1) + t4R

4(2,Σ+A1)

+t5R
4(4,Σ+A1) + t6R

4(4,ΦA1) − t7
3
√

3

64
R6(0,Σ+A1) + t8R

6(2,Σ+A1)

+t9R
6(4,Σ+A1) + t10R

6(4,ΦA1) + t11R
6(6,Σ+A1) + t12R

6(6,ΦA1)

+t13R
6(6,IA1) − t14

9

256
R8(0,Σ+A1) + t15R

8(2,Σ+A1) + t16R
8(4,Σ+A1)

+t17R
8(6,Σ+A1) + t18R

8(8,Σ+A1), (23)
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with the Watsonian [5, 7, 63]:

HC3v
Watson =

BJ2 − (B − C)J2
z −D(J2)2 −DJKJ2J2

z −DkJ
4
z

ε
[
Jz, J

3
+ + J3

−
]

+
+ εJJ

2
[
Jz, J

3
+ + J3

−
]

+
+ εK

[
J3
z , J

3
+ + J3

−
]

+

+HJ(J2)3 +HJK(J2)2J2
z +HKJJ

2J4
z +HKJ

6
z + h′3(J6

+ + J6
−)

+LJJJJ(J2)4 + LJJJK(J2)3J2
z + LJJKK(J2)2J4

z

+LJKKKJ2J6
z + LKKKKJ

8
z , (24)

In both cases, only scalar octic terms (i.e. powers of J2 and Jz only) have been considered,
just as in Ref. [63]. At this point, we should notice an error in Eq. (18.2.4a) in the book of
Papoušek and Aliev concerning the operator associated to εk. The anticommutator should be
written as above, including J3

z , otherwise this term does not get the correct symmetrization;
this error was not present in Aliev and Watson’s original paper [5].

As before, the comparisons leads to identify terms and to solve linear equations of pa-
rameters in both formalisms to get:

t1 = −LKKKK

15
+
HK

21
+
DK

15
+

2B

3
+
A

3

t2 = −25LKKKK

22
√

6
+

HK

2
√

6
+

5DK

14
√

6
− B

2
√

6
+

A

2
√

6

t3 =
LKKKK

5
− HKJ

15
− HK

7
− DK

5
+
LJKKK

21
− DJK

3
−DJ

t4 = −19LKKKK

11 2
5
2

+
5HKJ

7 2
7
2

+
5HK

7 2
5
2

+
3DK

7 2
5
2

− LJKKK

2
7
2

+
DJK

2
7
2

t5 =
249
√

7LKKKK

572
√

10
−
√

35HK

11 2
5
2

− DK

4
√

70

t6 = −ε
4
− 19 εK

88

t7 = −2LKKKK

9
+
HKJ

5
+
HK

7
− LJKKK

7
+
HJK

3
− LJJKK

15
+HJ

t8 = −35LKKKK

176
√

6
+

3
3
2 HKJ

7 2
9
2

+
5
√

3HK

7 2
11
2

− 5
√

3LJKKK

7 2
9
2

+

√
3HJK

2
11
2

− 5
√

3LJJKK

7 2
11
2

t9 =
15
√

105LKKKK

143 2
7
2

−
√

3HKJ

16
√

70
− 3
√

15HK

176
√

14
+

√
105LJKKK

11 2
9
2

t10 =
3

3
2 εK
176

+

√
3 εJ
16

t11 =
HK

16
√

231
−
√

21LKKKK

40
√

11
11



t12 = − εK

4
√

110

t13 =
h′3

2
5
2

t14 =
LKKKK

9
+
LJKKK

7
+
LJJKK

5
+
LJJJK

3
+ LJJJJ

t15 = −5LKKKK

11 2
11
2

− 15LJKKK

7 2
15
2

− 9LJJKK

7 2
13
2

− 3LJJJK

2
15
2

t16 =
9
√

35LKKKK

143 2
11
2

+
9
√

5LJKKK

704
√

14
+

3LJJKK

64
√

70

t17 = −
√

7LKKKK

240
√

11
− LJKKK

64
√

77

t18 =
LKKKK

48
√

1430

This corrects and extends the formulas presented previously for the CH3I molecule [46].
Again, it is easy to invert these relations in order to get Watson’s parameters as a function
of the tensorial ones. Such a conversion is used in Refs. [46, 61] to compare results of fits
using both formalisms.

The program used in this Section is given as supplementary material to this paper, as
explained in the Appendix.

6. Conclusion

In this paper, we have presented some algebraic manipulations on the effective rotational
Hamiltonian for molecular spectroscopy. Such manipulations allow formal expressions up
to any order of the development and are of particular interest for semi-classical approaches
and for the comparison of different formalisms. In particular, we have shown how to express
tensorial Hamiltonian parameters in terms of Watson’s parameters for asymmetric- and
symmetric-top molecules. The present work, however, only considered rotational operators
in terms of elementary components of the angular momentum. A further step will be to
consider the full rovibrational Hamiltonian by formally expressing vibrational operators
(and their couplings with rotational operators) in terms of elementary creation (a+) and
annihilation (a) operators. The dipole moment operator will also be considered because of
its importance for line intensity calculations. All this will be the subject of a future paper.
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Appendix: Code examples for Maxima

This appendix decribes the Maxima [47] source code files that we provide as supple-
mentary material to this paper. In particular, we explain here the operator numbering
conventions we use in these codes. All Maxima code files are given in the form of a .mac

text file (e.g. OpRot.mac) and has to be executed in Maxima thanks to the command
batch(".../OpRot");, where ... is the path to this file.

The first program is OpRot.mac and contains the code to generate operators for spherical-
top molecules described in Section 2 using the method given in Section 3. It draws Figures
1 and 2.

Operators are put into an array (or matrix) named R. We define this array with maximal
possible dimensions:

• First dimension: all possible Ω values up to Ωmax, that is Ωmax + 1 (counting Ω = 0).

• Second dimension: all possible K values for Ωmax, that is [Ωmax/2] + 1 ([ ] being the
integer part).

• Third dimension: all possible m values for Kmax = Ωmax, that is 2Ωmax + 1.

Array indexes in Maxima should always be strictly be positive integers. So we map R
Ω(K)
m

operators to R[i,j,k] array elements such that i=1 for Ω = 0, j=1 for the minimum K
value (0 or 1, depending whether Ω is even or odd) and k=1 for m = −K. Then array

indexes are incremented with increasing index values. For instance, R
2(0)
0 is stored in array

element R[3,1,1] and R
4(2)
1 is stored in array element R[5,2,4].

The second example code given here (file HamRotC3v.mac) corresponds to Section 5.3
where we compare the tensorial and Watsonian Hamiltonians for C3v symmetric tops. The
first program expands both Hamiltonian operators and performs the comparison; it outputs
the parameter correspondance formulas. This code relies on a subroutine (file angular.mac),
that performs the factor reordering in each term, as described in Section 5.1.
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Figures
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Figure 1: Rotational energy surface for a tetrahedral molecule at J = 80. The parameter constants (shown
on top) are arbitrary and for illustration purpose only, as a simple example. The value of the rotational
energy E(J, θ, φ) is plotted for each direction (θ, φ) and also coded by the color scale shown on the right, for
a better visualization. The three axis labels correspond to the energy value along each of the corresponding
x, y or z direction, defined as: Ex = E(J, π/2, 0), Ey = E(J, π/2, π/2), Ez = E(J, 0, 0). The energy unit is
arbitrary.
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Figure 2: Classical rotational energy curves on symmetry axes compared to quantum eigenvalues for a
tetrahedral molecule. As in Figure 1, the constants are arbitrary and for illustration purpose only. See
references in the text for concrete real examples.
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