
HAL Id: hal-04167635
https://hal.science/hal-04167635v1

Submitted on 20 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An explainable-by-design ensemble learning system to
detect unknown network attacks

Céline Minh, Kevin Vermeulen, Cédric Lefebvre, Philippe Owezarski, William
Ritchie

To cite this version:
Céline Minh, Kevin Vermeulen, Cédric Lefebvre, Philippe Owezarski, William Ritchie. An explainable-
by-design ensemble learning system to detect unknown network attacks. Custocy; LAAS - CNRS.
2023. �hal-04167635�

https://hal.science/hal-04167635v1
https://hal.archives-ouvertes.fr


Advancement Report

Collaboration and research contract
#247966

CNRS & Custocy

An explainable-by-design
ensemble learning system to

detect unknown network attacks

Authors:
Céline Minh
Kevin Vermeulen
Cédric Lefebvre
Philippe Owezarski
William Ritchie

July 20, 2023



Abstract

Machine learning (ML) is a promising technology for network intrusion detection
systems. There is a wide range of ML algorithms that are potential candidates
for network intrusion detection systems, as they exhibit very good detection ac-
curacy in average. However, significant detection differences appear when facing
different kinds of attacks, some being prone to better detect some particular at-
tack types. They then often appear to complement each other. The challenge
then lies in determining the accurate result when several ML models provide
different results, and this without any explanation about their decision. To ad-
dress this challenge, our system aims to reconstruct attack patterns from the
outputs of these ML models and presenting them in an interpretable manner.
For that, we propose an approach combining ensemble learning and stacking
with a meta-learner that works on graphical representation of traffic flows, that
then provides the required explainability level for the decisions made. The
evaluation of our system, using the CSE-CIC-IDS2018 dataset, demonstrates a
significant improvement achieved through the combination of multiple ML algo-
rithms. Furthermore, we emphasize the importance of explainability in network
intrusion detection systems and the need for accurate and interpretable models.
Our system goes beyond traditional detection methods by reporting anomalous
feature pairs and providing visual representations of attack patterns, empower-
ing analysts to better understand and respond to network threats.



Chapter 1

Introduction

Machine learning (ML) is a promising technology for network intrusion detection
systems (NIDSs) as it enables the detection of attacks on large amounts of data.
However, a limitation of ML models is their tendency to produce conflicting
results: different models may classify the same network flow as either an attack
or benign. This lack of consensus among models raises a challenge in identifying
the accurate result, as ML models are often considered as black boxes and lack
transparent explanations about their detection results. Efforts must be made
to address this challenge and find a solution that can determine the accurate
result when ML models face particular attacks in different traffic environments.

This opens the road to ensemble learning [22, 7], which is an approach that
combines multiple ML models, but that can provide different classification re-
sults on traffic flows. The problem is then to identify the appropriate model
that provides the right class for traffic flows. Ensemble learning is neverthe-
less a promising approach to achieve a more accurate attack detection system.
Specifically, stacking is an ensemble learning method that combines multiple
models, called base-learners, that perform the same task with a decision process
that finally tries to select the right model(s) with possibly the right decision
e.g., by weighted majority voting. To cope with the limits of such relatively
simple algorithms as majority or minority voting, a more sophisticated stacking
method starts to be considered for ML based IDS. This new approach takes
advantage of a meta-learner: the outputs of the multiple base-learners serve as
input to a higher-level model - the meta-learner - that, based on appropriate
learning methods, can select among all the base-learners the one with the right
classification results for traffic flows. Our contribution develops this approach.

We then propose a novel ensemble approach that systematically presents the
results of each base-learner in a graphical way for better visualization as well as
explainability purposes to security analysts. The graphical approach is aimed at
facilitating informed decision-making. Following the principle explained before,
the decision is made by the meta-learner through the training of a combination
of concise visual representations of network anomalies.

Explainability is the property of a system that makes its reasoning and
results understandable by humans [19, 10]. Security analysts play a crucial
role in making decisions based on NIDS analysis, and providing them with
intelligible evidence of the ML models’ detections is essential for building trust
in the system. Explainability not only enhances collaboration between analysts

2



and artificial intelligence (AI) systems but also helps engineers and researchers
understand the strengths and weaknesses of the models, enabling them to design
more accurate systems.

We propose a method that simultaneously allows users to take advantage of
ensemble learning from multiple base-learners to enhance detections and visual-
ize the results of all the base-learners to gain insights into how these detections
are made. We introduce a visual representation of unsupervised learning (UL)
detections over time that intends to both help security analysts understand
what is happening on the network and allow our meta-learner – a convolutional
neural networks (CNN) – to identify attack patterns [8, 23]. Our system is ex-
pected to preserve UL properties, including the detection of unknown attacks,
because the layer that is supervised, the meta-learner, does not train on raw
network traffic but on graphical features historically provided by base-learners,
i.e., meta-data.

Overall, our approach combines the advantages of ensemble learning and
explainability to enhance the detection performance of NIDSs and empower
security analysts in making informed decisions. We introduce an explainable-
by-design system that analyzes and combines a set of UL models to detect
network attacks. Our contributions can be summarized as follows:

1. A more transparent ML-based NIDS that enables security analysts to
understand and trust the system’s detections.

2. Visual representations of network anomalies that allows security analysts
to interpret and gain insights into the detected network anomalies.

3. An ensemble learning method that uses a CNN as a meta-learner to com-
bine base-learners.

Main results include that on our evaluation dataset, our system has only
three false positives (FPR 0.0093) and one false negative (TPR 0.9898) that
can be mitigated by the explainability provided by our system. To ensure ex-
plainability, our system provides intermediate and visual representations of the
data that can be easily understood by an analyst.

The rest of the paper is organized as follows:

• In Section 2, we will examine related work on ensemble learning, attack
detection, and explainable AI, and position our contribution in such a
context.

• In Section 3, we will detail the design of our anomaly detection system.
We will explain the different steps of the process, including network flow
aggregation, anomaly scoring with base-learners, generation of visual rep-
resentations of anomalies, and attack pattern recognition.

• Section 4 will present the results of each component of our system. We will
present the performance of each base-learner as well as the final model.

• Section 5 presents why our system is explainable and how it helps both
the overall accuracy and the decision process of a network analyst.

• Finally, in Section 6, we summarize our main contributions and emphasize
the advantages of our network attack detection system.

3



Chapter 2

Related Work

Our research investigates mechanisms to reconstruct attack patterns based on
multiple unsupervised learning detection techniques. Our work addresses is-
sues related to (1) ensemble learning, (2) attack patterns detection, and (3)
explainable AI.

Ensemble learning Regarding ensemble learning systems for network anomaly
detection, Vanerio and Casas [22] compared multiplemeta-learners for detecting
attacks. A meta-learner combines outputs of a set of base-learners to return a
more accurate detection. As an example of meta-learner, the authors considered
a weighted-majority voting algorithm where the weights were defined depending
on the accuracy of the base-learner. We have taken a different approach in which
the meta-learner is another ML layer, a CNN, that takes as input a visual rep-
resentation of the base-learners’ outputs and detects attack patterns on them.
Mirsky et al. [16] proposed Kitsune, an ensemble of autoencoders for detecting
network anomalies. The system relies on autoencoders, which are often con-
sidered as unsupervised learning techniques because they use unlabeled data,
but autoencoders still require a training phase on benign data. Kitsune stacks
autoencoders, by using another autoencoder as a meta-learner to process their
anomaly scores. The approach to combine base-learners is close to ours, except
that we address heterogeneous algorithms and data features combinations.

Attack patterns detection Regarding attack patterns detection, Zhou et
al. [26] proposed a system using LSTM to detect multi-stage attacks. Their
model treats sequences of alarms generated by the NIDS Snort and addresses
the problem of long-term dependency between the alarms. Ghafir et al. [9] pro-
posed a system for the detection and prediction of advanced persistent threats
(APT). The system uses the Hidden Markov Model (HMM) to detect the most
probable APT scenario given the raised alarms. Then, it forecasts the next step
of the ongoing APT. A significant difference with our work is that their system
is trained on a predefined attack lifecycle [11, 15], whereas our system learns at-
tack patterns directly from the data, without prior knowledge of specific attack
lifecycles. Wang et al. [23] converted raw traffic data, specifically pcap files,
directly into images. They also observed and identified attack patterns using
this image-based representation.

4



Explainable AI Wei et al. [24] observed that current general-purpose ex-
planation methods, such as SHAP [14] and LIME [19], are not suitable for
NIDSs because they do not handle dependencies of network flows’ features. To
overcome this issue, the authors proposed data-driven explanation methods for
Deep Learning (DL)-based NIDSs, that are based on history inputs. Based on
the extracted feature importance, the system generates defense rules to block
malicious activities. Han et al. [10] addressed ML explainability by proposing
a system to interpret existing unsupervised, DL-based NIDS. The system an-
alyzed a given model detection by providing the most important features and
describing their meaning so that a security expert can understand them. Instead
of relying on ad hoc descriptions of the features, we design a more transparent
system and provide a visual representation of traffic anomalies that can be easily
interpreted by the security analyst.

5



Chapter 3

System design

3.1 System overview

Our system takes networks flows as input (e.g., a pcap capture), splits them
in time frames of ∆T , and outputs, for each time frame, whether there was
an attack or not during that time frame. Figure 3.1 shows an overview of our
system.

First, the system aggregates flows by source and by destination on shorter
time intervals ∆t. It computes features from these aggregates, such as, for
instance, for an aggregate by source, the number of destinations that the source
exchanged traffic with during that time interval. These features are similar to
what was used in prior work [3, 4], and a complete list is given in Table 3.1.
This corresponds to the step 1 of Figure 3.1, which is detailed in Section 3.2.

Then, the system gives these features to a set of well selected base-learners.
One base-learner can for instance use Isolation Forest [13], whereas another one
can use Local Outlier Factor [2]. Each of these base-learners outputs an anomaly
score for each aggregate. As we are using three base-learners (Section 3.3.2),
each aggregate can be represented as a vector of three values in the three RGB
color channels. Concatenated together, they form color-encoded segments rep-
resenting the anomaly scores of a source or a destination over time intervals of
∆t. This corresponds to step 2 in Figure 3.1, whic is detailed in Section 3.3.

Finally, these color-encoded segments are put side-by-side to form an image
that represents network anomalies during a larger timeframe ∆T . Each line in
the image corresponds to the evolution of anomaly scores for aggregates of a
specific source or destination over the timeframe ∆T . This image is given to a
CNN, which is a layer of supervised learning that computes whether the image
contains an attack or not. This is shown in step 3 of Figure 3.1, which is detailed
in Section 3.4.

The rest of the section will detail, for each step, the motivation, challenges,
and design choices in building each of these components.

3.2 Aggregation of network flows

One classic question in designing anomaly detection techniques is how to rep-
resent the input traffic data. For instance, the CIC-CSE-IDS2018 dataset [21],

6



Figure 3.1: System overview. The system analyzes a traffic capture over a pe-
riod ∆T . First, it aggregates network flows from the capture that belong to the
same time interval ∆t and computes their features. Next, it applies a set of three
unsupervised base-learners to assign anomaly scores to the aggregates. After
that, the system generates a visual representation of the detected anomalies,
enabling a visualization of potential attack patterns. Finally, these representa-
tions are analyzed by an attack pattern recognition module, here a CNN, which
determines whether the network is under attack during the period ∆T .

7



Feature Aggregation key Description
n dst ip IPsrc Number of destination IP addresses
n src ip IPdst Number of source IP addresses
n dst ports IPsrc & IPdst Number of destination ports
n src ports IPsrc & IPdst Number of source ports
n fwd pkts IPsrc & IPdst Number of forward packets
n bwd pkts IPsrc & IPdst Number of backward packets
sum flx dur IPsrc & IPdst Sum of flows duration
tot flx IPsrc & IPdst Number of flows
sum pkts size IPsrc & IPdst Sum of packets size
std pkt size IPsrc & IPdst Standard deviation of packets size

Table 3.1: Aggregates features

that we use in that paper to evaluate our system, proposes 83 network flow
features to evaluate ML-based NIDSs, where a network flow is identified by the
5-tuple (source IP, destination IP, source port, destination port, protocol). A
traditional approach is to directly give these features to a machine learning al-
gorithm that will compute whether a flow is anomalous or not. There are two
problems with this approach: (1) The number of features tends to make the
anomaly detection problem hard, also called curse of dimensionality [3, 4] (2)
The result is rarely explainable. For instance, it is hard to understand why a
deep neural network did classify a flow as anomalous [16]. To overcome these
problems, we reduce the number of features by aggregating the flows by source
and by destination (Table 3.1), reducing the number of features from 83 to 9.
This reduction also helps for improving the explainability of our system (Sec-
tion 3.3).

We choose to aggregate the flows by source and by destination, because our
intuition is that some types of attacks are better identified by aggregating by
source, and some others are better identified by aggregating by destination.
For instance, certain types of a DDOS attack will involve a lot of traffic sent
to a particular destination, so we will probably observe an anomalous value in
the n src ip feature. We show that aggregates by source and by destination
are complementary, and give better results than aggregates by source or by
destination taken individually (Section 4.3).

These aggregates are computed over time intervals of ∆t = 2 minutes. We
make this decision to mitigate the impact of legitimate but sudden changes in
network traffic (such as variations on weekdays or weekends). Through empirical
evaluation, we determined that a time interval of 2 minutes provides effective
results (Section 4.2).

Moreover, to further reduce the dimensionality of our data, we only compute
the aggregates on IP addresses that are internal to the network under consider-
ation (i.e., the machines belonging to an enterprise network). To be clear, there
is no aggregates per destination for public destinations in the Internet.

In summary, aggregating network flows by source IP address and destination
IP address provides both a dimensionality reduction that benefits unsupervised
machine learning algorithms used in Section 3.3 and a better explainability for
security analysts.

8



3.3 Ensemble anomaly scoring

This component of the system (Step 2 on Figure 3.1) takes as input the ag-
gregates computed in the previous section, i.e., aggregates by source and by
destination over time interval of ∆t = 2 minutes. Its goal is to obtain an
anomaly score for each input aggregate. Our idea is to use ensemble learning
with multiple base-learners to achieve this goal, and we identify two challenges:
(1) For our system to be explainable, how can we compute a score that both
represent a degree of anomaly and is easily understandable by an analyst? (2)
Which base-learners should we select to maximize the performance?

3.3.1 Unsupervised anomaly scoring

Different base-learners can have very different approaches to compute the anomaly
scores, and this represents a challenge for us. Indeed, we cannot run a base-
learner directly on the features computed from the aggregates, as the anomaly
score would probably not be meaningful for an analyst. For instance, the clus-
ters computed by DBSCAN [6] in high-dimensional data and thus the anomalies
are hard to interpret. Instead, we run each base-learner on subspaces of k = 2
features among the n = 9 aggregate features of Table 3.1, similar to what was
done in the UNADA prior work [3, 4]. Each base-learner is therefore run on(
2
9

)
= 36 pairs of features. The anomaly score of an aggregate is then, for each

base-learner, the number of pairs of features that this base-learner considered
as anomalous, ranging from 0 to 36. The way a pair of features is considered
anomalous is specific to each base-learner, depending on the algorithm used.
This choice facilitates the interpretation, as one can retrieve which pairs of net-
work features were identified as anomalous, which are meaningful for a network
analyst.

3.3.2 Base-learners selection

We select three base-learners among unsupervised anomaly detection algorithms,
to be able to enlarge the scope of attacks that can be detected. We use three as
their output can then be converted into images, each base-learner representing
a color in the RGB channels (Section 3.4). This choice improves explainability
as the analyst can benefit from a visual representation of the anomaly scores.
Prior work has also showed that adding more base-learners does not necessarily
improve performance [5].

Our approach to select these three algorithms is data driven: we evaluate the
performance of all the possible combinations of three algorithms among the al-
gorithms available in the popular machine learning libraries scikit-learn [18] and
PyOD [25] on the CIC-CSE-IDS2018 dataset [21], and select the best combina-
tion, using the standard metrics of true postive rate (TPR) and false positive
rate (FPR) (Section 4.2).

These algorithms have different approaches, and our intuition is that ensem-
ble learning would work well to improve the accuracy of the system [5]. Namely,
we tested:

• Isolation Forest (IF) [13] detects anomalies using isolation. The algorithm
recursively constructs a random feature selection and split values to isolate

9



Figure 3.2: Anomaly scoring by three unsupervised base-learners during a time
interval ∆t. This analysis generates a vertical color-encoded segment that is
part of the visual representation of anomalies generated in Figure 3.4. Four
network flows are grouped into aggregates during a time interval ∆t. Then, the
features of the aggregates are extracted and prepared before being evaluated
by the three unsupervised base-learners. Each base-learner assigns an anomaly
score to each aggregate. A color is assigned to each model, allowing the rep-
resentation of anomaly scores on a monochromatic segment. By overlaying the
monochromatic segments from the base-learners, we obtain a color-encoded seg-
ment that represents the anomalies detected by the set of base-learners.

10



data samples. The anomaly score is determined by the number of splittings
required for isolation.

• Local Outlier Factor (LOF) [2] compares the local density of a data sample
with that of its neighbors to detect anomalies.

• DBSCAN [6] groups data samples into clusters based on their proximity.
If a group contains enough data samples, it forms a cluster; otherwise,
they are classified as outliers.

• One-Class SVM (OCSVM) [20] defines a hyperplane to separate data sam-
ples and detects anomalies based on their distance from the hyperplane.

• Unsupervised KNN [1] is a proximity-based model that uses the distance
to the kth nearest neighbor as an outlier score.

• COPOD [12] is a probabilistic model for anomaly detection.

Although our choice of the base-learners depends on the dataset, in practice,
an enterprise could reuse our methodology to choose the base-learners that are
the best suited to its traffic.

3.4 Attack patterns recognition

In the previous section, we selected a set of base-learners which detect anomalous
aggregates and output an explainable result. One problem is that they might
disagree on an aggregate, some of them might consider it as anomalous, whereas
some others might not, and there is no simple rule to decide which one is right.
One reason that could make them disagree is that some base-learners are better
than others at identifying some types of attacks, and the challenge is to take
advantage of their complementarity. Our idea is to use a meta-learner on top
of our three base-learners that will learn which base-learner is more suited for
which type of attack. Indeed, we show in Section 4.2 that we cannot simply
select the decision of the base-learner having the best performance [22].

To translate this idea into a design, we map the anomaly scores of the three
base-learners into colors of the RGB channels, with the intensity of a color
being proportional to the anomaly score. These pixels, representing aggregates
over time intervals of two minutes (Section 3.2), are then put together to form
an image of 30 minutes, where a line corresponds to a source or destination IP
address, depending on whether the aggregation is made by source or destination,
and each column corresponds to a time interval of two minutes. The ideas behind
building these images are two-fold: (1) Most of the attacks last more than 2
minutes, and moreover some of them can have complex patterns. By building
sequences of anomaly scores, we hope that our meta-learner will perform better
at detecting these complex attacks. (2) The images improve explainability as
they provide a useful visualization of the anomalous IP addresses and can be
easily translated to the original anomalous networking features.

This image is then given to a CNN. This CNN is used as a meta-learner to
identify attack patterns. The CNN takes as input the two matrices, one repre-
senting the aggregates by source and the other the aggregates per destination,
and outputs a decision of whether there was an attack during the 30 minutes
represented by the image.

11



The CNN requires a labeled dataset for training and validation. We choose to
label an image as an attack if this image contains at least one pixel representing
an attack, i.e., the corresponding aggregate is labeled as malicious traffic in our
dataset [21] (Section 4.1). Otherwise, the image is considered as benign.

An example of how this component works is given in Figure 3.3, which
represents a DoS and a Brute-Force attacks. The output of the base-learners
are represented on the images of the left. A white pixel means that all the base-
learners diagnosed the aggregate as highly anomalous, whereas a black pixel
means that none of the base-learners considered that aggregate as anomalous.
The images on the right represent our ground truth labeled dataset [21], with a
green pixel represents benign traffic, whereas a red pixel represents an attack.
Black pixels represent just an absence of traffic for an IP address during the
2 minutes. We observe that for both the DoS and the Brute-Force attack, the
anomaly scores given by the base-learners are generally high as they are closer
to the white color than to the black. However, notice that on the image on the
top left of the DoS attack, not all the base-learners had high anomalous scores,
as some pixels are turquoise and further from white, showing the necessity of
having a meta-learner to find the right decision.

12



Time

S
o
u
rc
e
IP

Color channel:

LOF

OCSVM

COPOD

Time

S
o
u
rc
e
IP

Benign

Attack

No aggregate

Time

D
e
st
in
a
ti
o
n

IP Color channel:

LOF

KNN

COPOD

Anomaly scores

Time

D
e
st
in
a
ti
o
n

IP

Benign

Attack

No aggregate

Labels

DoS Attack. In the label images, a red horizontal line indicates close emis-
sion and reception of attack flows by the victim. In the destination IP address
representation, the UL models detect the entire attack line as highly anoma-
lous, with some weakly anomalous benign aggregates. In the source IP address
representation, the attack line is detected as moderately anomalous.

Time

S
o
u
rc
e
IP

Color channel:

LOF

OCSVM

COPOD

Time

S
o
u
rc
e
IP

Benign

Attack

No aggregate

Time

D
e
st
in
a
ti
o
n

IP Color channel:

LOF

KNN

COPOD

Anomaly scores

Time

D
e
st
in
a
ti
o
n

IP

Benign

Attack

No aggregate

Labels

Brute-Force Attack. In the label images, the victim is shown to receive but
not emit attack flows. The attack is only visible in the destination IP address
representation, where the UL models detect the entire attack line as highly
anomalous, along with some weakly anomalous benign aggregates.

Figure 3.3: Anomaly Representations and Labels. The figures show anomaly
representations and labels for a brute-force attack and a DoS. The vertical axis
represents IP addresses, while the horizontal axis represents time intervals. The
left images display base-learner outputs using color channels, while the right
images show attack and benign labels (red and green pixels, respectively).

13



Figure 3.4: Attack pattern recognition on a visual representation of the de-
tected anomalies during a timeframe ∆T . The timeframe ∆T consists of, in this
example, 3 consecutive time intervals ∆t. The network flows from each time
interval ∆t are analyzed as shown in Figure 3.2. All the anomalies detected by
the N = 3 base-learners within a specific time interval ∆t are visually repre-
sented using color-coded segments. By arranging the 3 segments side by side,
we obtain a visual representation of network anomalies detected by the N = 3
base-learners during the timeframe ∆T .

14



Chapter 4

Results

Our system achieves an overall performance of a True Positive Rate 0.9898 and a
False Positive Rate of 0.0093, corresponding to three false positives and one false
negative (Section 4.3) that we can mitigate thanks to explainability (Section 5).
We achieve this performance by having the following intermediate results: (1) A
good combination of three base learners is better than only always trusting the
best of the three (Section 3.3). (2) Adding the CNN as a meta-learner on top of
the base-learners greatly improves the performance (Section 3.4) (3) Computing
the aggregates by source and by destination has a better performance than only
computing by source or destination (Section 3.4). Finally, we describe how
explainability helps the system to be more accurate in Section 5, as well as how
explainability can improve the decision process for a network security analyst.

4.1 Dataset

We evaluated our system on the CIC-CSE-IDS2018 dataset [21]. This dataset
represents a realistic enterprise network with 450 machines, and an attacking
infrastructure consisting of 50 machines. The dataset contains 10 days of net-
work captures, covering various simulated attack scenarios including brute-force
attacks, denial-of-service (DoS) attacks, distributed denial-of-service (DDoS) at-
tacks, web attacks, infiltration attacks, and botnet attacks. In particular, the
dataset provides the hours of the attacks and the source IP addresses making
the attack and the destination IP addresses receiving it, so we labeled the net-
work flows accordingly. An aggregate by source or by destination is labeled as
an attack if the source or the destination emits or receive traffic from or to an
attacking IP address. Finally, an image is labeled as an attack if one aggregate
in the image is labeled as an attack.

4.1.1 Aggregation of network flows

15



S
o
u
rc
e
IP

D
e
st
in
a
ti
o
n

IP
T
ra

ffi
c
C
a
te
g
o
ry

C
o
u
n
t

P
ro

p
o
rt
io
n

(%
)

C
o
u
n
t

P
ro

p
o
rt
io
n

(%
)

B
ru
te
-f
or
ce

4
1

0
.0
0
4
4
5
5

9
7

0
.0
0
9
5
4
7

D
en
ia
l
of

se
rv
ic
e

1
3

0
.0
0
1
4
1
2

7
0

0
.0
0
4
2
3
1

W
eb

0
0

1
3
3

0
.0
1
3
0
8
9

In
fi
lt
ra
ti
on

3
2

0
.0
0
3
4
7
7

7
6

0
.0
0
7
4
8
0

B
ot

1
5
0
0

0
.1
6
2
9
7
8

0
0

D
D
oS

5
8

0
.0
0
6
3
0
2

6
2

0
.0
0
6
1
0
2

B
en
ig
n

9
1
8
7
2
3

9
9
.8
2
1
3
7
6

1
0
1
5
6
5
1

9
9
.9
5
6
8
9
4

T
o
ta

l
9
2
0
3
6
7

1
0
0

1
0
1
6
0
8
9

4
3
8

T
ab

le
4.
1:

D
is
tr
ib
u
ti
on

of
ag
g
re
g
a
te
s
b
y
so
u
rc
e
a
n
d
d
es
ti
n
a
ti
o
n
IP

a
d
d
re
ss

fo
r
ea
ch

tr
a
ffi
c
ca
te
g
o
ry

16



Table 4.1 describes the distribution of aggregates for each traffic category.
There are fewer aggregates by source IP addresses compared to destination
IP addresses, indicating that there are more receiving machines than emitting
machines in our dataset. In addition, the density of attacks is higher in the
aggregates by destination IP than in those by source IP.

4.1.2 Transforming the anomaly scores into images

After putting together the aggregates into images representing the anomaly
scores obtained during time intervals of 30 minutes, we obtain 4214 pairs of
images (one for aggregation by source and one by destination).

4.2 Ensemble Anomaly Scoring

17



S
o
u
rc
e
IP

D
e
st
in
a
ti
o
n

IP
S
u
b
se
t
o
f
b
a
se
-l
e
a
rn

e
rs

T
P
R

F
P
R

S
u
b
se
t
o
f
b
a
se
-l
e
a
rn

e
rs

T
P
R

F
P
R

(L
O
F
,
O
C
S
V
M
,
C
O
P
O
D
)

0
.9
8
7
8

0
.6
7
6
3

(L
O
F
,
K
N
N
,
C
O
P
O
D
)

0
.9
3
8
4

0
.3
9
9
4

(I
F
,
L
O
F
,
O
C
S
V
M
)

0
.9
8
1
1

0
.6
7
0
4

(L
O
F
,
O
C
S
V
M
,
C
O
P
O
D
)

0
.9
8
1
1

0
.4
4
3
7

(L
O
F
,
O
C
S
V
M
,
K
N
N
)

0
.9
7
3
2

0
.6
7
6
2

(L
O
F
,
O
C
S
V
M
,
K
N
N
)

0
.9
3
1
5

0
.4
3
1
2

(L
O
F
,
D
B
S
C
A
N
,
O
C
S
V
M
)

0
.9
7
2
6

0
.6
6
2
0

(L
O
F
,
D
B
S
C
A
N
,
C
O
P
O
D
)

0
.9
2
9
2

0
.3
9
1
7

(I
F
,
O
C
S
V
M
,
C
O
P
O
D
)

0
.9
6
9
0

0
.4
9
3
7

(I
F
,
L
O
F
,
C
O
P
O
D
)

0
.9
2
9
2

0
.3
9
3
9

T
ab

le
4.
2:

T
op

5
co
m
b
in
at
io
n
s
of

3
b
as
e-
le
ar
n
er
s
fo
r
a
g
g
re
g
a
te
s
b
y
so
u
rc
e
a
n
d
d
es
ti
n
a
ti
o
n
IP

a
d
d
re
ss
.

T
h
e
co
m
b
in
a
ti
o
n
s
a
re

ra
n
ke
d

ac
co
rd
in
g
to

tw
o
cr
it
er
ia
:
th
e
tr
u
e
p
os
it
iv
e
ra
te

(T
P
R
),
re
p
re
se
n
ti
n
g
th
e
p
er
ce
n
ta
g
e
o
f
a
cc
u
ra
te
ly

d
et
ec
te
d
a
tt
a
ck
s,

a
n
d
th
e
fa
ls
e
p
o
si
ti
ve

ra
te

(F
P
R
),

in
d
ic
at
in
g
th
e
p
ro
p
or
ti
on

of
fa
ls
e
al
a
rm

s.
T
h
e
su
b
se
ts

o
f
b
a
se
-l
ea
rn
er
s
in

th
es
e
co
m
b
in
a
ti
o
n
s
h
av
e
d
em

o
n
st
ra
te
d
th
e
h
ig
h
es
t

ac
cu
ra
cy

in
id
en
ti
fy
in
g
at
ta
ck
s
w
h
il
e
m
in
im

iz
in
g
fa
ls
e
p
o
si
ti
v
es
.

18



Source IP Destination IP
Base-learner TPR FPR Base-learner TPR FPR
LOF 0.8923 0.3754 LOF 0.9041 0.3366
OCSVM 0.8394 0.4634 KNN 0.8904 0.1862
COPOD 0.7652 0.1467 COPOD 0.8744 0.1795
Stacked Model 0.9878 0.6763 Stacked Model 0.9384 0.3994

Table 4.3: True positive rate (TPR) and false positive rate (FPR) for the base-
learners vs the stacked model.

The unsupervised anomaly scoring component generates visual intermediate
representations of network anomalies based on a set of base-learner detections
(Figure 3.3).

Table 4.2 shows the performance of the top five combinations of base-learners,
also called stacked models, when using aggregates by source and by destination.
It shows their true positive rates (TPR) and false positive rates (FPR) on the
aggregates by source and destination. We consider that a combination labels
an aggregate as an attack if one of its base-learners detects the aggregate as an
attack.

The top combinations are (LOF, OCSVM, COPOD) for analyzing the aggre-
gates by source IP address, and (LOF, KNN, COPOD) for analyzing the aggre-
gates by destination IP address. If we empirically select the combination with
the best results, our hypothesis is that these combinations work well in practice
because they have different methodology to detect anomalies. Specifically, LOF
is a local density-based algorithm, OCSVM and KNN rely on distance-based
approaches, and COPOD is probabilistic based.

We retrieve now a known result in ensemble learning that it is better to use
a stacked model rather than always using the best base-learner [5]. Table 4.3
shows the TPR and the FPR of each base-learner and the best stacked model.
The LOF, which has the best TPR of the base-learners with 0.8923 on the
aggregates by source, does not detect some of the attacks identified by the
stacked model, which has a TPR of 0.9878. However, the stacked model has
a higher TPR. The process of reducing this TPR is made by the meta-learner
(Section 4.3).

4.3 Attack Patterns Recognition

This last section of the evaluation looks into the performance of our meta-
learner, the CNN (Section 3.4). Our dataset of images is split into training, val-
idation, and evaluation sets with an 80-10-10 ratio, respectively. The training
set was used to train the CNN, while the validation set is used for hyperparam-
eter tuning [17]. The evaluation set is reserved for the final assessment of the
attack patterns recognition module’s performance.

Table 4.5 shows the F-score and confusion matrix of our meta-learner, i.e.,
our CNN, which analyzes aggregates by source and destination IP address, called
the combined model. There are three main results from this table: (1) The
overall performance of the system is good: it only has three false positives, and
one false negative, but we show that explainability can help understand why

19



Attack Benign
Count Proportion (%) Count Proportion (%)

Training 776 23.70 2498 76.30
Validation 102 24.23 319 75.77
Test 98 23.22 324 76.78
Total 976 23.16 3238 76.84

Table 4.4: Distribution of attack and benign images in the dataset split. The
table presents the distribution of attack and benign images across the dataset
split, which was divided into training, validation, and test datasets in an 80-10-
10 ratio.

TPR FPR F-score
Confusion Matrix[
TP FP
FN TN

]
CNN Source 0.9796 0.0062 0.9905

[
96 2
2 322

]
CNN Destination 0.9796 0.0093 0.9882

[
96 3
2 321

]
Combined CNN 0.9898 0.0093 0.9906

[
97 3
1 321

]
Table 4.5: Performance metrics and confusion matrix of CNN on aggregates by
source IP address, destination IP address, and combined CNN

the system did not detect this attack and that it would have been detected in
practice thanks to explainability (Section 5). (2) The FPR of the meta-learner
is way better than the FPR of the best combination of base-learners, with
0.0093 versus 0.6763, while the TPR is similar (0.9898 versus 0.9878), showing
the added value of the meta-learner. (3) The two representations, aggregates
by source and destination, are complementary. The combined model has a
higher F-score than the two other models, only using aggregates by source or
destination, although the F-score are close.

20



Chapter 5

Explainability improves
accuracy

The goal of our system is not to achieve the best and perfect accuracy blindly,
only relying on statistical methods, like most prior work. Instead, we aim a
perfect accuracy by involving the end user of an NIDS, i.e., a human analyst
who needs to understand the output of the NIDS to decide whether to trigger
some actions if one considers that their network is under attack. Our system is
explainable-by-design, as each successive component does not hinder the possi-
bility to easily retrieve which network features triggered the anomaly detection.
A report is generated whenever the system labels an image with an attack, eas-
ing the process of an analyst. To illustrate why we can in fact obtain a perfect
accuracy on our dataset thanks to explainability, we looked into the image cor-
responding to the undetected attack in Table 4.5. What we actually observed
is that this image corresponded to the end of an attack, that would have been
detected by prior images as the attack lasted over several images. So in practice,
this attack would have been detected and we would have 0 false negative on our
evaluation dataset.

21



Chapter 6

Conclusion

We have proposed an explainable-by-design network attack detection system.
In our approach, we used unsupervised techniques to detect anomalies on ag-
gregates based on source and destination IP addresses. The results produced
by our system are interpretable and understandable for security analysts. The
outputs include the IP addresses associated with the aggregates detected as
anomalous, allowing analysts to relate them to specific machines in the net-
work. Additionally, the anomalous feature pairs are also reported, providing an
additional level of detail on the detected anomalies. To represent these anoma-
lies, we used images generated from a set of unsupervised base-learners. These
images enable security analysts to visually observe the attack patterns detected
by the system. Finally, we analyzed these traffic representations using a CNN
to recognize attack patterns.

Our approach aims to design a more transparent attack detection system
that allows security analysts to understand the decisions made by the system.
The evaluation of our system on the CIC-CSE-IDS2018 dataset [21] demon-
strated reasonable accuracy, but more importantly, the errors made by the sys-
tem are easily identifiable and can be analyzed by security analysts.

22



Bibliography

[1] Fabrizio Angiulli and Clara Pizzuti. 2002. Fast Outlier Detection in High
Dimensional Spaces. In Principles of Data Mining and Knowledge Dis-
covery (Lecture Notes in Computer Science), Tapio Elomaa, Heikki Man-
nila, and Hannu Toivonen (Eds.). Springer, Berlin, Heidelberg, 15–27.
https://doi.org/10.1007/3-540-45681-32

[2] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
2000. LOF: Identifying Density-Based Local Outliers. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’00). Association for Computing Machinery, New York, NY,
USA, 93–104. https://doi.org/10.1145/342009.335388

[3] Pedro Casas, Johan Mazel, and Philippe Owezarski. 2011. UNADA: Unsu-
pervised Network Anomaly Detection Using Sub-space Outliers Ranking.
In 10th IFIP Networking Conference (NETWORKING), Vol. LNCS-6640.
Springer, 40–51. https://doi.org/10.1007/978-3-642-20757-04

[4] Juliette Dromard, Gilles Roudière, and Philippe Owezarski. 2017. Online
and Scalable Unsupervised Network Anomaly Detection Method. IEEE
Transactions on Network and Service Management 14, 1 (March 2017),
34–47. https://doi.org/10.1109/TNSM.2016.2627340

[5] Saso Džeroski and Bernard Ženko. 2004. Is Combining Classifiers with
Stacking Better than Selecting the Best One? Machine Learning 3, 54
(2004), 255–273. https://doi.org/10.1023/B:MACH.0000015881.36452.6e

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996.
A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise. kdd 96, 34 (1996), 226–231.

[7] Xianwei Gao, Chun Shan, Changzhen Hu, Zequn Niu, and Zhen
Liu. 2019. An Adaptive Ensemble Machine Learning Model
for Intrusion Detection. IEEE Access 7 (2019), 82512–82521.
https://doi.org/10.1109/ACCESS.2019.2923640

[8] Ibrahim Ghafir, Mohammad Hammoudeh, Vaclav Prenosil, Liangxiu Han,
Robert Hegarty, Khaled Rabie, and Francisco J. Aparicio-Navarro. 2018.
Detection of Advanced Persistent Threat Using Machine-Learning Correla-
tion Analysis. Future Generation Computer Systems 89 (Dec. 2018), 349–
359. https://doi.org/10.1016/j.future.2018.06.055

23



[9] Ibrahim Ghafir, Konstantinos G. Kyriakopoulos, Sangarapillai Lamboth-
aran, Francisco J. Aparicio-Navarro, Basil Assadhan, Hamad Binsalleeh,
and Diab M. Diab. 2019. Hidden Markov Models and Alert Correlations
for the Prediction of Advanced Persistent Threats. IEEE Access 7 (2019),
99508–99520. https://doi.org/10.1109/ACCESS.2019.2930200

[10] Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong, Su Wang, Han
Zhang, Jiahai Yang, Xingang Shi, and Xia Yin. 2021. DeepAID: Inter-
preting and Improving Deep Learning-based Anomaly Detection in Secu-
rity Applications. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Virtual Event Republic of
Korea, 3197–3217. https://doi.org/10.1145/3460120.3484589

[11] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. 2011.
Intelligence-Driven Computer Network Defense Informed by Analysis of
Adversary Campaigns and Intrusion Kill Chains. (2011), 14.

[12] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. 2020.
COPOD: Copula-Based Outlier Detection. arXiv:2009.09463 [cs, stat]
(Sept. 2020). arXiv:2009.09463 [cs, stat]

[13] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest.
In 2008 Eighth IEEE International Conference on Data Mining. 413–422.
https://doi.org/10.1109/ICDM.2008.17

[14] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems,
Vol. 30. Curran Associates, Inc.

[15] Dan McWhorter. 2013. Mandiant Exposes APT1 — One of China’s Cyber
Espionage Units & Releases 3,000 Indicators. Mandiant, February (2013).

[16] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shab-
tai. 2018. Kitsune: An Ensemble of Autoencoders for Online
Network Intrusion Detection. In Proceedings 2018 Network and Dis-
tributed System Security Symposium. Internet Society, San Diego, CA.
https://doi.org/10.14722/ndss.2018.23204

[17] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin,
Luca Invernizzi, et al. 2019. KerasTuner.

[18] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, and David
Cournapeau. 2011. Scikit-Learn: Machine Learning in Python. MACHINE
LEARNING IN PYTHON (2011), 6.

[19] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. ”Why
Should I Trust You?”: Explaining the Predictions of Any Classi-
fier. In Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD ’16). Asso-
ciation for Computing Machinery, New York, NY, USA, 1135–1144.
https://doi.org/10.1145/2939672.2939778

24



[20] Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-
Taylor, and John Platt. 1999. Support Vector Method for Novelty De-
tection. In Advances in Neural Information Processing Systems, Vol. 12.
MIT Press.

[21] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018.
Toward Generating a New Intrusion Detection Dataset and Intrusion
Traffic Characterization:. In Proceedings of the 4th International Confer-
ence on Information Systems Security and Privacy. SCITEPRESS - Sci-
ence and Technology Publications, Funchal, Madeira, Portugal, 108–116.
https://doi.org/10.5220/0006639801080116

[22] Juan Vanerio and Pedro Casas. 2017. Ensemble-Learning Ap-
proaches for Network Security and Anomaly Detection. In Proceed-
ings of the Workshop on Big Data Analytics and Machine Learning
for Data Communication Networks. ACM, Los Angeles CA USA, 1–6.
https://doi.org/10.1145/3098593.3098594

[23] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Y.
Sheng. 2017. Malware Traffic Classification Using Convolu-
tional Neural Network for Representation Learning. 712–717.
https://doi.org/10.1109/ICOIN.2017.7899588

[24] Feng Wei, Hongda Li, Ziming Zhao, and Hongxin Hu. [n. d.]. XNIDS:
Explaining Deep Learning-based Network Intrusion Detection Systems for
Active Intrusion Responses. ([n. d.]), 18.

[25] Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. PyOD: A Python Toolbox
for Scalable Outlier Detection. (2019), 7.

[26] Peng Zhou, Gongyan Zhou, Dakui Wu, and Minrui Fei. 2021.
Detecting Multi-Stage Attacks Using Sequence-to-Sequence
Model. Computers & Security 105 (June 2021), 102203.
https://doi.org/10.1016/j.cose.2021.102203

25


