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In-place accumulation of fast multiplication formulae

Jean-Guillaume Dumas∗ Bruno Grenet∗

January 12, 2024

Abstract

This paper deals with simultaneously fast and in-place algorithms for formulae where the result has
to be linearly accumulated: some of the output variables are also input variables, linked by a linear
dependency. Fundamental examples include the in-place accumulated multiplication of polynomials or
matrices, C += AB. The difficulty is to combine in-place computations with fast algorithms: those
usually come at the expense of (potentially large) extra temporary space, but with accumulation the
output variables are not even available to store intermediate values. We first propose a novel automatic
design of fast and in-place accumulating algorithms for any bilinear formulae (and thus for polynomial
and matrix multiplication) and then extend it to any linear accumulation of a collection of functions.
For this, we relax the in-place model to any algorithm allowed to modify its inputs, provided that those
are restored to their initial state afterwards. This allows us, in fine, to derive unprecedented in-place
accumulating algorithms for fast polynomial multiplications and for Strassen-like matrix multiplications.

1 Introduction

Multiplication is one of the most fundamental arithmetic operations in computer science and in particular in
computer algebra and symbolic computation. In terms of arithmetic operations, for instance, from the work
of [26, 25, 29], many sub-quadratic (resp. sub-cubic) algorithms were developed for polynomial (resp. matrix)
multiplication. But these fast algorithms usually come at the expense of (potentially large) extra temporary
space to perform the computation. On the contrary, classical, quadratic (resp. cubic) algorithms, when
computed sequentially, quite often require very few (constant) extra registers. Further work then proposed
simultaneously “fast” and “in-place” algorithms, for matrix or polynomial operations [6, 27, 18, 14, 15].

We here extend the latter line of work for accumulating algorithms. Actually, one of the main ingredient
of the latter line of work is to use the (free) space of the output as intermediate storage. But when the result
has to be accumulated, i.e., if the output is also part of the input, this free space does not even exist. To be
able to design accumulating in-place algorithms we thus relax the in-place model to allow algorithms to also
modify their input, therefore to use them as intermediate storage, provided that they are restored to their
initial state after completion of the procedure. This is in fact a natural possibility in many programming
environments. Furthermore, this restoration allows for recursive combinations of such procedures, as the (non
concurrent) recursive calls will not mess-up the state of their callers. We thus propose a generic technique
transforming any bilinear algorithm into an in-place algorithm under this model. This then directly applies to
accumulating polynomial and matrix multiplication algorithms, including fast ones. Further, the technique
actually generalizes to any linear accumulation, i.e. not only bilinear formulae, provided that the input of
the accumulation can be itself reversibly computed in-place (therefore also potentially in-place of some of its
own input if needed).

Next, we give our model for in-place computations and recall classical in-place algorithms in Section 2. We
then detail in Section 3 our novel technique for in-place accumulation. Finally we apply this technique and
further optimizations in order to derive new fast and in-place algorithms for the accumulating multiplication
of matrices, Section 4, and of polynomials, Section 5.
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2 In-place model with mutable input

We here call in-place, an algorithm using only the space of its inputs, its outputs, and at most

O(1) extra space; the algorithm can also modify its (mutable) inputs, provided that these inputs are

restored to their initial state afterwards. This is a less powerful model than when the input is purely read-
only, but it turns out to be crucial in our case, especially when we have accumulation operations. Indeed, the
algorithms we describe are in-place with accumulation, and the archetypical example is a multiply-accumulate
operation c += a× b. For such an algorithm, the condition is that a and b are restored to their initial states
at the end of the computation, while c (which is also part of the input) is replaced by c + ab. Also, as
a variant, by over-place, we mean an algorithm where the output replaces (parts of) its input (e.g., like
~a← b·~a). In the following we signal by a “Read-only:” tag the parts of the input that the algorithm is not
allowed to modify (the other parts are mutable as long as they are restored).

For recursive algorithms, some space may be required to store the recursive call stack (this space is
bounded by the recursion depth of the algorithms, and managed in practice by the compiler). In our
complexity summaries (Tables 2 and 3 in Appendix C), the space complexity includes the stack. Nonetheless,
we call in-place a recursive algorithm whose only extra space is the call stack. For more details on these
models, we refer to [8, 27, 14]. We end this section by recalling in Alg. 1, that classical algorithms for matrix
or polynomial operations can be performed strictly in-place.

Algorithm 1 Quadratic/cubic in-place accumulating polynomial/matrix multiplication

Input: A, B, C polynomials of degreesm, n, m+n.
Read-only: A,B.
Output: C(X) += A(X)B(X)
1: for i, j do

2: C[i+j] += A[i]B[j];

Input: A, B, C matrices of dimensions m×ℓ, ℓ×n,
m×n.

Read-only: A,B.
Output: C += AB
1: for i, j, k do

2: Cij += AikBkj ;

3 In-place linear accumulation

Karatsuba polynomial multiplication [23] and Strassen matrix multiplication [29] are famous optimizations
of bilinear formulae on their inputs: results are linear combinations of products of bilinear combinations of
the inputs. To compute recursively such a formula in-place, we perform each product one at a time. For
each product, both factors are then linearly combined in-place into one of the entry beforehand and restored
afterwards. The product of both entries is at that point accumulated in one part of the output and then
distributed to the other parts. The difficulty is to perform this distribution in-place, without recomputing
the product. Our idea is to presubtract one output from the other, then accumulate the product to one
output, and finally re-add the newly accumulated output to the other one: overall both outputs just have
accumulated the product, in-place. Potential constant factors can also be dealt with pre-divisions and post-
multiplications. Basically we need two kind of in-place operations, and their combinations. First, as shown
in Eq. (1), an in-place accumulation of a quantity multiplied by a (known in advance) invertible constant:

{c /= µ; c += m; c ∗= µ; } computes in-place c← c+ µ ·m. (1)

Second, as shown in Eq. (2), an in-place distribution of the same quantity, without recomputation, to several
outputs:

{d –= c; c += m; d += c; } computes in-place

{

c← c+m;
d← d+m.

(2)

Example 1 shows how to combine several of these operations, while also linearly combining parts of the
input.
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Example 1. Suppose, that for some inputs/outputs a, b, c, d, r, s one wants to compute an intermediate
product p = (a + 3b) ∗ (c + d) only once and then distribute and accumulate that product to two of its
outputs (or results), such that we have both r ← r + 5p and s ← s+ 2p. To perform this in-place, first
accumulate a += 3b and c += d, then pre-divide r by 5, as in Eq. (1). Now we directly have p = ac and
it can be computed once, and then accumulated to r, and to s, if the latter is prepared: divide it by 2, and
pre-subtract r. This is s /= 2, s –= r followed by r += ac. After this, we can reciprocate (or unroll) the
precomputations: this distributes the product to the other result and restores the read-only inputs to their
initial state (for s, another possibility is to directly pre-subtract 2r and to post-add 2r). This is summarized

as:

{

a += 3b; c += d; r /= 5 ;
s –= 2r; r += ac; s += 2r;
r ∗= 5 ; c –= d; a –= 3b;

} computes in-place
{

r← r + 5(a+ 3b)(c+ d);
s← s+ 2(a+ 3b)(c+ d).

Algorithm 2 shows how to implement this in general, taking into account the constant (or read-only)
multiplicative coefficients of all the linear combinations. We suppose that inputs are in three distinct sets:
left-hand sides, ~a, right-hand sides, ~b, and those accumulated to the results, ~c. We denote by ⊙ the point-wise
multiplications of left-hand sides by right-hand sides. Then Alg. 2 computes ~c += µ~m, for ~m = (α~a)⊙ (β~b),
with α, β and µ matrices of constants.

Algorithm 2 In place bilinear formula

Input: ~a ∈ F
m, ~b ∈ F

n, ~c ∈ F
s; α ∈ F

t×m, β ∈ F
t×n, µ ∈ F

s×t, without zero-rows in α, β, µ.
Read-only: α, β, µ.
Output: ~c += µ~m, for ~m = (α~a)⊙ (β~b).
1: for ℓ = 1 to t do

2: Let i s.t. αℓ,i 6= 0; ai ∗= αℓ,i;
3: for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai += αℓ,λaλ end for

4: Let j s.t. βℓ,j 6= 0; bj ∗= βℓ,j ;
5: for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj += βℓ,λbλ end for

6: Let k s.t. µk,ℓ 6= 0; ck /= µk,ℓ;
7: for λ = 1 to s, λ 6= k, µλ,ℓ 6= 0 do cλ –= µλ,ℓck end for

8: ck += ai · bj {This is the product mℓ, computed only once}
9: for λ = 1 to s, λ 6= k, µλ,ℓ 6= 0 do cλ += µλ,ℓck end for {undo 7}

10: ck ∗= µk,ℓ; {undo 6}
11: for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj –= βℓ,λbλ end for {undo 5}
12: bj /= βℓ,j ; {undo 4}
13: for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai –= αℓ,λaλ end for {undo 3}
14: ai /= αℓ,i; {undo 2}

15: return ~c.

Remark 2. Lines 2 to 7 and 9 to 14 of Alg. 2 are acting on independent parts of the input, ~a and ~b, and of
the output ~c. If needed they could therefore be computed in parallel or in different orders, and even potentially
grouped or factorized across the main loop (on ℓ).

To simplify the counting of operations, we denote by ADD both the addition or subtraction of elements,
+= or –= ; by MUL the (tensor) product of elements, ⊙; and by SCA the scaling by constants, ∗= or
/= . We also denote by #x (resp. ♯x) the number of non-zero (resp. 6∈ {0, 1,−1}) elements in a matrix x.

Theorem 3. Algorithm 2 is correct, in-place, and requires t MUL, 2(#α + #β + #µ) − 5t ADD and
2(♯α+ ♯β + ♯µ) SCA operations.

Proof. First, as the only used operations (+= , –= , ∗= , /= ) are in-place ones, the algorithm is in-
place. Second, the algorithm is correct both for the input and the output: the input is well restored, as
(αℓ,iai +

∑

αℓ,λaλ −
∑

αℓ,λaλ)/αℓ,i = ai and (βℓ,jbj +
∑

βℓ,λbλ −
∑

βℓ,λbλ)/βℓ,j = bj; the output is correct
as cλ − µλ,ℓck/µk,ℓ + µλ,ℓ(ck/µk,ℓ + aibj) = cλ + µλ,ℓaibj and (ck/µk,ℓ + aibj)µk,ℓ = ck + µk,ℓaibj . Third,
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for the number of operations, Lines 2 and 3 require one multiplication by a constant for each non-zero
element aλ in the row and one less addition. But multiplications and divisions by 1 are no-op, and by −1
can be dealt with subtraction. This is #α − t additions and ♯α constant multiplications. Lines 4 and 5
(resp. Lines 6 and 7) are similar for each non-zero element in bλ (resp. in µ). Finally Line 8 performs t
multiplications of elements and t additions. The remaining lines double the number of ADD and SCA.
This is t+ 2(#α+#β +#µ− 3t) = 2(#α+#β +#µ)− 5t ADD.

Remark 4. Similarly, slightly more generic accumulation operations of the form ~c ← ~γ ⊙ ~c + µ~m, for a
vector γ ∈ F

s, can also be computed in-place: precompute first ~c← ~γ ⊙ ~c, then call Alg. 2.

For instance, to use Alg. 2 with matrices or polynomials, each product mℓ is in fact computed recursively.
Further, in an actual implementation of a fixed formula, one can combine more efficiently the pre- and post-
computations over the main loop on ℓ, as in Remark 2. See Sections 4 and 5 for examples of recursive calls,
together with sequential optimizations and combinations.

In fact the method for accumulation, computing each bilinear multiplication once is generalizable. With
the notations of Alg. 2, any algorithm of the form ~c += µ~m can benefit from this technique, provided that
each mj can be obtained from a function that can be computed in-place. Let Fj : Ω→ F be such a function
on some inputs from a space Ω, for which an in-place algorithm exists. Then we can accumulate it in-place, if
it satisfies the following constraint, that it is not using its output space as an available intermediary memory
location. Further, this function can be in-place in different models: it can follow our model of Section 2,
if there is a way to put its input back into their initial states, or some other model, again provided that it
follows the above constraint.

Then, the idea is just to keep from Alg. 2 the Lines 6 to 10, replacing Line 8 by the in-place call to Fj ,
potentially surrounding that call by manipulations on the inputs of Fj (just like the one performed on ~a and
~b in Alg. 2). We have shown:

Theorem 5. Let ~c ∈ F
s and µ ∈ F

s×t, without zero-rows. Let ~F = (Fj : Ω → F)j=1..t be a collection of
functions and ω ∈ Ω. If all these functions are computable in-place, without using their output space as
an intermediary memory location, then there exists an in-place algorithm computing ~c += µ~F (ω) in-place,
requiring a single call to each Fj, together with (2#µ− t) ADD and 2♯µ SCA ops.

This is close to catalytic machines and transparent space [8]; but here we allow only the input and
output as catalytic space, and we do preserve the (not in-place) time complexity bound, up to a (quasi)-
linear overhead.

We give examples of the application of the generalized method of Theorem 5 to non bilinear formulae
in Appendix B.

4 In-place Strassen matrix multiplication with accumulation

Considered as 2× 2 matrices, the matrix product with accumulation C += A ·B could be computed using
Strassen-Winograd (S.-W.) algorithm by performing the computations of the following Eq. (3).

ρ1 ← a11b11, ρ3 ← (−a11 − a12 + a21 + a22)b22,
ρ2 ← a12b21, ρ4 ← a22(−b11 + b12 + b21 − b22),
ρ5 ← (a21 + a22)(−b11 + b12), ρ6 ← (−a11 + a21)(b12 − b22),
ρ7 ← (−a11 + a21 + a22)(−b11 + b12 − b22)

[ c11 c12
c21 c22 ] +=

[ ρ1+ρ2 ρ1−ρ3+ρ5−ρ7

ρ1+ρ4+ρ6−ρ7 ρ1+ρ5+ρ6−ρ7

]

(3)

This algorithm uses 7 multiplications of half-size matrices and 24 + 4 additions (that can be factored into
only 15+4, see [32]: 4 involving A, 4 involving B and 7 involving the products, plus 4 for the accumulation).
This can be used recursively on matrix blocks, halved at each iteration, to obtain a sub-cubic algorithm. To
save on operations, it is of course interesting to compute the products only once, that is store them in extra
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memory chunks. To date, up to our knowledge, the best versions that reduced this extra memory space (also
overwriting the input matrices but not putting them back in place) were proposed in [6]: their best sub-cubic
accumulating product used 2 temporary blocks per recursive level, thus a total of extra memory required to
be 2

3n
2. With Alg. 2 we instead obtain a sub-cubic algorithm for accumulating matrix multiplication with

O(1) extra space requirement. From Eq. (3) indeed (see also the representation in [7]), we can extract the
matrices µ, α and β to be used in Alg. 2 as given in Eq. (4).

µ =

[

1 1 0 0 0 0 0
1 0 −1 0 1 0 −1
1 0 0 1 0 1 −1
1 0 0 0 1 1 −1

]

α =







1 0 0 0
0 1 0 0
−1 −1 1 1
0 0 0 1
0 0 1 1
−1 0 1 0
−1 0 1 1






β =







1 0 0 0
0 0 1 0
0 0 0 1
−1 1 1 −1
−1 1 0 0
0 1 0 −1
−1 1 0 −1






(4)

All coefficients being 1 or −1 the resulting in-place algorithm can of course compute the accumulation
C += AB without constant multiplications. It thus requires 7 recursive calls and, from Theorem 3, at
most 2(#α + #β + #µ − 3t) = 2(14 + 14 + 14 − 3 ∗ 7) = 42 block additions. Just like the 24 additions
of Eq. (3) can be factored into 15, one can optimize also the in-place algorithm. For instance, looking at α
we see that performing the products in the order ρ6, ρ7, ρ3, ρ5 and accumulating in a21 allows to perform
all additions/subtractions in A with only 6 operations (this is in fact optimal, see the following Prop. 8).
This is similar for β if the order ρ6, ρ7, ρ4, ρ5 is used and accumulation is in b12. Thus ordering for instance
ρ6, ρ7, ρ4, ρ3, ρ5 will reduce the number of block additions to 26. Now looking at µ (more precisely at its
transpose, see [22]), a similar reduction can be obtained, e.g., if one of the orders (ρ6, ρ7, ρ1, ρ5) or (ρ5, ρ7,
ρ1, ρ6) is used and accumulation is in c22.

Therefore, using the ordering ρ6, ρ7, ρ1, ρ4, ρ3, ρ5, ρ2 requires only 18 additions, as shown with Alg. 7,
in Appendix A. Thus, without thresholds and for powers of two, the dominant term of the overall arithmetic
cost is 8nlog2(7), for the in-place version, roughly a third more operations than the 6nlog2(7) dominant term
of the cost for the version using extra temporaries.

Any bilinear algorithm for matrix multiplication (see, e.g., https://fmm.univ-lille.fr/) can be dealt
with similarly. Further, even the accumulating version of the non bilinear algorithm of [12] can benefit from
our techniques of in-place accumulation (see Appendix B).

We now prove that 18 additions is the minimal number of additions required by an in-place algorithm re-
sulting from any bilinear algorithm for matrix multiplication using only 7 multiplications. For this we need
to consider elementary operations on variables (similar to elementary linear algebra operators): variable-
switching (swapping variable i and variable j); variable-multiplying (multiplying a variable by a constant);
variable-addition (adding one variable, potentially multiplied by a constant, to another variable). An ele-
mentary program is a program making use of only these three kind of operations. Then we consider the
in-place implementation of a linear function on its input: for α ∈ F

t×m and ~a ∈ F
m, we want to compute at

least once each of the t coefficients of α~a, but using only elementary operations and using only the variables
of ~a as temporary variables. We start by proving in Lemma 6 that in any bilinear algorithm for matrix
multiplication using only 7 multiplications, the columns of the associated matrices α, β, µ (as in Eq. (4))
cannot contain too many zeroes.

Lemma 6. If (α, β, µ) ∈ F
7×4 × F

7×4 × F
4×7 is a bilinear algorithm for matrix multiplication, then none of

α, β, µ⊺ contain a zero column vector, nor a multiple of a vector of the canonical basis.

Proof. The dimensions of the matrices indicate that the multiplicative complexity of the algorithm is 7.
From [17] we know that all such bilinear algorithms can be obtained from one another. Following [7,
Lemma 6], then any associated α, β, µ⊺ matrix is some row or column permutation, or the multiplication
by some G ⊗ H (the Kronecker product of two invertible 2×2 matrices), of the matrices of Eq. (4). By
duality [20], see also [7, Eq. (3)], it is also sufficient to consider any one of the 3 matrices. We thus let

G =
[ g1,1 g1,2
g2,1 g2,2

]

, H =
[

h1,1 h1,2

h2,1 h2,2

]

and K = G⊗H be their Kronecker product. Then any column of K is of the

form
[

ux uy vx vy
]⊺

, for u ∈ {g1,1, g1,2}, v ∈ {g2,1, g2,2}, with u and v both in the same column of G
and x ∈ {h1,1, h1,2}, y ∈ {h2,1, h2,2}, with x and y both in the same column of H . Further as G is invertible,
u and v cannot be both zero simultaneously and, similarly, x and y cannot be both zero simultaneously.
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Now consider for instance α ·K, with α of Eq. (4). Then any column ~θ of α ·K is of the form:
[

ux uy −ux− uy + vx+ vy vy vx+ vy −ux+ vx −ux+ vx+ vy
]⊺

.
For such a column to be a multiple of a vector of the canonical basis or the zero vector, at least 6 of its 7
coefficients must be zero. For instance, this means that at least two out of rows 1, 2 and 4 must be zero:
or that at least two of ux, uy or vy must be zero. This limits us to three cases: (1) u = 0, (2) y = 0 or (3)

x = v = 0. If u = 0, then ~θ = v
[

0 0 x+ y y x+ y x x+ y
]⊺

; at least one of rows 4 or 6 has to be zero, thus,

w.l.o.g. suppose x = 0, we obtain that ~θ = vy
[

0 0 1 1 1 0 1
]⊺

with none of v nor y being zero (otherwise G or
H is not invertible); such a column cannot be a multiple of a vector of the canonical basis nor the zero vector.

Similarly, if y = 0, then ~θ = x
[

u 0−u+ v 0 v −u+ v −u+ v
]⊺

; at least one of rows 1 or 5 has to be zero,

thus, w.l.o.g. suppose v = 0, we obtain that ~θ = ux
[

1 0−1 0 0−1−1
]⊺

; such a column cannot be a multiple

of a vector of the canonical basis nor the zero vector. Finally, if x = v = 0, then ~θ = uy
[

0 1−1 0 0 0 0
]⊺

;
again that column cannot be a multiple of a vector of the canonical basis nor the zero vector.

Now we show that any in-place elementary algorithm requires at least 1 extra operation to put back the
input in its initial state.

Lemma 7. Let ~a ∈ F
m and α ∈ F

t×m with at least one row which is neither the zero row, nor a vector
of the canonical basis. Now suppose that, without any constraints in terms of temporary registers, k is the
minimal number of elementary operations required to compute α~a. Then any algorithm computing all the t
values of α~a, in-place of ~a, requires at least k + 1 elementary operations.

Proof. Consider an in-place algorithm realizing α~a in f operations. Any zero or canonical basis vector row
can be realized without any operations on ~a. Now take this algorithm at the moment where the last of the
other rows of α are realized (at that point all the t values are realized). Then this last realization (a non
trivial linear combination of the initial values of ~a) has to have been stored in one variable of ~a, say ai.
Therefore, at this point, the in-place algorithm has to perform at least one more operation to put back ai
to its initial state. Therefore, by replacing all the in-place computations by operations on extra registers
and omitting the operation(s) that restore this ai, we obtain an algorithm with less than f − 1 elementary
operations that realizes α~a and thus: (f − 1) ≥ k.

Proposition 8. For the in-place realization of each of the two linear operators α and β, of any bilinear
matrix multiplication algorithm using only 7 multiplications, and the restoration of the initial states of their
input, at least 6 operations are needed.

Proof. A bilinear matrix multiplication algorithm has to compute α~a, with ~a the entries of the left input
of the matrix multiplication, while β deals with the right input. These α and β matrices cannot contain a
(4-dimensional) zero row: otherwise there would exist an algorithm using less than 6 multiplications, but
7 is minimal [31]. If α or β contain at least 5 rows that are not vectors of the canonical basis, then they
require at least 5 non-trivial operations to be computed, and therefore at least 6 elementary operations with
an in-place algorithm, by Lemma 7. The matrices also cannot contain more than 3 multiple of vectors of
the canonical basis, by [7, Lemma 8] (and thus require at least 4 operations to be computed).

There thus remains now only to consider matrices with exactly 3 rows that are multiple of vectors of the
canonical basis. Let M be the 4×4 sub-matrix obtained from α (or β) by removing those 3 vectors of the
canonical basis. By Lemma 6, no column of M can be the zero column: otherwise a 7-dimensional column
of α (or β) would be either a multiple of a canonical basis vector, or the zero vector. This means that every
variable of ~a has to be used at least once to realize the 4 operations of M~a. Now suppose that there exists
an in-place algorithm realizing M~a in 5 elementary operations. Any operations among these 5 that, as its
results, puts back a variable into its initial state, does not realize any row of M~a (because putting back a
variable to its initial state is the trivial identity on this initial variable, and this would be represented by a
4-dimensional vector of the canonical basis, which M do not contain, by construction). Therefore, at most
one among these 5 operations puts back a variable of ~a into its initial state (otherwise M~a, and therefore
α~a or β~a, would be realizable in strictly less than 4 operations). This means that at most one variable of ~a
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can be modified during the algorithm (otherwise the algorithm would not be able to put back all its input
variables into their initial state).

W.l.o.g suppose this only modified variable is a1. Finally, as all the other 3 variables must be used in at
least one of the 5 elementary operations, at least 3 operations are of the form a1 += λiai for i = 2, 3, 4 and
some constants λi. After those, to put back a1 into its initial state, each one of these 3 independent variables,
a2, a3 and a4, must be “removed” from a1 at some point of the elementary program. But, with a total of 5
operations, there remains only 2 other possible elementary operations, each one of those modifying only a1.
Therefore not all 3 variables can be removed and thus no in-place algorithm can use only 5 operations.

Finally, there remains to consider the linear combinations of the 7 multiplications to conclude that Alg. 7
realizes the minimal number of operations for any in-place algorithm with 7 multiplications.

Theorem 9. At least 25 additions are required to compute in-place any bilinear matrix multiplication algo-
rithm using only 7 multiplications and to restore its two input matrices to their initial states afterwards.

Proof. Proposition 8 shows that at least 6 operations are required to realize α (or β). For µ, we in fact

compute ~c += µ~ρ, so we need to consider the matrix P = [ I4 µ ] ∈ F
4×11 and the vector ~ξ =

[

~c
~ρ

]

. Consider

now an elementary program that realizes P~ξ, in-place of ~c only. This implies for instance that if ~ρ is zero,
~c should be put back to its initial state at the end of the program. Finally, thus consider the transposed
program P ⊺~c: it must be in-place of~c, while putting back~c to its initial state afterwards. Now, by Prop. 8, µ⊺,
and thus P ⊺ ∈ F

11×4, requires at least 6 elementary operations to be performed. By Tellegen’s transposition
principle, see also [22, Theorem 7], computing the transposed program thus requires at least 6+(11−4) = 13
operations. This gives a total of at least 6 + 6 + 13 = 25 additions.

Theorem 9 thus shows that our Alg. 7 with 18 elementary additions and 7 recursive calls (thus 7 more,
and a total of 18 + 7 = 25 additions) is an optimal in-place bilinear matrix multiplication algorithm using
only 7 multiplications.

5 In-place polynomial multiplication with accumulation

Algorithm 2 can also be used for polynomial multiplication. An additional difficulty is that this does not
completely fits the setting, as multiplication of two size-n inputs will in general span a (double) size-2n
output. This is not an issue until one has to distribute separately the two halves of this 2n values (or more
generally to different parts of different outputs). In the following we show that this can anyway always be
done for polynomial multiplications.

5.1 In-place accumulating Karatsuba

For instance, we immediately obtain an in-place Karatsuba polynomial multiplication since it writes as
in Eq. (5), from which we can extract the associated µ, α, β matrices shown in Eq. (6).

(Y a1 + a0)(Y b1 + b0) = a0b0 + Y 2(a1b1)

+ Y ((a1 + a0)(b1 + b0)− a0b0 − a1b1)
(5)

µ =
[

1 0 0
−1 1 −1
0 0 1

]

α =
[

1 0
1 1
0 1

]

β =
[

1 0
1 1
0 1

]

(6)

Then, with Y = Xt and ai, bi, ci polynomials in X (and a0, b0, c0 of degree less than t), this is detailed,
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with accumulation, in Eq. (7):

A(Y ) = Y a1 + a0; B(Y ) = Y b1 + b0;

C(Y ) = Y 3c11 + Y 2c10 + Y c01 + c00;

m0 = a0 · b0 = m01Y +m00; m2 = a1 · b1 = m21Y +m20;

m1 = (a0 + a1) · (b0 + b1) = m11Y +m10;

t00 = c00 +m00; t01 = c01 +m01 +m10 −m00 −m20;

t10 = c10 +m11 +m20 −m01 −m21; t11 = c11 +m21;

then C +AB = Y 3t11 + Y 2t10 + Y t01 + t00

(7)

To deal with the distributions of each half of the products of Eq. (7), each coefficient in µ in Eq. (6) can
be expanded into 2×2 identity blocks, and the middle rows combined two by two, as each tensor product
actually spans two sub-parts of the result; we obtain Eq. (8):

µ(2)=
[

I2 02 02
02 02 02

]

+
[

0 0 0
−I2 I2 −I2
0 0 0

]

+
[

02 02 02
02 02 I2

]

=

[

1 0 0 0 0 0
−1 1 1 0 −1 0
0 −1 0 1 1 −1
0 0 0 0 0 1

]

(8)

Finally, Eq. (7) then translates into an in-place algorithm thanks to Alg. 2 and Eqs. (6) and (8). The
first point is that products double the degree: this corresponds to a constraint that the two blocks have to
remain together when distributed. In other words, this means that the µ(2) matrix needs to be considered
two consecutive columns by two consecutive columns. This is always possible if the two columns are of full
rank 2. Indeed, consider a 2 × 2 invertible submatrix M = [ v w

x y ] of these two columns. Then computing
[ cicj ] += M [ ρ0

ρ1
] is equivalent to computing a 2× 2 version of Eq. (1):

{

[ cicj ] ∗= M−1; [ cicj ] += [ ρ0
ρ1
] ; [ cicj ] ∗= M

}

. (9)

The other rows of these two columns can be dealt with as before by pre- and post- multiplying/dividing by a
constant and pre- and post- adding/subtracting the adequate ci and cj . Now to apply a matrix M =

[

a b
c d

]

to a vector of results
[

~u
~v

]

, it is sufficient that one of its coefficient is invertible. W.l.o.g suppose that its upper

left element, a, is invertible. Thus
[

a b
c d

]

=
[

1 0
ca−1 1

]

[

a b
0 d−ca−1

]

. Then the in-place evaluation of Eq. (10)

performs this application, using the two (known in advance) constants x = ca−1 and y = d− ca−1b:

~u ∗= a
~u += b · ~v
~v ∗= y
~v += x · ~u











computes in-place:
[

~u
~v

]

←
[

a b
c d

]

⊙
[

~u
~v

]

=
[

a~u+b~v
c~u+d~v

]

for x = ca−1 and y = d− xb

(10)

Remark 10. In practice for 2× 2 blocks, if a is not invertible, permuting the rows is sufficient since c has
to be invertible for the matrix to be invertible: for J = [ 0 1

1 0 ], if M̃ =
[

c d
0 b

]

= J ·M , then M = J ·M̃ and

M−1 = M̃−1·J so that Eq. (9) just becomes:
[
ci
cj ] ∗= J ; [

ci
cj ] ∗= M̃−1; [

ci
cj ] += [ ρ0

ρ1
] ; [

ci
cj ] ∗= M̃ ; [

ci
cj ] ∗= J.

We now have all the tools to produce in-place polynomial algorithms. We start, in Alg. 3, with a version
of Alg. 2 that regroups the intermediate computations into consecutive blocks.

Theorem 11. Algorithm 3 is correct, in-place, and requires t MUL-2D, 2(#α+#β +#µ− t) ADD and
2(♯α+ ♯β + ♯µ+ 2t) SCA operations.

Proof. Thanks to Eqs. (9) and (10) and Remark 10, correctness is similar to that of Alg. 2 in Theorem 3.
Then, Eq. (10) requires 4 SCA and 2 ADD operations and is called 2t times. The rest is similar to Alg. 2
and amounts to 2t + 2(#α − t + #β − t + #µ − 2t) + (2t)2 ADD and 2(♯α + ♯β + ♯µ − 2t) + (2t)4 SCA

operations.
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Algorithm 3 In place bilinear 2 by 2 formula

Input: ~a ∈ F
m, ~b ∈ F

n, ~c ∈ F
s; α ∈ F

t×m, β ∈ F
t×n, µ ∈ F

s×(2t) = [M1 ... Mt ], with no zero-rows in α, β, µ, s.t.
(ai · bj) fits two result variables ck, cl and s.t. Mi ∈ F

s×2 is of full-rank 2 for i = 1..t.
Read-only: α, β, µ.
Output: ~c += µ~m, for ~m = (α~a)⊙ (β~b)
1: for ℓ = 1 to t do

2: Let i s.t. αℓ,i 6= 0; ai ∗= αℓ,i;
3: for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai += αℓ,λaλ end for

4: Let j s.t. βℓ,j 6= 0; bj ∗= βℓ,j ;
5: for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj += βℓ,λbλ end for

6: Let k, f s.t. M =
[ µk,2ℓ µk,2ℓ+1
µf,2ℓ µf,2ℓ+1

]

is invertible;

7:
[ ck
cf

]

←M−1
[ ck
cf

]

{Via Eq. (10) and Remark 10}
8: for λ = 1 to s, λ 6∈ {f, k}, µλ,2ℓ 6= 0 do cλ –= µλ,2ℓck end for

9: for λ = 1 to s, λ 6∈ {f, k}, µλ,2ℓ+1 6= 0 do cλ –= µλ,2ℓ+1cf end for

10:
[ ck
cf

]

+= ai · bj {This is the accumulation of the product
[mk
mf

]

}
11: for λ = 1 to s, λ 6∈ {f, k}, µλ,2ℓ+1 6= 0 do cλ += µλ,2ℓ+1cf end for

12: for λ = 1 to s,λ 6∈ {f, k}, µλ,2ℓ 6= 0 do cλ += µλ,2ℓck end for

13:
[ ck
cf

]

←M
[ ck
cf

]

{Via Eq. (10) and Remark 10, undo 7}
14: for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj –= βℓ,λbλ end for ; bj /= βℓ,j ;
15: for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai –= αℓ,λaλ end for ; ai /= αℓ,i;

16: return ~c.

There remains to use a double expansion of the output µ ∈ F
s×t to simulate the double size of the

intermediate products (MUL-2D), producing µ(2) ∈ F
s×(2t), as in Eq. (8), that is used as an input in Alg. 3.

This double expansion matrix is obtained by the following duplication: µ(2)(i, 2j) = µ(i, j) and µ(2)(i +
1, 2j+1) = µ(i, j) for i = 1..s and j = 1..t. We prove, in Lemma 12, that in fact any such double expansion
of a representative matrix is suitable for the in-place computation of Alg. 3.

Lemma 12. If µ does not contain any zero column, then each pair of columns of µ(2), resulting from the
expansion of a single column in µ, contains an invertible lower triangular 2×2 submatrix.

Proof. Consider the top most non-zero element of a column. It is expanded as a 2×2 identity matrix whose

second row is merged with the first row of the next identity matrix: in picture, [ ab ] is expanded to
[

a 0
b a
∗ b

]

.

For instance with m00 + Ym01 = a0b0 = ρ0 + Y ρ1, consider the upper left 2× 2 block of µ(2) in Eq. (8),
that is M =

[

1 0
−1 1

]

, whose inverse is M−1 = [ 1 0
1 1 ]. One has first to precompute M−1 [ c00c01 ], that is nothing

on c00 and c01 += c00 for the second coefficient. Then, afterwards, the third row, for c10, will just be −m01:
for this just pre-add c10 += c01, and post-subtract c10 –= c01 after the product actual computation. This
example is exactly lines 14 to 16 of Alg. 4 thereafter. One could also consider instead the first and last
rows, but in this particular case without any advantage in term of computations. To complete Eq. (7), the
computation of m2 is dealt with in the same manner, while that of m1 is direct in the results (and requiring
pre and post additions of its inputs). This gives then the whole of Alg. 4. The second point is to deal with
unbalanced dimensions and degrees for Y = Xt and recursive calls: first separate the largest polynomial
in two parts, so that two sub-products are performed: a large balanced one, and, recursively, a smaller
unbalanced one. Second, for the balanced case, the idea is to ensure that three out of four parts of the result,
t00, t01 and t10, have the same size and that the last one t11 is smaller. This ensures that all accumulations
can be performed in-place. Again the details can be found in Alg. 4.

Proposition 13. Alg. 4 is correct and requires O(mnlog2(3)−1) operations.

Proof. With the above analysis, correctness comes from that of Alg. 3 applied to Eq. (6). When m = n,
with 3 recursive calls and O(n) extra operations, the algorithm thus requires overall O(nlog2(3)) operations.
Otherwise, it requires

⌊

m
n

⌋

equal degree calls, then a recursive call with n and (m mod n). Now, let u1 =
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Algorithm 4 In-place Karatsuba polynomial multiplication with accumulation

Input: A, B, C polynomials of degrees m, n, m+ n with m ≥ n.
Output: C += AB
1: if n ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place multiplication. {Alg. 1}
3: else if m > n then

4: Let A(X) = A0(X) +Xn+1A1(X)
5: C0..2n += A0B {Recursive call}
6: if m ≥ 2n then {Recursive call}
7: C(n+1)..(n+m) += A1B
8: else

9: C(n+1)..(n+m) += BA1

10: else

11: Let t = ⌈(2n+ 1)/4⌉; {t− 1 ≥ 2n− 3t and thus t > n− t}
12: Let A = a0 +Xta1; B = b0 +Xtb1;
13: Let C = c00 + c01X

t + c10X
2t + c11X

3t; {d◦c11 = 2n− 3t}
14: c01 += c00; c10 += c01;
15: [ c00c01 ] += a0 · b0 {Recursive call for m0}
16: c10 –= c01; c01 –= c00; {c10 −m01 and c01 +m01 −m00}
17: a0 += a1; b0 += b1; {d◦a0 = t ≥ n− t = d◦a1}
18: [ c01c10 ] += a0 · b0 {Recursive call for m1}
19: b0 –= b1; a0 –= a1;
20: c10 += c11; c01 += c10;
21: [ c10c11 ] += a1 · b1 {Recursive call for m2}
22: c01 –= c10; c10 –= c11; {t01 and t10 in Eq. (7)}

23: return C.

m and u2 = n and if the Euclidean algorithm on them requires k steps, let ui for i = 1..k denote the
successive residues within this Euclidean algorithm (and uk ∈ {0, 1}). Let κ = k − 1 if uk = 0 and κ = k

otherwise. Now, Alg. 4 requires less than O(
∑κ−1

i=1 ⌊
ui

ui+1
⌋u

log2(3)
i+1 ) ≤ O(

∑κ−1
i=1 uiu

log2(3)−1
i+1 ) operations. But,

ui+1 ≤ u2 = n and we let si = ui + ui+1 so that ui = si − ui+1 ≤ si. Now, from [16, Corollary 2.6],

we have that si ≤ s1(2/3)
i−1. Thus the number of operations is bounded by O(

∑κ−1
i=1 sin

log2(3)−1) ≤
O(nlog2(3)−1s1(

1
1−(2/3) − 1)) = O(nlog2(3)−1(m+ n)) = O(mnlog2(3)−1).

In order to compare the complexity when m = n, note that all coefficients of α, β and µ(2) being 1 or −1,
Alg. 4 does compute the accumulation C += AB without constant multiplications. Also, the de-duplication
of each recursive output has enabled some natural reuse, so in fact there is a cost of 2(#α − t+#β − t) =
2(4−3+4−3) with t = 3, and 2(2(#µ− t) = 4(5−3) = 2(#µ(2)−2t), for a total of 3 recursive accumulating
calls and at most 12 block additions. Thus, without thresholds, for powers of two and with m = n, the
dominant term of the overall cost only goes from 10nlog2(3), for the simple application of Eq. (7), to 14nlog2(3),
for the fully in-place version in Alg. 4.

5.2 Further bilinear polynomial multiplications

We have shown that any bilinear algorithm can be transformed into an in-place version. This approach
thus also works for any Toom-k algorithm using 2k − 1 interpolations points instead of the three points of
Karatsuba (Toom-2).

For instance Toom-3 uses interpolations at 0, 1,−1, 2,∞. Therefore, α and β are the Vandermonde
matrices of these points for the 3 parts of the input polynomials and µ is the inverse of the Vandermonde
matrix of these points for the 5 parts of the result, as shown in Eq. (11) thereafter.
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µ =

[

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 −2 4 −8 16
0 0 0 0 1

]−1

=









1 0 0 0 0
1
2

1
3 −1

1
6 −2

−1
1
2

1
2 0 −1

−
1
2

1
6

1
2 −

1
6 2

0 0 0 0 1









; α = β =

[

1 0 0
1 1 1
1 −1 1
1 −2 4
0 0 1

]

(11)

With the same kind of duplication as in Eq. (8), apart from the recursive calls, the initially obtained
operation count is 2(11+11−2∗5)+2(2(16−5)) = 68 additions and 2(2+2+2(11)) = 52 scalar multiplications.
Following the optimization of [4], we see in α and β that the evaluations at 1 and −1 (second and third
rows) share one addition. As they are successive in our main loop, subtracting one at the end of the second
iteration, then followed by re-adding it at the third iteration can be optimized out. This is 2 less operations.
Together with shared coefficients in the rows of µ, some further optimizations of [4] can probably also be
applied, where the same multiplicative constants appear at successive places.

5.3 Fast bilinear polynomial multiplication

When sufficiently large roots of unity exist, polynomial multiplications can be computed fast in our in-place
model via a discrete Fourier transform and its inverse, as shown in Alg. 5, for power of two dimensions, and
in Alg. 6, for general dimensions.

Let F ∈ D[X ] of degree < n and ω be a principal n-th root of unity, where n = 2p. The discrete
Fourier transform of F at ω is defined as DFTn(F, ω) = (F (ω0), F (ω1), . . . , F (ωn−1)). The map is in-
vertible, of inverse DFT

−1
n (·, ω) = 1

nDFTn(·, ω
−1). Further, the DFT can be computed over-place, replac-

ing the input by the output [9]. Actually, for over-place algorithms and their extensions to the trun-
cated Fourier transform, it is more natural to work with the bit-reversed DFT defined by brDFTn(F, ω) =

(F (ω[0]p), F (ω[1]p), . . . , F (ω[n−1]p)) where [i]p =
∑p−1

j=0 dj2
p−j is the length-p bit reversal of i =

∑p−1
j=0 dj2

j ,
dj ∈ {0, 1}. If π denotes the bit-reversal permutation (that is π(i) = [i]p), we have brDFTn(·, ω) =
π ◦ DFTn(·, ω). Its inverse becomes brDFT

−1
n (·, ω) = 1

nDFTn(·, ω
−1) ◦ π = 1

nDFTn(π(·), ω
−1) since π is

an involution.

Remark 14. The Fast Fourier Transform (FFT) algorithm has two main variants: decimation in time
(DIT) and decimation in frequency (DIF). Both algorithms can be performed over-place, replacing the input
by the output. Without applying any permutation to the entries of the input/output vector, the over-place
DIF-FFT algorithm naturally computes brDFTn(·, ω), while the over-place DIT-FFT algorithm on ω−1 com-
putes n · brDFT−1

n (·, ω).

Algorithm 5 In-place power of two accumulating multiplication

Input: ~a, ~b and ~c of length 2L, 2L and 2L+1, containing the coefficients of A, B, C ∈ D[X ] respectively;
ω ∈ D primitive 2L+1-th root of unity.

Output: ~c contains the coefficients of C +A ·B.
1: Let n = 2L;
2: ~c← brDFT2n(~c, ω); {over-place}

3: ~a← brDFTn(~a, ω
2); ~b← brDFTn(~b, ω

2) {over-place}
4: for i = 0 to n− 1 do ci += ai × bi end for

5: ~a← brDFT
−1
n (~a, ω2); ~b← brDFT

−1
n (~b, ω2) {Undo 3}

6: for i = 0 to n− 1 do ai ∗= ωi; bi ∗= ωi end for

7: ~a← brDFTn(~a, ω
2); ~b← brDFTn(~b, ω

2) {over-place}
8: for i = 0 to n− 1 do ci+n += ai × bi end for

9: ~a← brDFT
−1
n (~a, ω2); ~b← brDFT

−1
n (~b, ω2) {Undo 7}

10: for i = 0 to n− 1 do ai /= ωi; bi /= ωi end for {Undo 6}
11: return ~c← brDFT

−1
2n (~c, ω)
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Theorem 15. Using an over-place brDFT algorithm with complexity bounded by O(n logn), Alg. 5 is correct,
in-place and has complexity bounded by O(n logn).

Proof. Alg. 5 follows the pattern of the standard FFT-based multiplication algorithm. Our goal is to compute
brDFT2n(A,ω), brDFT2n(B,ω) and brDFT2n(C, ω), then obtain brDFT2n(C + AB,ω) and finally C + AB
using an inverse brDFT. Computations on C and then C +AB are performed over-place using any standard
over-place brDFT algorithm. The difficulty happens for A and B that are stored in length-n arrays. We
use the following property of the bit reversed order: for k < n/2, [k]p = 2[k]p−1, and for k ≥ n/2, [k]p =
2[k − n/2]p−1 + 1. Therefore, the first n coefficients of brDFT2n(A,ω) are (A(ω2[0]p−1), . . . A(ω2[n

2
−1]p−1)) =

brDFTn(A,ω
2). Similarly, the next n coefficients are brDFTn(A(ωX), ω2). Therefore, one can compute

brDFT(A,ω2) and brDFT(B,ω2) in ~a and ~b respectively, and update the first n entries of ~c. Next we

restore ~a and ~b using brDFT
−1
n (·, ω2). We compute A(ωX) and B(ωX) and again brDFT(A(ωX), ω2) and

brDFT(B(ωX), ω2) to update the last n entries of ~c. Finally, we restore ~a and ~b and perform the inverse
brDFT on ~c. The cost is dominated by the ten brDFT

±1 computations.

Since there are 2 size-2n and 8 size-n brDFT
±1 computations, the dominant term of the cost is 18n logn

ring operations, twice as large as the dominant term for the standard (not in-place) algorithm [9].
The case where n is not a power of two is loosely similar, using as a routine a truncated Fourier transform

(TFT) rather than a DFT [19]: let ω be an N -th root of unity for some N = 2p. The length-n (bit-reversed)

TFT of a polynomial F ∈ D[X ], n < N , is brTFTn(F, ω) = (F (ω[0]p), . . . , F (ω
[n−1]
p )), that is the n first

coefficients of brDFTN (F, ω). As for the DFT, the (bit-reversed) TFT and its inverse can be computed
over-place [18, 28, 3, 10].

Given inputs A and B ∈ D[X ] of respective lengths m and n and an output C ∈ D[X ] of length m+n−1,
we aim to replace C by C + AB. The idea is first to replace C by brTFTm+n−1(C, ω) where ω is a 2p-th
principal root of unity, 2p ≥ m+n−1. That is, the vector ~c now contains as its i-th entry the value C(ω[i]p).
The goal is then to replace C(ω[i]p) by C(ω[i]p)+A(ω[i]p)B(ω[i]p), for i = 0 to m+n−2. We cannot compute
the length m + n − 1 brTFT’s of A and B since this takes too much space. Instead, we will progressively
compute some parts of these brTFT’s by means of (standard) brDFT’s, and update ~c accordingly. The
starting point of this strategy is the following lemma.

Lemma 16 ([18, 28]). Let F ∈ D[X ], ℓ and s be two integers such that 2ℓ divides s and ω be a 2p-th principal

root of unity. Define Fs,ℓ(X) = F (ω[s]pX) mod X2ℓ−1. Then brDFT2ℓ(Fs,ℓ, ω
2p−ℓ

) = (F (ω[s]p), . . . , F (ω[s+2ℓ−1]p)).

Proof. Let ωℓ = ω2p−ℓ

. This is a principal 2ℓ-th root of unity since ω is a principal 2p-th root of unity. In

particular, for any i < 2ℓ, Fs,ℓ(ω
[i]ℓ
ℓ ) = F (ω[s]pω

[i]ℓ
ℓ ). Now, ω

[i]ℓ
ℓ = ω[i]p since 2p−ℓ[i]ℓ = [i]p. Furthermore,

[s]p + [i]p = [s+ i]p since i < 2ℓ and 2ℓ divides s. Finally, Fs,ℓ(ω
[i]ℓ
ℓ ) = F (ω[s+i]p).

Corollary 17. Let F ∈ D[X ] stored in an array ~f of length n. Let also ℓ and k be two integers and ω be a

2p-th principal root of unity, with 2ℓ ≤ n and (k+1)2ℓ ≤ 2p. There exists an algorithm, partTFTk,ℓ(
~f, ω), that

replaces the first 2ℓ entries of ~f by F (ω[k·2ℓ]p), . . . , F (ω[(k+1)·2ℓ−1]p), and an inverse algorithm partTFT
−1
k,ℓ

that restores ~f to its initial state. Both algorithms use O(1) extra space and have complexity bounded by
O(n+ ℓ · 2ℓ).

Proof. Algorithm partTFTk,ℓ(
~f, ω) is the following:

1: for i = 0 to n− 1 do fi ∗= ωi[k·2ℓ]p end for

2: for i = 2ℓ to n− 1 do fi−2ℓ += fi end for

3: ~f0..2ℓ−1 ← brDFT2ℓ(~f0..2ℓ−1, ω
2p−ℓ

)

Its correctness is ensured by Lemma 16. Its inverse algorithm partTFT
−1
k,ℓ(

~f, ω) does the converse:

1: ~f0..2ℓ−1 ← brDFT
−1
2ℓ (

~f0..2ℓ−1, ω
2p−ℓ

)
2: for i = 2ℓ to n− 1 do fi−2ℓ –= fi end for
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3: for i = 0 to n− 1 do fi /= ωi[k·2ℓ]p end for

In both algorithms, the call to brDFT
±1 has cost O(ℓ · 2ℓ), and the two other steps have cost O(n).

To implement the previously sketched strategy, we assume that m ≤ n for simplicity. We let ℓ, t
be such that 2ℓ ≤ m < 2ℓ+1 and 2ℓ+t ≤ n < 2ℓ+t+1. Using partTFT

±1, we are able to compute

(A(ω[k·2ℓ]p), . . . , A(ω[(k+1)·2ℓ−1]p)) for any k, and restore A in its initial state afterwards. Similarly, it is

possible to compute (B(ω[k·2ℓ+t]p), . . . , B(ω[(k+1)·2ℓ+t−1]p)) and restore B.

Algorithm 6 In-place fast accumulating polynomial multiplication

Input: ~a, ~b and ~c of length m, n and m + n − 1, m ≤ n, containing the coefficients of A, B, C ∈ D[X ]
respectively; ω ∈ D principal 2p-th root of unity with 2p−1 < m+ n− 1 < 2p

Output: ~c contains the coefficients of C +A ·B.
1: ~c← brTFTm+n−1(~c, ω); {over-place}
2: r ← m+ n− 1
3: while r ≥ 0 do

4: ℓ← ⌊log2 min{r,m}⌋; t← ⌊log2 min{r, n}⌋ − ℓ;
5: k ← m+ n− 1− r

{over-place: B(ω[k·2ℓ+t]p]), . . . , B(ω[(k+1)·2ℓ+t−1]p)}

6: ~b← partTFTk,ℓ+t(
~b, ω)

7: for s = 0 to 2t − 1 do

{over-place: A(ω[(k·2t+s)2ℓ]p]), . . . , A(ω[(k·2t+s+1)2ℓ−1]p)}
8: ~a← partTFTs+k·2t,ℓ(~a, ω)

9: for i = 0 to 2ℓ − 1 do ci+(k·2t+s)2ℓ += aibi+s·2ℓ end for

10: ~a← partTFT
−1
s+k·2t,ℓ(~a, ω) {Undo 8 over-place}

11: ~b← partTFT
−1
k,ℓ+t(

~b, ω) {Undo 6 over-place}

12: r –= 2ℓ+t

13: return ~c← brTFT
−1
m+n−1(~c, ω)

Theorem 18. Algorithm 6 is correct and in-place. If the algorithm brDFT used inside partTFT has com-
plexity O(n log n), then the running time of Alg. 6 is O((m + n) log(m+ n)).

Proof. The fact that the algorithm is in-place comes from Corollary 17. The only slight difficulty is to
produce, fast and in-place, the relevant roots of unity. This is actually dealt with in the original over-place
TFT algorithm [18] and can be done the same way here.

To assess its correctness, first note that the values of Lines 4 and 5 are computed so that 2ℓ ≤ r,m and
2ℓ+t ≤ r, n. One iteration of the while loop updates the entries ck to ck+2ℓ+t−1 where k = m+n− 1− r. To

this end, we first compute B(ω[k·2ℓ+t]p]) to B(ω[(k+1)·2ℓ+t−1]p) in ~b using partTFT. Then, since ~a may be too
small to store 2ℓ+t values, we compute the corresponding evaluations of A by groups of 2ℓ, using a smaller
partTFT. After each computation in ~a, we update the corresponding entries in ~c and restore ~a. Finally, at
the end of the iteration, entries k to k+ 2ℓ+t− 1 of ~c have been updated and ~b can be restored. This proves
the correctness of the algorithm.

We now bound its complexity. Since m ≤ n, our aim is to bound it by O(n log n). Let us first bound
the number of iterations of the while loop. We identify two phases, first iterations where r ≥ n and then
iterations with r < n. During the first phase, 2ℓ+t > n

2 entries of ~c are updated at each iteration, hence the
first phase has at most 3 iterations. In the second phase, 2ℓ+t > r

2 entries are updated per iteration. The
second phase starts with r < n and each iteration decreases r by half, hence the second phase has at most
log2 n iterations.

The cost of an iteration is dominated by the calls to partTFT
±1. The cost of a call to partTFT

±1
k,ℓ with a

size-m input is the sum of a linear term O(m) and a non-linear term O(ℓ · 2ℓ). At each iteration, there are
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two calls to partTFT
±1 on ~b and 2t+1 calls to partTFT

±1 on ~a. The linear terms sum to O(n+m ·2t) = O(n)
since m · 2t < 2ℓ+1+t ≤ 2n. Over the log2 n iterations, the global cost due to these linear terms is O(n log n).

The cost due to the non-linear terms in one iteration is O((ℓ+ t) · 2ℓ+t). In the first iterations, 2ℓ+t ≤ n
and these costs sum to O(n logn). In the next iterations, 2ℓ+t ≤ r < n. Since r is halved at each iteration,
the non-linear costs in these iterations sum to O

(
∑

i
n
2i log

n
2i

)

= O(n log n).

6 Conclusion

We here provide a generic technique mapping any bilinear formula (and more generally any linear accumu-
lation) into an in-place algorithm. This allows us for instance to provide the first accumulating in-place
Strassen-like matrix multiplication algorithm. This also allows use to provide fast in-place accumulating
polynomial multiplications algorithms.

Many further accumulating algorithm can then be reduced to these fundamental building blocks, see for
instance Toeplitz, circulant, convolutions or remaindering operations in [11].
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A In-place accumulating matrix-multiplication with 7 recursive

calls and 18 additions

We here give an in-place version of Strassen-Winograd algorithm for matrix multiplication. We first directly
apply our Alg. 2 to the classical, not in-place Strassen-Winograd algorithm, following the specific scheduling
strategy of Section 4. This strategy allows to reduce the number of additions obtained when calling Alg. 2,
from 42 + 7 to 18 + 7: mostly remove successive additions/subtractions that are reciprocal on either sub-
matrices. This optimized version is given in Alg. 7 and reaches the minimal possible number of extra
additions/subtractions, as shown in Theorem 9.

The memory footprint of Alg. 7 is compared to that of previously known algorithms in Table 1.
To go beyond our minimality result for operations, one could try an alternate basis of [24]. But an

argument similar to that of Prop. 8 shows that alternate basis does not help for the in-place case.

16

https://doi.org/10.1145/1005285.1005327
https://doi.org/10.1137/0202013
https://doi.org/10.1145/369028.369096
https://doi.org/10.1016/0196-6774(88)90026-0
https://doi.org/10.1145/3364504
https://doi.org/10.1007/BF01436917
https://doi.org/10.1109/SWAT.1972.5
https://doi.org/10.1145/1576702.1576743
http://hdl.handle.net/10012/5869
https://doi.org/10.1007/BF02165411
https://hal.inria.fr/hal-02396734
https://doi.org/10.1016/0024-3795(71)90009-7


Algorithm 7 In-place accumulating S.-W. matrix-multiplication

Input: A = [ a11 a12
a21 a22

], B =
[

b11 b12
b21 b22

]

, C = [ c11 c12
c21 c22 ].

Output: C += AB.

A21 := A21 - A11; B12 := B12 - B22; C21 := C21 - C22;

C22 := C22 + A21 * B12;

A21 := A21 + A22; B12 := B12 - B11; C12 := C12 - C22;

C22 := C22 - A21 * B12;

C11 := C11 - C22;

C22 := C22 + A11 * B11;

C11 := C11 + C22; B12 := B12 + B21; C21 := C21 + C22;

C21 := C21 + A22 * B12;

B12 := B12 + B22; B12 := B12 - B21; A21 := A21 - A12;

C12 := C12 - A21 * B22;

A21 := A21 + A12; A21 := A21 + A11;

C22 := C22 + A21 * B12;

C12 := C12 + C22; B12 := B12 + B11; A21 := A21 - A22;

C11 := C11 + A12 * B21;

Table 1: Reduced-memory accumulating S.-W. multiplication

Alg. Temporary inputs accumulation

[21] 3 read-only D

[6] 2 read-only D

Alg. 7 0 mutable D

Proposition 19. For the in-place realization of each of linear operators arising from the sparsification of
any bilinear matrix multiplication algorithm using only 7 multiplications, and for the restoration of the initial
states of their input, at least 6 operations are needed.

Proof. The alternate basis method of [24], consist in sparsifying the matrices of Eq. (4), via right multipli-
cation by 4×4 invertible matrices. The sparsest obtained matrices are given in







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 1 −1 0
−1 1 0 0
0 −1 0 1






,







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 −1 0 1
0 1 −1 0
−1 1 0 0






,

[

0 0 0 1 1 0 0
0 0 1 0 1 −1 1
0 1 0 0 0 0 1
1 0 0 0 0 −1 0

]

(12)

We then follow the same line of reasoning as in Prop. 8, where we mostly need to adapt Lemma 6.
W.l.o.g, we consider a 4×4 transformation M of the left matrix in Eq. (12).

If the resulting product matrix has only 3 rows that are multiple of a canonical vector, then 6 multipli-
cations are minimal by Prop. 8. The only other possibility is thus, as in Eq. (12), that it contains exactly 4
rows that are multiples of a canonical vector.

Now, each one of the four columns of the resulting product has the form:

[

a b c d c− b c− d a− c
]⊺

.

Such a column can never be a zero-column, nor a multiple of a canonical vector.
Therefore, as in Prop. 8 all 4 variables must appear in the 3 rows that are not canonical and at most

one variable can be modified. So again at least 3 operations are of the form a1 += λiai for i = 2, 3, 4 and
some constants λi. But then again at least 3 operations are required to put back a1 in its initial state and
no in-place algorithm can use strictly less than 6 operations.
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B Fast In-place Square & Symmetric Rank-k Update

Thanks to Alg. 7 and with some care on transposes, the same technique can be adapted to, e.g., [12, Alg. 12],
which performs the multiplication of a matrix by its transpose. With an accumulation, this is a classical
Symmetric Rank-k Update (or SYRK): C ← αAA⊺ + βC.

Following the notations of the latter algorithm, which is not a bilinear algorithm on its single input
matrix, the in-place accumulating version is shown in Alg. 8, for α = β = 1, using any (fast to apply) skew-
unitary Y ∈ F

n×n. It has been obtained automatically by the method of Theorem 5, and it thus preserves
the need of only 5 multiplications P1 to P5. It has then been scheduled so as to reduce the number of extra
operations.

Algorithm 8 requires 3 recursive calls, 2 multiplications of two independent half matrices, 4 multiplications
by a skew-unitary half matrix, 8 additions (of half inputs), 12 semi-additions (of half triangular outputs).
Provided that the multiplication by the skew-unitary matrix can be performed in-place in negligible time,
this gives a dominant term of the complexity bound for Alg. 8 of a fraction 2

2ω−3 of the cost of the full

in-place algorithm. This is a factor 1
2 , when Alg. 7 is used for the two block multiplications of independent

matrices (P4 and P5).

Algorithm 8 In-place accumulating multiplication by its transpose

Input: A = [ a11 a12
a21 a22

] ∈ F
m×2n; symmetric C =

[

c11 c21
⊺

c21 c22

]

∈ F
m×m.

Output: Low (C) += Low (A · A⊺). {update bottom left triangle}

Low(C22) := Low(C22) - Low(C11);

Low(C21) := Low(C21) - Low(C11);

Up(C21) := Up(C21) - Low(C11)
⊺;

Low(C11) := Low(C11) + Low(A11 * A11
⊺); # P1 Rec.

Up(C21) := Up(C21) + Low(C11)
⊺;

Low(C21) := Low(C21) + Low(C11);

Low(C22) := Low(C22) + Low(C11);

Low(C11) := Low(C11) + Low(A12 * A12
⊺); # P2 Rec.

A11 := A11 * Y; A21 := A21 * Y;

A11 := A11 - A21; A21 := A21 - A22;

Low(C22) := Low(C22) - Low(C21);

Low(C22) := Low(C22) - Low(C21
⊺);

C21 := C21 + A11 * A21
⊺; # P4 (e.g. Alg. 7)

Low(C22) := Low(C22) + Low(C21
⊺);

A21 := A21 - A11;

Up(C21) := Up(C21) - Low(C21)
⊺;

Low(C21) := Low(C21) + Low(A21 * A21
⊺); # P5 Rec.

Up(C21) := Up(C21) + Low(C21)
⊺;

Low(C22) := Low(C22) + Low(C21);

A21 := A21 + A12;

C21 := C21 + A22 * A21
⊺; # P3 (e.g. Alg. 7)

A21 := A21 - A12;

A21 := A21 + A11; A21 := A21 + A22; A11 := A11 + A21;

A21 := A21 * Y−1; A11 := A11 * Y−1;

Now, the skew-unitary matrices used in [12], are either a multiple of the identify matrix, or the Kronecker
product of

[

a b
−b a

]

by the identity matrix, for a2+b2 = −1 and a 6= 0. The former is easily performed in-place

in time O(n2). For the latter, it is sufficient to use Eq. (10): the multiplication
[

a b
−b a

]

~u can be realized in

place by the algorithm: u1 ∗= a; u1 += b·u2; u2 ∗=(a+ b2a−1); u2 +=
(

−ba−1
)

·u1.
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The same technique can be used on the symmetric algorithm for the square of matrices given in [5]. The
resulting in-place algorithm is given in Alg. 9.

Algorithm 9 In-place accumulating S.-W. matrix-square

Input: A = [ a11 a12
a21 a22

], C = [ c11 c12
c21 c22 ].

Output: C += A2.

A22 := A22 - A21; C12 := C12 + C22;

C22 := C22 + A22 * A22;

A22 := A22 + A12; A22 := A22 - A11;

C12 := C12 - A22 * A12;

C21 := C21 - A21 * A22;

C21 := C21 - C22; A22 := A22 + A11;

C22 := C22 - A22 * A22;

C11 := C11 + C22;

C22 := C22 - A12 * A21;

A22 := A22 + A21; C12 := C12 - C22; C11 := C11 - C22;

C22 := C22 + A22 * A22;

A22 := A22 - A12; C21 := C21 + C22;

C11 := C11 + A11 * A11;

C Reduced memory algorithms for polynomial multiplication

We compare in Table 2 the procedure given in Alg. 4 (obtained via the automatic application of Alg. 3)
with previous Karatsuba-like algorithms for polynomial multiplications, designed to reduce their memory
footprint (see also [13, Table 2.2]).

Table 2: Reduced-memory algorithms for Karatsuba polynomial multiplication

Alg. Memory inputs accumulation

[30] n+ 5 logn read-only ✗

[27, 28] 5 logn read-only ✗

[14] O(1) read-only ✗

Alg. 4 5 logn mutable D

Then, Alg. 6 is compared with previous FFT-based algorithms for polynomial multiplications designed
to reduce their memory footprint in Table 3 (see also [13, Table 2.2]).

Table 3: Reduced-memory algorithms for FFT polynomial multiplication

Alg. Memory inputs accumulation

[9] 2n read-only ✗

[27] O(2⌈log2 n⌉ − n) read-only ✗

[18] O(1) read-only ✗

Alg. 6 O(1) mutable D
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