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In-place accumulation of fast multiplication formulae

Jean-Guillaume Dumas∗ Bruno Grenet∗

October 24, 2023

Abstract

We here propose simultaneously fast and in-place algorithms for problems where the result of some
formula has to be linearly accumulated. In other words, some of the output variables are also input
variables, with a linear dependency between these both read and write accesses. Fundamental examples
include the accumulated multiplication of polynomials or matrices, C += AB, that is where there is
a side-effect on the output C which receives in fine C + AB. The difficulty is to combine in-place
computations, here the output variables are not even directly available to store intermediate values, with
fast algorithms, that usually come at the expense of (potentially large) extra temporary space.

We first propose the automatic design of fast and in-place accumulating algorithms for any bilinear
formulae (and thus for polynomial and matrix multiplication) and then extend it to any linear accumu-
lation of a collection of functions.

This generation requires a relaxation of the in-place model to any algorithm that is allowed to modify
its inputs provided that those are restored to their initial state afterwards. This is a less powerful model
than when the input is purely read-only, but it turns out to be crucial in our case, especially when we
have accumulation operations.

From this generic method we are for instance able to derive unprecedented in-place accumulating
algorithms for fast polynomial multiplications as well as for Strassen-like matrix multiplications; the
latter coming with an associated optimality result.
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B In-place accumulating multiplication by its transpose 21

1 Introduction

Multiplication is one of the most fundamental arithmetic operations in computer science and in particular
in computer algebra and symbolic computation.

In terms of arithmetic operations, for instance, from the work of [19, 17, 22], many sub-quadratic (resp.
sub-cubic) algorithms were developed for polynomial (resp. matrix) multiplication.

But these fast algorithms usually come at the expense of (potentially large) extra temporary space to
perform the computation. On the contrary, classical, quadratic (resp. cubic) algorithms, when computed
sequentially, quite often require very few (constant) extra registers.

Further work then proposed simultaneously “fast” and “in-place” algorithms, for both matrix and poly-
nomial operations [3, 20, 14, 10, 11].

We here propose algorithms to extend the latter line of work for accumulating algorithms. Indeed one of
the main ingredient of the latter line of work is to use the (free) space of the output as intermediate storage.
When the result has to be accumulated, i.e., if the output is also part of the input, this free space does not
even exist.

To be able to design accumulating in-place algorithms we thus relax the in-place model to allow algorithms
to also modify their input, therefore to use them as intermediate storage, provided that they are restored to
their initial state after completion of the procedure. This is in fact a natural possibility in many programming
environments. Furthermore, this restoration allows for recursive combinations of such procedures, as the (non
concurrent) recursive calls will not mess-up the state of their callers.

We first propose here a generic technique transforming any bilinear algorithm into an in-place algorithm
under this model. This then directly applies to accumulating polynomial and matrix multiplication algo-
rithms, including fast ones. Further, the technique actually generalizes to any linear accumulation, i.e. not
only bilinear formulae, provided that the input of the accumulation can be itself reversibly computed in-place
(therefore also potentially in-place of some of its own input if needed).

Next we first detail our model for in-place computations in Section 1.1 and recall some classical in-place
algorithms in Section 1.2. From this, we detail in Section 2 our novel technique for in-place accumulation.
Then we apply this technique and further optimizations in order to derive new fast and in-place algorithms
for the accumulating multiplication of matrices, Section 3, and polynomials, Section 4.

1.1 In-place model

There exist different models for in-place algorithms. We here choose to call in-place an algorithm using only
the space of its inputs, its outputs, and at most O(1) extra space. But algorithms are only allowed
to modify their inputs, if their inputs are restored to their initial state afterwards. This is a less
powerful model than when the input is purely read-only, but it turns out to be crucial in our case, especially
when we have accumulation operations.

The algorithms we describe are in-place with accumulation. The archetypical example is a multiply-
accumulate operation a += b× c. For such an algorithm, the condition is that b and c are restored to their
initial states at the end of the computation, while a (which is also part of the input) is replaced by a+ bc.

Also, as a variant, by over-place, we mean an algorithm where the output replaces (parts of) its input
(e.g., like ~a = b·~a). Similarly, we allow all of the input to be modified, provided that the parts of the input
that are not the output are restored afterwards. In the following we signal by a “Read-only:” tag the parts
of the input that the algorithm is not allowed to modify (the other parts are modifiable as long as they are
restored). Note that in-place algorithms with accumulation are a special case of over-place algorithms.

For recursive algorithms, some space may be required to store the recursive call stack. (This space
is bounded by the recursion depth of the algorithms, and managed in practice by the compiler.) In our
complexity summary (Tables 1 and 2), the space complexity includes the stack. Nonetheless, we call in-place
a recursive algorithm whose only extra space is the call stack.
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The main limitations of this model are for black-box inputs, or for different inputs whose representations
share some data. For more details on these models, we refer to [20, 10].

1.2 In place and over-place classical algorithms

For the sake of completeness, we recall here, in Algorithm 1, that classical algorithms for matrix or polynomial
operations can be performed strictly in-place.

Algorithm 1 Quadratic/cubic in-place accumulating polynomial/matrix multiplication

Input: A(X), B(X), C(X) polynomials of
degrees m, n, m+ n.

Read-only: A,B.
Output: C(X) += A(X)B(X)
1: for i = 0 to m do

2: for j = 0 to n do

3: C[i + j] += A[i]B[j];
4: end for

5: end for

Input: A, B, C matrices of dimensions m×ℓ, ℓ×n,
m×n.

Read-only: A,B.
Output: C += AB
1: for i = 0 to m do

2: for j = 0 to n do

3: for k = 0 to ℓ do

4: Cij += AikBkj ;
5: end for

6: end for

7: end for

2 In-place computation of linear accumulation

2.1 In-place computation of accumulating bilinear formulae

Karatsuba polynomial multiplication and Strassen matrix multiplication are famous optimizations of bilinear
formulae on their inputs: results are linear combinations of products of bilinear combinations of the inputs.

To compute recursively such a formula in-place, the idea is to perform each product one at a time. For
each product, both factors are linearly combined in-place into one of the entry beforehand and restored
afterwards. Then the product of both entries is accumulated in one part of the output and then distributed
to the other parts. The difficulty is to perform this distribution in-place, without recomputing the product.
For this we presubtract one output to the other, then accumulate the product to one product, and finally add
the newly accumulated output to the other one: overall both outputs just have accumulated the product,
in-place. Potential constant factors can also be dealt with pre divisions and post multiplications. Basically
we need two kind of in-place operations, and their combinations:

1. In-place accumulation of a quantity multiplied by a (known in advance) invertible constant; this is
shown in Eq. (1).

c /= µ;

c += m;

c ⋆= µ;











computes in-place c← c+ µ ·m (1)

2. In-place distribution of the same quantity, without recomputation, to several outputs; this is shown
in Eq. (2).

d –= c;

c += m;

d += c;











computes in-place

{

c ← c+m

d ← d+m
(2)

Example 1 shows how to combine several of these operations, also linearly combining parts of the input.
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Example 1. Suppose, that for some inputs/outputs a, b, c, d, r, s one wants to compute an intermediate
product p = (a+3b) ∗ (c+ d) only once and then distribute and accumulate that product to two of its outputs
(or results), such that we have both r ← r + 5p and s← s+ 2p. One way to perform this in-place is first to
accumulate a += 3b and c += d, together with pre-dividing r by 5, as in Eq. (1). Then we will compute and
accumulate p to r, knowing that now we directly have p = ac. But to distribute p to s without recomputing it
we first need to prepare s: divide it by 2, and pre-subtract r. This is s /= 2, s –= r. Now we can compute
and accumulate the product r += ac. After this, we can reciprocate (or unroll) all our precomputations (in
order to distribute this product to the other result, s, and to restore the inputs, other than those that are
also results, to their initial state). For s, another possibility is to directly pre-subtract 2r and to post-add 2r.
This is summarized in Eq. (3).

a += 3b; c += d; r /= 5;

s –= 2r; r += ac; s += 2r;

r ⋆= 5; c –= d; a –= 3b;











computes in-place

{

r ← r + 5(a+ 3b)(c+ d)

s ← s+ 2(a+ 3b)(c+ d)
(3)

Algorithm 2 shows how to implement this in general, taking into account the constant (or read-only)
multiplicative coefficients of all the linear combinations. We suppose that inputs are in three distinct sets:
left-hand sides, ~a, right-hand sides, ~b, and those accumulated to the results, ~c. We denote by ⊙ the point-
wise multiplications of left-hand sides by right-hand sides. Then Algorithm 2 computes ~c += µ~m, for
~m = (α~a)⊙ (β~b), with α, β and µ matrices of constants.

Algorithm 2 In place bilinear formula

Input: ~a ∈ D
m, ~b ∈ D

n, ~c ∈ D
s; α ∈ D

t×m, β ∈ D
t×n, µ ∈ D

s×t, with no zero-rows in α, β, µ.
Read-only: α, β, µ.
Output: ~c += µ~m, for ~m = (α~a)⊙ (β~b).
1: for ℓ = 1 to t do

2: Let i s.t. αℓ,i 6= 0; ai ⋆= αℓ,i; for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai += αℓ,λaλ end

3: Let j s.t. βℓ,j 6= 0; bj ⋆= βℓ,j ; for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj += βℓ,λbλ end

4: Let k s.t. µk,ℓ 6= 0; ck /= µk,ℓ; for λ = 1 to s, λ 6= k, µλ,ℓ 6= 0 do cλ –= µλ,ℓck end

5: ck += ai · bj {This is the product mℓ}
6: for λ = 1 to s, λ 6= k, µλ,ℓ 6= 0 do cλ += µλ,ℓck end; ck ⋆= µk,ℓ; {undo 4}
7: for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj –= βℓ,λbλ end; bj /= βℓ,j ; {undo 3}
8: for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai –= αℓ,λaλ end; ai /= αℓ,i; {undo 2}
9: end for

10: return ~c.

Remark 2. Lines 2 to 4, as well as Lines 6 to 8 of Algorithm 2 are in fact acting on independent parts of
the input, ~a and ~b, and of the output ~c. If needed they could therefore be computed in parallel or in different
orders, and even potentially grouped or factorized across the main loop (on ℓ).

To simplify the counting of operations, we denote the addition or subtraction of elements, += or –= ,
by ADD, the (tensor) product of elements, ·, by MUL, and the scaling by constants, ⋆= or /= , by SCA.

We also denote by #x (resp. ♯x) the number of non-zero (resp. 6∈ {0, 1,−1}) elements in a matrix x.

Theorem 3. Algorithm 2 is correct, in-place, and requires t MUL, 2(#α + #β + #µ) − 5t ADD and
2(♯α+ ♯β + ♯µ) SCA operations.

Proof. First, as the only used operations (+= , –= , ⋆= , /= ) are in-place ones, the algorithm is in-
place. Second, the algorithm is correct both for the input and the output: The input is well restored, as
(αℓ,iai+

∑

αℓ,λaλ−
∑

αℓ,λaλ)/αℓ,i = ai and (βℓ,jbj +
∑

βℓ,λbλ−
∑

βℓ,λbλ)/βℓ,j = bj; The output is correct
as cλ − µλ,ℓck/µk,ℓ + µλ,ℓ(ck/µk,ℓ + aibj) = cλ + µλ,ℓaibj and (ck/µk,ℓ + aibj)µk,ℓ = ck + µk,ℓaibj . Third,
for the number of operations, Line 2 requires one multiplication by a constant for each non-zero element
aλ in the row and one less addition. But multiplications and divisions by 1 are no-op, and by −1 can be
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dealt with subtraction. This gives the total of #α − t additions and ♯α constant multiplications. Line 3
is similar for each non-zero element bλ. Line 4 is for each non-zero element in µ. Finally Line 5 performs
t multiplications of elements and t additions. The remaining lines double the number of ADD and SCA.
This is t+ 2(#α+#β +#µ− 3t) = 2(#α+#β +#µ)− 5t ADD.

Remark 4. Similarly, slightly more generic accumulation operations of the form ~c ← ~γ ⊙ ~c + µ~m, for a
vector γ ∈ D

s, can also be computed in-place: precompute in-place first ~c← ~γ ⊙ ~c, then call Algorithm 2.

For instance, to use Algorithm 2 with matrices or polynomials, each product mℓ is in fact computed
recursively. Further, in an actual implementation of a fixed formula, one could of course combine more
efficiently the pre- and post-computations over the main loop on ℓ, as in Remark 2. See next Sections 3
and 4 for examples of recursive calls, together with and sequential optimizations reusing several times the
same subparts of the input pre- and post-computations.

2.2 Generalization to the in-place accumulation of in-place formulae

In fact the method for accumulation, computing each bilinear multiplication once is generalizable. With the
notations of Algorithm 2, any algorithm of the form ~c += µ~m can benefit from this technique, provided that
each mj can be obtained from a function that can be computed in-place. Let Fj : Ω×D be such a function
on some inputs from a space Ω, for which an in-place algorithm exists. Then we can accumulate it in-place, if
it satisfies the following constraint, that it is not using its output space as an available intermediary memory
location. Further, this function can be in-place in different models: it can follow our model of Section 1.1,
if there is a way to put its input back into their initial states, or some other model, again provided that it
follows the above constraint.

Then, the idea is just to keep from Algorithm 2 the Lines 4 to 6, replacing Line 5 by the in-place call to
Fj , potentially surrounding that call by manipulations on the inputs of Fj (just like the one performed on ~a

and ~b in Algorithm 2). We have shown the following Theorem 5.

Theorem 5. Let ~c ∈ D
s and µ ∈ D

s×t, with no zero-rows. Let ~F = (Fj : Ωj × D)j=1..t be a collection of
functions. If these t functions are all computable in-place, without using their output space as an available
intermediary memory location, then there exists an in-place algorithm computing ~c += µ~F in-place, that
requires a single call to each one of the Fj, together with (2#µ− t) ADD and 2♯µ SCA operations.

We give an example application of the generalized method of Theorem 5 to a non bilinear formula
in Appendix B.

3 In-place Strassen matrix multiplication with accumulation

Considered as 2× 2 matrices, the matrix product with accumulation C += A ·B could be computed using
Strassen-Winograd algorithm by performing the following computations:

ρ1 ← a11b11, ρ2 ← a12b21,
ρ3 ← (−a11 − a12 + a21 + a22)b22, ρ4 ← a22(−b11 + b12 + b21 − b22),
ρ5 ← (a21 + a22)(−b11 + b12), ρ6 ← (−a11 + a21)(b12 − b22),
ρ7 ← (−a11 + a21 + a22)(−b11 + b12 − b22),

[

c11 c12
c21 c22

]

+=

[

ρ1 + ρ2 ρ1 − ρ3 + ρ5 − ρ7
ρ1 + ρ4 + ρ6 − ρ7 ρ1 + ρ5 + ρ6 − ρ7

]

.

(4)

This algorithm uses 7 multiplications of half-size matrices and 24 + 4 additions (that can be factored into
only 15+4, see [25]: 4 involving A, 4 involving B and 7 involving the products, plus 4 for the accumulation).
This can be used recursively on matrix blocks, halved at each iteration, to obtain a sub-cubic algorithm. To
save on operations, it is of course interesting to compute the products only once, that is store them in extra
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memory chunks. In order to reduce the overall memory footprint, it is then desirable to minimize the number
(or the volume) of these extra variables. To date, the best versions that reduce the extra memory space,
also overwriting the input matrices (but not putting them back in place) were proposed in [3]. There, an
in-place algorithm for the product without accumulation was proposed. But for the accumulating product
the best obtained memory footprint, for a sub-cubic algorithm, was 2 temporary blocks per recursive level,
thus a total of extra memory required to be 2

3n
2.

With Algorithm 2 we instead obtain a sub-cubic algorithm for accumulating matrix multiplication with
O(1) extra space requirement.

From Eq. (4) indeed (see also the representation in [4]), we can extract the matrices µ, α and β to be
used in Algorithm 2 as follows:

µ =









1 1 0 0 0 0 0
1 0 −1 0 1 0 −1
1 0 0 1 0 1 −1
1 0 0 0 1 1 −1









α =





















1 0 0 0
0 1 0 0
−1 −1 1 1
0 0 0 1
0 0 1 1
−1 0 1 0
−1 0 1 1





















β =





















1 0 0 0
0 0 1 0
0 0 0 1
−1 1 1 −1
−1 1 0 0
0 1 0 −1
−1 1 0 −1





















(5)

All coefficients being 1 or −1 the resulting in-place algorithm can of course compute the accumulation
C += AB without constant multiplications. It thus requires 7 recursive calls and, from Theorem 3, at
most 2(#α + #β + #µ − 3t) = 2(14 + 14 + 14 − 3 ∗ 7) = 42 block additions. Just like the 24 additions
of Eq. (4) can be factored into 15, one can optimize also the in-place algorithm. For instance, looking at α
we see that performing the products in the order ρ6, ρ7, ρ3, ρ5 and accumulating in a21 allows to perform
all additions/subtractions in A with an optimal number of only 6 operations∗. This is similar for β if the
order ρ6, ρ7, ρ4, ρ5 is used and accumulation is in b12. Thus ordering for instance ρ6, ρ7, ρ4, ρ3, ρ5 will
reduce the number of block additions to 26. Now looking at µ (more precisely at its transpose, see [16]), a
similar reduction can be obtained, e.g., if one of the orders (ρ6, ρ7, ρ1, ρ5) or (ρ5, ρ7, ρ1, ρ6) is used and
accumulation is in c22.

So using, e.g. the ordering ρ6, ρ7, ρ1, ρ4, ρ3, ρ5, ρ2 requires only 18 additions, as shown in Appendix A.
Thus, without thresholds and for powers of two, the dominant term of the overall arithmetic cost is

8nlog2(7), for the in-place version, roughly a third more operations than the 6nlog2(7) dominant term of the
cost for the version using extra temporaries.

Any bilinear algorithm for matrix multiplication (see, e.g., https://fmm.univ-lille.fr/) can be dealt
with similarly.

Further, even the accumulating version of the non bilinear algorithm of [8] (but developed from a bilinear
one) can benefit from our techniques of in-place accumulation. See Appendix B for this example.

4 In-place polynomial multiplication with accumulation

Algorithm 2 can also be used for polynomial multiplication. One difficulty now is that this does not com-
pletely fits the setting, as multiplication of two size-n inputs will in general span a double size-2n output.
This is not an issue until one has to distribute separately the two halves of this 2n values (or more generally
to different parts of different outputs). In the following we show that this can anyway always be done for
polynomial multiplications.

∗The third row of α, corresponding to ρ3, contains 4 elements and thus requires at least 3 additions; adding 3 more additions

to put back the input coefficients to their initial state means that 6 operations is minimal, see Proposition 20 in Appendix A.

6

https://fmm.univ-lille.fr/


4.1 In-place Karatsuba polynomial multiplication with accumulation

For instance, we can immediately obtain an in-place Karatsuba polynomial multiplication this way. Karat-
suba polynomial multiplication, indeed, writes as:

(Y a1 + a0)(Y b1 + b0) = a0b0 + Y ((a1 + a0)(b1 + b0)− a0b0 − a1b1) + Y 2(a1b1). (6)

From Eq. (6) we can extract the associated µ, α, β matrices, as shown in Eq. (7).

µ =





1 0 0
−1 1 −1
0 0 1



 α =





1 0
1 1
0 1



 β =





1 0
1 1
0 1



 (7)

Then, with Y = Xt and ai, bi, ci polynomials in X (and a0, b0, c0 of degree less than t), this can be
detailed, with accumulation, in Eq. (8):

A(Y ) = Y a1 + a0; B(Y ) = Y b1 + b0; C(Y ) = Y 3c11 + Y 2c10 + Y c01 + c00;

m0 = a0 · b0 = m01Y +m00; m1 = (a0 + a1) · (b0 + b1) = m11Y +m10; m2 = a1 · b1 = m21Y +m20;

t00 = c00 +m00; t01 = c01 +m01 +m10 −m00 −m20;

t10 = c10 +m11 +m20 −m01 −m21; t11 = c11 +m21;

then C +AB ≡ Y 3t11 + Y 2t10 + Y t01 + t00

(8)

Thus, in order to deal with the distributions of half of the products of Eq. (8), each coefficient in µ
in Eq. (7) can be expanded into 2×2 identity blocks, and the middle rows combined two by two, as each
tensor product actually spans two sub-parts of the result; we obtain Eq. (9):

µ(2) =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









+









0 0 0 0 0 0
−1 0 1 0 −1 0
0 −1 0 1 0 −1
0 0 0 0 0 0









+









0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1









=









1 0 0 0 0 0
−1 1 1 0 −1 0
0 −1 0 1 1 −1
0 0 0 0 0 1









(9)

Finally, Eq. (8) then translates into an in-place algorithm thanks to Algorithm 2 and Eqs. (7) and (9).
The first point is that products double the degree: this corresponds to a constraint that the two blocks

have to remain together when distributed.
In other words, this means that the µ(2) matrix needs to be considered two consecutive columns by two

consecutive columns. This is always possible if the two columns are of full rank 2. Indeed, consider a 2× 2
invertible submatrix M = [ v w

x y ] of these two columns. Then computing [ cicj ] += M [ ρ0
ρ1
] is equivalent to

computing a 2× 2 version of Eq. (1):

[

ci
cj

]

⋆= M−1;

[

ci
cj

]

+=

[

ρ0
ρ1

]

;

[

ci
cj

]

⋆= M. (10)

The other rows of these two columns can be dealt with as before by pre- and post- multiplying/dividing by a
constant and pre- and post- adding/subtracting the adequate ci and cj . Now to apply a matrix M =

[

a b
c d

]

to a vector of results
[

~u
~v

]

, it is sufficient that one of its coefficient is invertible. W.l.o.g suppose that its upper

left element, a, is invertible. Thus
[

a b
c d

]

=
[

1 0
ca−1 1

]

[

a b
0 d−ca−1

]

. Then the in-place evaluation of Eq. (11)

performs this application, using the two (known in advance) constants x = ca−1 and y = d− ca−1b:

~u ⋆= a

~u += b · ~v

~v ⋆= y

~v += x · ~u



















computes in-place

[

~u
~v

]

←

[

a b
c d

]

⊙

[

~u
~v

]

=

[

a~u+ b~v
c~u+ d~v

]

, for x = ca−1 and y = d− xb (11)
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Remark 6. In practice for 2 × 2 blocks, if a is not invertible, permuting the rows is sufficient since c has
to be invertible for the matrix to be invertible: for J = [ 0 1

1 0 ], if M̃ =
[

c d
0 b

]

= J ·M , then M = J · M̃ and

M−1 = M̃−1 · J so that Eq. (10) just becomes [ cicj ] ⋆= J ; [ cicj ] ⋆= M̃−1; [ cicj ] += [ ρ0
ρ1
] ; [ cicj ] ⋆= M̃ ; [ cicj ] ⋆= J.

We now have all the tools to produce in-place polynomial algorithms. We start, in Algorithm 3, with a
version of Algorithm 2 that regroups the intermediate computations into consecutive blocks.

Algorithm 3 In place bilinear 2 by 2 formula

Input: ~a ∈ D
m, ~b ∈ D

n, ~c ∈ D
s; α ∈ D

t×m, β ∈ D
t×n, µ ∈ D

s×(2t) =
[

M1 . . . Mt

]

, with no zero-rows in α, β, µ,
and s.t. Mi ∈ D

s×2 is of full-rank 2 for i = 1..t.
Read-only: α, β, µ.
Output: ~c += µ~m, for ~m = (α~a)⊙ (β~b), such that (ai · bj) fits two result variables ck, cl.
1: for ℓ = 1 to t do

2: Let i s.t. αℓ,i 6= 0;
3: ai ⋆= αℓ,i; for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai += αℓ,λaλ end

4: Let j s.t. βℓ,j 6= 0;
5: bj ⋆= βℓ,j ; for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj += βℓ,λbλ end

6: Let k, f s.t. M =

[

µk,2ℓ µk,2ℓ+1

µf,2ℓ µf,2ℓ+1

]

is invertible;

7:

[

ck
cf

]

←M−1

[

ck
cf

]

{Via Eq. (11) and Remark 6}

8: for λ = 1 to s, λ 6∈ {f, k}, µλ,2ℓ 6= 0 do cλ –= µλ,2ℓck end

9: for λ = 1 to s, λ 6∈ {f, k}, µλ,2ℓ+1 6= 0 do cλ –= µλ,2ℓ+1cf end

10:

[

ck
cf

]

+= ai · bj {This is the accumulation of the product

[

mk

mf

]

}

11: for λ = 1 to s, λ 6∈ {f, k}, µλ,2ℓ+1 6= 0 do cλ += µλ,2ℓ+1cf end {undo 9}
12: for λ = 1 to s, λ 6∈ {f, k}, µλ,2ℓ 6= 0 do cλ += µλ,2ℓck end {undo 8}

13:

[

ck
cf

]

←M

[

ck
cf

]

{Via Eq. (11) and Remark 6, undo 7}

14: for λ = 1 to n, λ 6= j, βℓ,λ 6= 0 do bj –= βℓ,λbλ end; bj /= βℓ,j ; {undo 5}
15: for λ = 1 to m, λ 6= i, αℓ,λ 6= 0 do ai –= αℓ,λaλ end; ai /= αℓ,i; {undo 3}
16: end for

17: return ~c.

Theorem 7. Algorithm 3 is correct, in-place, and requires t MUL-2D, 2(#α + #β + #µ − t) ADD and
2(♯α+ ♯β + ♯µ+ 2t) SCA operations.

Proof. Thanks to Eqs. (10) and (11) and Remark 6, correctness is similar to that of Algorithm 2 in Theorem 3.
For the number of operations, Eq. (11) requires 4 SCA and 2 ADD operations and is called 2t times. The
rest is similar to Algorithm 2 and amounts to 2t + 2(#α − t + #β − t + #µ − 2t) + (2t)2 ADD and
2(♯α+ ♯β + ♯µ− 2t) + (2t)4 SCA operations.

There remains now to use a double expansion of the output matrix µ ∈ D
s×t to simulate the double size

of the intermediate products (MUL-2D), producing µ ∈ D
s×(2t) matrix µ(2), as in Eq. (9), that is used as

an input in Algorithm 3. This is shown in Algorithm 4.

Lemma 8. Algorithm 4 is correct.

Proof. It is sufficient to note that by expanding each coefficient to a 2×2 identity, then adding two successive
rows is just a 2×2 merging of the last row of an identity with the first row of another identity. Therefore
the resulting matrix, µ(2), has for non-zero entries, exactly twice those of µ.

Now we prove, in Lemma 9, that in fact any double expansion of a representative matrix is suitable for
the in-place computation of Algorithm 3.
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Algorithm 4 Double expansion of output matrix

Input: µ ∈ D
m×n representing the linear distribution of n values to m outputs.

Output: µ(2) ∈ D
(m+1)×(2n), representing the linear distribution of n double-size values to m+ 1 outputs.

Let µ(2) = 0(m+1)×(2n);
for j = 0 to n do

for i = 0 to m do

µ(2)(i, 2j) = µ(i, j);
µ(2)(i + 1, 2j + 1) = µ(i, j);

end for

end for

return µ(2).

Lemma 9. If µ does not contain any zero column, then each pair of columns of µ(2), resulting from the
expansion of a single column in µ, contains an invertible lower triangular 2×2 submatrix.

Proof. Consider the top most non-zero element of a column. It is expanded as a 2×2 identity matrix whose

second row is merged with the first row of the next identity matrix: in picture, [ ab ] is expanded to
[

a 0
b a
∗ b

]

.

For instance with m00 + Ym01 = a0b0 = ρ0 + Y ρ1, consider the upper left 2× 2 block of µ(2) in Eq. (9),
that is M =

[

1 0
−1 1

]

, whose inverse is M−1 = [ 1 0
1 1 ]. One has first to precompute M−1 [ c00c01 ], that is nothing

on c00 and c01 += c00 for the second coefficient. Then, afterwards, the third row, for c10, will just be −m01:
for this just pre-add c10 += c01, and post-subtract c10 –= c01 after the product actual computation. This
example is exactly lines 14 to 18 of Algorithm 5 thereafter. One could also consider instead the first and last
rows, but in this particular case without any advantage in term of computations. To complete Eq. (8), the
computation of m2 is dealt with in the same manner, while that of m1 is direct in the results (and requiring
pre and post additions of its inputs). This gives then the whole of Algorithm 5.

The second point is to deal with unbalanced dimensions and degrees for Y = Xt and recursive calls.
For this, first separate the largest polynomial in two parts, so that two sub-products are performed: a large
balanced one, and, recursively, a smaller unbalanced one. Then, for the balanced case, the idea is to ensure
that three out of four parts of the result, t00, t01 and t10, have the same size and that the last one t11 is
smaller. This ensures that all accumulations can be performed in-place. The obtained procedure is given
in Algorithm 5.

Proposition 10. Algorithm 5 is correct and requires O
(

mnlog2(3)−1
)

operations.

Proof. With the above analysis, correctness comes from that of Algorithms 3 and 4 applied to Eq. (7). When
m = n, with 3 recursive calls and O(n) extra operations, the algorithm thus requires overall O(nlog2(3))
operations. Otherwise, it requires

⌊

m
n

⌋

equal degree calls, then a recursive call with n and m mod n. Now,
let u1 = m and u2 = n and if the Euclidean algorithm on them requires k steps, let ui for i = 1..k
denote the successive residues within this Euclidean algorithm (and uk ∈ {0, 1}). Let κ = k − 1 if uk = 0

and κ = k otherwise. With these notations, Algorithm 5 requires less than O(
∑κ−1

i=1 ⌊
ui

ui+1
⌋u

log2(3)
i+1 ) ≤

O(
∑κ−1

i=1 uiu
log2(3)−1
i+1 ) operations. But, ui+1 ≤ u2 = n and we let si = ui + ui+1 so that ui = si − ui+1 ≤ si.

Now, from [12, Corollary 2.6], we have that si ≤ s1(2/3)
i−1. Thus the number of operations is bounded by

O(
∑κ−1

i=1 sin
log2(3)−1) ≤ O(nlog2(3)−1s1(

1
1−(2/3) − 1)) = O(nlog2(3)−1(m+ n)) = O(mnlog2(3)−1).

Algorithm 5 is compared with previous Karatsuba-like algorithms for polynomial multiplications designed
to reduce their memory footprint in Table 1 (see also [9, Table 2.2]).

For the complexity bound, all coefficients being 1 or −1 the resulting in-place algorithm can thus compute
in fact the accumulation C += AB without constant multiplications. Also, the de-duplication of each
recursive output enables some natural reuse, so in fact there is a cost of 2(#α− t+#β− t) = 2(4−3+4−3)
with t = 3, and 2(2(#µ − t) = 4(5 − 3) = 2(#µ(2) − 2t), for a total of at most 12 block additions and 3

9



Algorithm 5 In-place Karatsuba polynomial multiplication with accumulation

Input: A(X), B(X), C(X) polynomials of degrees m, n, m+ n with m ≥ n.
Output: C += AB
1: if n ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place polynomial multiplication. {Algorithm 1}
3: else if m > n then

4: Let A(X) = A0(X) +Xn+1A1(X)
5: C0..2n += A0B {Recursive call}
6: if m ≥ 2n then

7: C(n+1)..(n+m) += A1B {Recursive call}
8: else

9: C(n+1)..(n+m) += BA1 {Recursive call}
10: end if

11: else

12: Let t = ⌈(2n+ 1)/4⌉; {t− 1 ≥ 2n− 3t and thus t > n− t}
13: Let A = a0 +Xta1; B = b0 +Xtb1; C = c00 + c01X

t + c10X
2t + c11X

3t; {d◦c11 = 2n− 3t}
{Iteration for m0}

14: c01 += c00;
15: c10 += c01;

16:

[

c00
c01

]

+= a0 · b0 {Recursive call}

17: c10 –= c01; {this is c10 −m01}
18: c01 –= c00; {this is c01 +m01 −m00}
{Iteration for m1}

19: a0 += a1; {d◦a0 = t ≥ n− t = d◦a1}
20: b0 += b1;

21:

[

c01
c10

]

+= a0 · b0 {Recursive call}

22: b0 –= b1;
23: a0 –= a1;
{Iteration for m2}

24: c10 += c11;
25: c01 += c10;

26:

[

c10
c11

]

+= a1 · b1 {Recursive call}

27: c01 –= c10; {this is c01 +m01 −m00 +m10 −m20}
28: c10 –= c11; {this is c10 −m01 +m11 +m20 −m21}
29: end if

30: return C.

Table 1: Reduced-memory algorithms for Karatsuba polynomial multiplication

Alg. Memory inputs accumulation

[23] n+ 5 logn read-only ✗

[20, 21] 5 logn read-only ✗

[10] O(1) read-only ✗

Algorithm 5 5 logn mutable D
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recursive accumulating calls. The simple application of Eq. (8) would require 8 additions. Thus, without
thresholds and for powers of two, the dominant term of the overall cost only goes from 10nlog2(3), for the
original version, to 14nlog2(3), for the fully in-place version.

4.2 Further bilinear polynomial multiplications

We have shown that any bilinear algorithm can be transformed into an in-place version. This approach
thus also works for any Toom-k algorithm using 2k − 1 interpolations points instead of the three points of
Karatsuba (Toom-2).

For instance Toom-3 uses interpolations at 0, 1,−1, 2,∞. Therefore, α and β are the Vandermonde
matrices of these points for the 3 parts of the input polynomials and µ is the inverse of the Vandermonde
matrix of these points for the 5 parts of the result, as shown in Eq. (12) thereafter.

µ =













1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 −2 4 −8 16
0 0 0 0 1













−1

=













1 0 0 0 0
1
2

1
3 −1 1

6 −2
−1 1

2
1
2 0 −1

− 1
2

1
6

1
2 − 1

6 2
0 0 0 0 1













α = β =













00 01 02

10 11 12

(−1)0 (−1)1 (−1)2

(−2)0 (−2)1 (−2)2

0 0 1













=













1 0 0
1 1 1
1 −1 1
1 −2 4
0 0 1













(12)

With the same kind of duplication as in Eq. (9), apart from the recursive calls, the initially obtained
operation count is 2(11+11−2∗5)+2(2(16−5)) = 68 additions and 2(2+2+2(11)) = 52 scalar multiplications.
Following the optimization of [2], we see in α and β that the evaluations at 1 and −1 (second and third
rows) share one addition. As they are successive in our main loop, subtracting one at the end of the second
iteration, then followed by re-adding it at the third iteration can be optimized out. This is 2 less operations.
Together with shared coefficients in the rows of µ, some further optimizations of [2] can probably also be
applied, where the same multiplicative constants appear at successive places.

4.3 Fast bilinear polynomial multiplication

When sufficiently large roots of unity exist, polynomial multiplications can be computed fast in our in-place
model via a discrete Fourier transform and its inverse, as shown in Algorithm 6, for power of two dimensions,
and in Algorithm 7, for general dimensions.

Let F ∈ D[X ] of degree < n and w be a principal n-th root of unity, where n = 2p. The discrete Fourier
transform of F at w is defined as DFTn(F,w) = (F (w0), F (w1), . . . , F (wn−1)). The map is invertible, of
inverse DFT

−1
n (·, w) = 1

nDFTn(·, w
−1). It is known that the DFT can be computed over-place, replacing

the input by the output [5]. Actually, for over-place algorithms and their extensions to the truncated
Fourier transform, it is more natural to work with the bit-reversed DFT. To describe it, let [i]p be the

length-p bit reversal of i =
∑p−1

j=0 dj2
j, dj ∈ {0, 1}, defined by [i]p =

∑p−1
j=0 dj2

p−j . The bit-reversed DFT

is brDFTn(F,w) = (F (w[0]p), F (w[1]p), . . . , F (w[n−1]p)). If π : {0, . . . , 2p − 1} → {0, . . . , 2p − 1} denotes
the bit-reversal permutation (that is π(i) = [i]p), we have brDFTn(·, w) = π ◦ DFTn(·, w). Its inverse is
brDFT

−1
n (·, w) = 1

nDFTn(·, w
−1) ◦ π = 1

nDFTn(π(·), w
−1) since π is an involution.

Remark 11. The Fast Fourier Transform (FFT) algorithm has two main variants: decimation in time
(DIT) and decimation in frequency (DIF). Both algorithms can be performed over-place, replacing the input
by the output. Without applying any permutation to the entries of the input/output vector, the over-place DIF
FFT algorithm naturally computes brDFTn(·, w), while the over-place DIT FFT algorithm on w−1 computes
brDFT

−1
n (·, w).
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Algorithm 6 IP2pow: In-place power of two multiplication with accumulation

Input: ~a, ~b and ~c of length 2L, 2L and 2L+1, containing the coefficients of A, B, C ∈ D[X ] respectively;
w ∈ D primitive 2L+1-th root of unity.

Output: ~c contains the coefficients of C +A ·B.
1: Let n = 2L;
2: ~c← brDFT2n(~c, w); {over-place}

3: ~a← brDFTn(~a, w
2); ~b← brDFTn(~b, w

2) {over-place}
4: for i = 0 to n− 1 do ci += ai × bi end
5: ~a← brDFT

−1
n (~a, w2); ~b← brDFT

−1
n (~b, w2) {Undo 3 over-place}

6: for i = 0 to n− 1 do ai ⋆= wi; bi ⋆= wi end {see Remark 12}

7: ~a← brDFTn(~a, w
2); ~b← brDFTn(~b, w

2) {over-place}
8: for i = 0 to n− 1 do ci+n += ai × bi end

9: ~a← brDFT
−1
n (~a, w2); ~b← brDFT

−1
n (~b, w2) {Undo 7 over-place}

10: for i = 0 to n− 1 do ai /= wi; bi /= wi end {Undo 6}
11: return ~c← brDFT

−1
2n (~c, w)

Remark 12. To compute a geometric progression, in-place, as in Line 6 of Algorithm 6, one can of course
use an extra variable (say initialized to x = 1) storing and updating wi along the loop (using ai ⋆= x; x ⋆= w;
at each step). This requires O(1) extra space. One can further reduce this extra space to nothing, if needed,
by using a non-zero input slot instead. For instance, suppose indeed that ∃j, aj 6= 0. Then pre-divide every
other coefficients by aj and use this particular variable to update and store ajw

i (just computing ai ⋆= aj;
aj ⋆= w; at each step). Finally re-divide aj by w, n− j + 1 times.

Theorem 13. Using an over-place brDFT algorithm with complexity bounded by O(n log n), Algorithm 6 is
correct, in-place and has complexity bounded by O(n logn).

Proof. The algorithm follows the pattern of the standard FFT-based multiplication algorithm. Our goal is
to compute brDFT2n(A,w), brDFT2n(B,w) and brDFT2n(C,w), then obtain brDFT2n(C+AB,w) and finally
C +AB using an inverse brDFT. Computations on C and then C +AB are performed over-place using any
standard over-place brDFT algorithm. The difficulty happens for A and B that are stored in length-n arrays.
We use the following property of the bit reversed order: for k < n/2, [k]p = 2[k]p−1, and for k ≥ n/2, [k]p =
2[k− n/2]p−1 + 1. Therefore, the first n coefficients of brDFT2n(A,w) are (A(w2[0]p−1), . . . A(w2[ n

2
−1]p−1)) =

brDFTn(A,w
2). Similarly, the next n coefficients are brDFTn(A(wX), w2). Therefore, one can compute

brDFT(A,w2) and brDFT(B,w2) in ~a and ~b respectively, and update the first n entries of ~c. Next we

restore ~a and ~b using brDFT
−1
n (·, w2). We compute A(wX) and B(wX) and again brDFT(A(wX), w2) and

brDFT(B(wX), w2) to update the last n entries of ~c. Finally, we restore ~a and ~b and perform the inverse
brDFT on ~c. The cost is dominated by the ten brDFT

±1 computations.

The case where n is not a power of two is loosely similar, using as a routine a truncated Fourier transform
(TFT) rather than a DFT [24]. Let w be an N -th root of unity for some N = 2p. The length-n (bit-reversed)

TFT of a polynomial F ∈ D[X ], n < N , is brTFTn(F,w) = (F (w[0]p), . . . , F (w
[n−1]
p )), that is the n first

coefficients of brDFTN (F,w). As for the (bit-reversed) DFT, the (bit-reversed) TFT and its inverse can be
computed over-place [14, 21, 1, 6].

Given inputs A and B ∈ D[X ] of respective lengths m and n and an output C ∈ D[X ] of length m+n−1,
we aim to replace C by C + AB. The idea is first to replace C by brTFTm+n−1(C,w) where w is a 2p-th
principal root of unity, 2p ≥ m+n−1. That is, the vector ~c now contains as its i-th entry the value C(w[i]p ).
The goal is then to replace C(w[i]p) by C(w[i]p)+A(w[i]p )B(w[i]p), for i = 0 to m+n−2. We cannot compute
the length m + n − 1 brTFT’s of A and B since this takes too much space. Instead, we will progressively
compute some parts of these brTFT’s by means of (standard) brDFT’s, and update ~c accordingly. The
starting point of this strategy is the following lemma.
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Lemma 14 ([14, 21]). Let F ∈ D[X ], ℓ and s be two integers such that 2ℓ divides s and w be a 2p-th principal

root of unity. Define Fs,ℓ(X) = F (w[s]pX) mod X2ℓ−1. Then

brDFT2ℓ(Fs,ℓ, w
2p−ℓ

) = (F (w[s]p), . . . , F (w[s+2ℓ−1]p)).

Proof. Let wℓ = w2p−ℓ

. This is a principal 2ℓ-th root of unity since w is a principal 2p-th root of unity. In

particular, for any i < 2ℓ, Fs,ℓ(w
[i]ℓ
ℓ ) = F (w[s]pw

[i]ℓ
ℓ ). Now, w

[i]ℓ
ℓ = w[i]p since 2p−ℓ[i]ℓ = [i]p. Furthermore,

[s]p + [i]p = [s+ i]p since i < 2ℓ and 2ℓ divides s. Finally, Fs,ℓ(w
[i]ℓ
ℓ ) = F (w[s+i]p).

Corollary 15. Let F ∈ D[X ] stored in an array ~f of length n, ℓ and k be two integers and w be a 2p-th

principal root of unity, with 2ℓ ≤ n and (k + 1)2ℓ ≤ 2p. There exist an algorithm partTFTk,ℓ(
~f, w) that

replaces the first 2ℓ entries of ~f by F (w[k·2ℓ]p), . . . , F (w[(k+1)·2ℓ−1]p), and an inverse algorithm partTFT
−1
k,ℓ

that restores ~f to its initial state. Both algorithms use O(1) extra space and have complexity O(n + ℓ · 2ℓ).

Proof. Algorithm partTFTk,ℓ(
~f, w) is the following:

1: for i = 0 to n− 1 do fi ⋆= wi[k·2ℓ]p end

2: for i = 2ℓ to n− 1 do fi−2ℓ += fi end

3: ~f0..2ℓ−1 ← brDFT2ℓ(~f0..2ℓ−1, w
2p−ℓ

)

Its correctness is ensured by Lemma 14. Its inverse algorithm partTFT
−1
k,ℓ(

~f, w) does the converse:

1: ~f0..2ℓ−1 ← brDFT
−1
2ℓ (

~f0..2ℓ−1, w
2p−ℓ

)
2: for i = 2ℓ to n− 1 do fi−2ℓ –= fi end

3: for i = 0 to n− 1 do fi /= wi[k·2ℓ]p end

In both algorithms, the call to brDFT
±1 has cost O(ℓ · 2ℓ), and the two other steps have cost O(n).

To implement the previously sketched strategy, we assume that m ≤ n for simplicity. We let ℓ, t
be such that 2ℓ ≤ m < 2ℓ+1 and 2ℓ+t ≤ n < 2ℓ+t+1. Using partTFT

±1, we are able to compute

(A(w[k·2ℓ ]p), . . . , A(w[(k+1)·2ℓ−1]p)) for any k, and restore A in its initial state afterwards. Similarly, we

can compute (B(w[k·2ℓ+t]p), . . . , B(w[(k+1)·2ℓ+t−1]p)) and restore B.

Algorithm 7 In-place fast polynomial multiplication with accumulation

Input: ~a, ~b and ~c of length m, n and m + n − 1, m ≤ n, containing the coefficients of A, B, C ∈ D[X ]
respectively; w ∈ D principal 2p-th root of unity with 2p−1 < m+ n− 1 < 2p

Output: ~c contains the coefficients of C +A ·B.
1: ~c← brTFTm+n−1(~c, w); {over-place}
2: r ← m+ n− 1
3: while r ≥ 0 do

4: ℓ← ⌊log2(min(r,m))⌋; t← ⌊log2 min(r, n)⌋ − ℓ; k ← m+ n− 1− r

5: ~b← partTFTk,ℓ+t(
~b, w) {over-place: B(w[k·2ℓ+t]p]), . . . , B(w[(k+1)·2ℓ+t−1]p)}

6: for s = 0 to 2t − 1 do

7: ~a← partTFTs+k·2t,ℓ(~a, w) {over-place: A(w[(k·2t+s)2ℓ]p]), . . . , A(w[(k·2t+s+1)2ℓ−1]p)}

8: for i = 0 to 2ℓ − 1 do ci+(k·2t+s)2ℓ += aibi+s·2ℓ end

9: ~a← partTFT
−1
s+k·2t,ℓ(~a, w) {Undo 7 over-place}

10: end for

11: ~b← partTFT
−1
k,ℓ+t(

~b, w) {Undo 5 over-place}

12: r –= 2ℓ+t

13: end while

14: return ~c← brTFT
−1
m+n−1(~c, w)
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Theorem 16. Algorithm 7 is correct and in-place. If the algorithm brDFT used inside partTFT has com-
plexity O(n log n), its running time is O((m+ n) log(m+ n)).

Proof. The fact that the algorithm is in-place comes from Corollary 15. The only slight difficulty is to
produce, fast and in-place, the relevant roots of unity. This is actually dealt with in the original over-place
TFT algorithm [14] and can be done the same way here.

To assess its correctness, first note that the values of line 4 are computed so that 2ℓ ≤ r,m and 2ℓ+t ≤ r, n.
One iteration of the while loop update the entries ck to ck+2ℓ+t−1 where k = m + n − 1 − r. To this end,

we first compute B(w[k·2ℓ+t]p]) to B(w[(k+1)·2ℓ+t−1]p) in ~b using partTFT. Then, since ~a may be too small to
store 2ℓ+t values, we compute the corresponding evaluations of A by groups of 2ℓ, using a smaller partTFT.
After each computation in ~a, we update the corresponding entries in ~c and restore ~a. Finally, at the end
of the iteration, entries k to k + 2ℓ+t − 1 of ~c have been updated and ~b can be restored. This proves the
correctness of the algorithm.

We now bound the complexity of the algorithm. Since m ≤ n, our aim is to bound it by O(n log n).
Let us first bound the number of iterations of the while loop. We identify two phases, first iterations where
r ≥ n and then iterations with r < n. During the first phase, 2ℓ+t > n

2 entries of ~c are updated at each
iteration, hence the first phase has at most 3 iterations. In the second phase, 2ℓ+t > r

2 entries are updated
per iteration. The second phase starts with r < n and each iteration decreases r by half, hence the second
phase has at most logn iterations.

In one iteration, the costs come from calls to partTFT
±1. One call to partTFT

±1 with an input of size
m and a transform of length 2ℓ has cost O(m + ℓ · 2ℓ). To compute the cost of one iteration, we separately
count the contributions due to the linear term m and to the non-linear term ℓ · 2ℓ in this complexity. In one
iteration, there are two calls to partTFT

±1 on ~b and 2t+1 calls to partTFT
±1 on ~a. The contribution of the

linear terms for these calls is thus O(n +m · 2t) = O(n) since m · 2t < 2ℓ+1+t ≤ 2n. Since there are logn
iterations, the global cost due to these linear terms is O(n log n).

The cost due to the non-linear terms in one iteration is O((ℓ + t) · 2ℓ+t). In the first phase, 2ℓ+t ≤ n
and these costs sum to O(n log n). In the second phase, 2ℓ+t ≤ r. Let ri be the value of r during the i-th
iteration of the second phase: r1 < n and ri+1 ≤ ri/2 hence ri < n/2i−1. The global cost of the DFTs of
the second phase is then O(

∑

i
n
2i log

n
2i ) = O(n log n).

Algorithm 7 is compared with previous FFT-based algorithms for polynomial multiplications designed
to reduce their memory footprint in Table 2 (see also [9, Table 2.2]).

Table 2: Reduced-memory algorithms for FFT polynomial multiplication

Alg. Memory inputs accumulation

[5] 2n read-only ✗

[20] O(2⌈log2 n⌉ − n) read-only ✗

[14] O(1) read-only ✗

Algorithm 7 O(1) mutable D

5 Conclusion

We here provide a generic technique mapping any bilinear formula into an in-place algorithm. This allows
us for instance to provide the first accumulating in-place Strassen-like matrix multiplication algorithm. This
also allows use to provide fast in-place accumulating polynomial multiplications algorithms.

Many further accumulating algorithm can then be reduced to these fundamental building blocks, see for
instance Toeplitz, circulant, convolutions or remaindering operations in [7].
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A In-place accumulating matrix-multiplication with 7 recursive

calls and 18 additions

We here give an in-place version of Strassen-Winograd algorithm for matrix multiplication. This algorithm
results first from the direct application of our Algorithm 2 to the classical, not in-place Strassen-Winograd
algorithm, following the specific scheduling strategy of Section 3. This strategy allows to reduce the num-
ber of additions obtained when calling Algorithm 2, from 42 + 7 to 18 + 7: mostly remove successive
additions/subtractions that are reciprocal on either sub-matrices. This optimized version is given in Algo-
rithm 8, and we prove afterwards in Theorem 21 that this version actually reaches the minimal possible
number of extra additions/subtractions when considering any bilinear matrix multiplication algorithm using
only 7 multiplications.

Algorithm 8 In-place accumulating matrix-multiplication with 7 multiplications

Input: A ∈ D
m×k = [ a11 a12

a21 a22
], B ∈ D

k×n =
[

b11 b12
b21 b22

]

, C ∈ D
m×n = [ c11 c12

c21 c22 ].
Output: C+ = AB.

A21 := A21 - A11;

B12 := B12 - B22;

C21 := C21 - C22;

C22 := C22 + A21 * B12;

A21 := A21 + A22;

B12 := B12 - B11;

C12 := C12 - C22;

C22 := C22 - A21 * B12;

C11 := C11 - C22;

C22 := C22 + A11 * B11;

C11 := C11 + C22;

C21 := C21 + C22;

B12 := B12 + B21;

C21 := C21 + A22 * B12;

B12 := B12 + B22;

B12 := B12 - B21;

A21 := A21 - A12;

C12 := C12 - A21 * B22;

A21 := A21 + A12;

A21 := A21 + A11;

C22 := C22 + A21 * B12;

C12 := C12 + C22;

B12 := B12 + B11;

A21 := A21 - A22;

C11 := C11 + A12 * B21;

We now prove that 18 additions is the minimal number of additions required by an in-place algorithm
resulting from any bilinear algorithm for matrix multiplication using only 7 multiplications. For this we need
to consider the following elementary operations on variables (similar to elementary linear algebra operators):

Definitions 17. An elementary operation on variables is one of the following three types of operations:

• variable-switching: swapping variable i and variable j;

• variable-multiplying: multiplying a variable by a constant;
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• variable-addition: adding one variable, potentially multiplied by a constant, to another variable, in-
place: this is for instance a += λb for a constant λ and variables a and b.

An elementary program is a program making use of only these three kind of operations.

Then we consider the in-place implementation of a linear function on its input: for α ∈ D
t×m and ~a ∈ D

m,
we want to compute at least once each of the t coefficients of α~a, but using only elementary operations and
using only the variables of ~a as temporary variables.

We start by proving in Lemma 18 that in any bilinear algorithm for matrix multiplication using only 7
multiplications, the associated matrices α, β, µ (as in Eq. (5)) cannot contain too many zeroes.

Lemma 18. If (α, β, µ) ∈ D
7×4 × D

7×4 × D
4×7 is a bilinear algorithm for matrix multiplication, then none

of α, β, µ⊺ contain a zero column vector, nor a multiple of a vector of the canonical basis.

Proof. The dimensions of the matrices indicate that the multiplicative complexity of the algorithm is 7.
From [13] we know that all such bilinear algorithms can be obtained from one another. Following [4,
Lemma 6], then any associated α, β, µ⊺ matrix is some row or column permutation, or the multiplication
by some G ⊗ H (the Kronecker product of two invertible 2×2 matrices), of the matrices of Eq. (5). By
duality [15], see also [4, Eq. (3)], it is also sufficient to consider any one of the 3 matrices.

We thus let G =
[ g1,1 g1,2
g2,1 g2,2

]

, H =
[

h1,1 h1,2

h2,1 h2,2

]

and K = G⊗H their Kronecker product.

Then any column of K is of the form
[

ux uy vx vy
]⊺

, for u ∈ {g1,1, g1,2}, v ∈ {g2,1, g2,2}, with u
and v both in the same column of G and x ∈ {h1,1, h1,2}, y ∈ {h2,1, h2,2}, with x and y both in the same
column of H . Further as G is invertible, u and v cannot be both zero simultaneously and, similarly, x and
y cannot be both zero simultaneously.

Now consider for instance α ·K, with α of Eq. (5). Then any column ~θ of α ·K is of the form:

~θ =
[

ux uy −ux− uy + vx+ vy vy vx+ vy −ux+ vx −ux+ vx + vy
]⊺

(13)

For such a column to be a multiple of a vector of the canonical basis or the zero vector, at least 6 of the
coefficients of this dimension-7 column must be zero. For instance, this means that at least two out of rows
1, 2 and 4 must be zero: or that at least two of ux, uy or vy must be zero. This limits us to three cases: (1)
u = 0, (2) y = 0 or (3) x = v = 0:

1. If u = 0, then ~θ = v
[

0 0 x+ y y x+ y x x+ y
]⊺

; at least one of rows 4 or 6 has to be zero,

thus, w.l.o.g. suppose x = 0, we obtain that ~θ = vy
[

0 0 1 1 1 0 1
]⊺

with none of v nor y
being zero (otherwise G or H is not invertible); such a column cannot be a multiple of a vector of the
canonical basis nor the zero vector.

2. Similarly, if y = 0, then ~θ = x
[

u 0 −u+ v 0 v −u+ v −u+ v
]⊺

; at least one of rows 1 or 5

has to be zero, thus, w.l.o.g. suppose v = 0, we obtain that ~θ = ux
[

1 0 −1 0 0 −1 −1
]⊺

; such
a column cannot be a multiple of a vector of the canonical basis nor the zero vector.

3. Finally, if x = v = 0, then ~θ = uy
[

0 1 −1 0 0 0 0
]⊺

; such a column cannot be a multiple of a
vector of the canonical basis nor the zero vector.

Now we show that any in-place linear algorithm requires at least one more operation than an optimal
not in-place equivalent algorithm.

Lemma 19. Let ~a ∈ D
m and α ∈ D

t×m with at least one row which is neither the zero row, nor a vector
of the canonical basis. Now suppose that, without any constraints in terms of temporary registers, k is the
minimal number of elementary operations required to compute α~a. Then any algorithm computing all the t
values of α~a in-place of ~a requires at least k + 1 elementary operations.
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Proof. Consider an in-place algorithm realizing α~a in f operations. Any zero row, or any row that is a vector
of the canonical basis can be realized without any operations on ~a. Now take the in-place algorithm at the
moment where the last of the other rows are realized. At that point all the t values are realized, but this last
other row realization has to have been stored in one variable of ~a, say ai. Also, this last other row realization
is a non trivial linear combination of the initial values of ~a. Therefore, at this point, the in-place algorithm
has to perform at least one more operation to put back ai to its initial state. This means that by replacing
all the in-place computations by operations on extra registers and omitting the operation(s) that put back
ai into its initial state, we obtain an algorithm with less than f − 1 elementary operations that realizes α~a,
without any constraints in terms of temporary registers. In other words (f − 1) ≥ k or f ≥ k + 1.

Proposition 20. At least 6 operations are needed to compute in-place of the input, and to restore their initial
states, for the realization of each of the two linear operators α and β, of any bilinear matrix multiplication
algorithm using only 7 multiplications.

Proof. A bilinear matrix multiplication algorithm has to compute α~a with ~a the entries of the left input of
the matrix multiplication, while β deals with the right input matrix. These α and β matrices cannot contain
a (4-dimensional) zero row: otherwise there would exist an algorithm using less than 6 multiplications, while
7 is minimal [26]. If these matrices contain at least 5 rows that are not (4-dimensional) vectors of the
canonical basis, then they require at least 5 non-trivial operations to be computed, and therefore at least
6 elementary operations with an in-place algorithm, by Lemma 19. The matrices also cannot contain more
than 3 multiple of vectors of the canonical basis, by [4, Lemma 8] (and thus require at least 4 operations to
be computed). There thus remains now only to consider matrices with exactly 3 rows that are multiple of
vectors of the canonical basis.

Let M be the 4×4 sub-matrix obtained from α or β by removing those 3 vectors of the canonical basis.
By Lemma 18, no column of M can be the zero column, otherwise a column of α or β would be a dimension
7 multiple of a column vector of the canonical basis, or the 7-dimensional zero vector. This means that every
variable of ~a has to be used at least once to realize the 4 operations of M~a. Now suppose that there exists
an in-place algorithm realizing M~a in 5 elementary operations. Any operations among these 5 that, as its
results, puts back a variable into its initial state, does not realize any row of M~a (because putting back a
variable to its initial state is the trivial identity on this initial variable, and this would be represented by
a 4-dimensional vector of the canonical basis: but, by construction, M does not contain any row that is a
4-dimensional vector of the canonical basis). Therefore, at most one among these 5 operations puts back
a variable of ~a into its initial state (otherwise M~a, and therefore α~a or β~a, would be realizable in strictly
less than 4 operations). This means that at most one variable of ~a can be modified during the algorithm
(otherwise the algorithm would not be able to put back all its input variables into their initial state). W.l.o.g
suppose this only modified variable is a1.

Also, all the other 3 variables must be used in at least one of the 5 elementary operations. This means
that at least 3 operations are of the form a1 += λiai for i = 2, 3, 4 and some constants λi. Now, generically,
to put back a1 into its initial state, each one of these 3 variables, a2, a3 and a4, must be “removed” from
a1 at some point of the elementary program. But, with a total of 5 operations, there remains only 2 other
possible elementary operations, each one of those modifying only a1. This shows that no in-place algorithm
can use only 5 operations.

Finally, there remains to consider the linear combinations of the 7 multiplications to conclude that Algo-
rithm 8 realizes the minimal number of operations for any in-place algorithm with 7 multiplications in our
model.

Theorem 21. At least 25 additions are required to compute in-place any bilinear matrix multiplication
algorithm using only 7 multiplications and to restore its two input matrices to their initial states afterwards.

Proof. We need 6 operations at least to realize α and β, from Proposition 20. For µ, we in fact compute

~c += µ~ρ, so we need to consider the matrix P =
[

I4 µ
]

∈ D
4×11 and the vector ~ξ =

[

~c
~ρ

]

. Consider now an
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elementary program that realizes P~ξ, in-place of ~c only. This implies for instance that if ~ρ is zero ~c should be
put back to its initial state at the end of the program. Finally, thus consider the transposed program P ⊺~c:
it must be in-place of ~c, while putting back ~c to its initial state afterwards. Now, by Proposition 20, µ⊺, and
thus P ⊺ ∈ D

11×4, requires at least 6 elementary operations to be performed. By Tellegen’s principle, see
also [16, Theorem 7], computing the transposed program thus requires at least 6+ (11− 4) = 13 operations.
This gives a total of at least 6 + 6 + 13 = 25 additions.

Theorem 21 thus shows that our Algorithm 8 with 18 elementary additions and 7 recursive calls (thus 7
more, and a total of 18 + 7 = 25 additions) is an optimal in-place bilinear matrix multiplication algorithm
using only 7 multiplications.
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B In-place accumulating multiplication by its transpose

Thanks to Algorithm 8 and with some care on transposes, the same technique can be adapted to, e.g., [8,
Alg. 12], which performs the multiplication of a matrix by its transpose. Following the notations of the latter
algorithm, which is not a bilinear algorithm on its single input matrix, the in-place accumulating version is
shown in Algorithm 9. It has been obtained automatically by the method of Section 2.2 and then scheduled
so as to reduce the number of extra operations.

Algorithm 9 In-place accumulating multiplication by its transpose

Input: A ∈ D
m×2n, symmetric C =

[

c11 c21
⊺

c21 c22

]

∈ D
m×m, skew-unitary Y ∈ D

n×n.
Output: Low (C) += Low (A · A⊺). {as C remains symmetric, only update its lower triangular part}

Low(C22) := Low(C22) - Low(C11);

Low(C21) := Low(C21) - Low(C11);

Up(C21) := Up(C21) - Low(C11)^T;

Low(C11) := Low(C11) + Low(A11 * A11^T); # P1 Rec. Low(C11) += Low(P1)

Up(C21) := Up(C21) + Low(C11)^T; # C21 + Low(P1)^T

Low(C21) := Low(C21) + Low(C11); # C21 + Low(P1) + Low(P1)^T

Low(C22) := Low(C22) + Low(C11); # Low(C22) += Low(P1)

Low(C11) := Low(C11) + Low(A12 * A12^T); # P2 Rec. Low(C11) += Low(P2)

A11 := A11 * Y;

A21 := A21 * Y;

A11 := A11 - A21; # -S1

A21 := A21 - A22; # -S2

Low(C22) := Low(C22) - Low(C21);

Low(C22) := Low(C22) - Low(C21^T);

C21 := C21 + A11 * A21^T; # P4 In-Place Strassen-Winograd

Low(C22) := Low(C22) + Low(C21^T); # Low(C22) += Low(P4^T)

A21 := A21 - A11; # S3

Up(C21) := Up(C21) - Low(C21)^T;

Low(C21) := Low(C21) + Low(A21 * A21^T); # P5 Rec. Low(C21) += Low(P5)

Up(C21) := Up(C21) + Low(C21)^T; # C21 += Low(P5) + Low(P5)^T

Low(C22) := Low(C22) + Low(C21); # Low(C22) += Low(P4) + Low(P5)

A21 := A21 + A12; # S4

C21 := C21 + A22 * A21^T; # P3 In-Place Strassen-Winograd

A21 := A21 - A12;

A21 := A21 + A11;

A21 := A21 + A22;

A11 := A11 + A21;

A21 := A21 * Y^{-1}; # initial A21

A11 := A11 * Y^{-1}; # initial A11

Algorithm 9 requires 3 recursive calls, 2 multiplications of two independent half matrices, 4 multiplications
by a skew-unitary half matrix, 8 additions (of half inputs), 12 semi-additions (of half triangular outputs).
Provided that the multiplication by the skew-unitary matrix can be performed in-place in negligible time,
this gives a dominant term of the complexity bound for Algorithm 9 of a fraction 2

2ω−3 of the cost of the
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full in-place algorithm. This is a factor 1
2 , when Algorithm 8 is used for the two block multiplications of

independent matrices (P4 and P5).
Now, the skew-unitary matrices used in [8], are either a multiple of the identify matrix, or the Kronecker

product of
[

a b
−b a

]

by the identity matrix, for a2+b2 = −1 and a 6= 0. The former is easily performed in-place

in time O(n2). For the latter, it is sufficient to use Eq. (11): the multiplication
[

a b
−b a

]

~u can be realized in

place by the algorithm: u1 ⋆= a; u1 += b·u2; u2 ⋆=(a+ b2a−1); u2 +=
(

−ba−1
)

·u1.
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