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I. INTRODUCTION

Machine learning (ML) applications have been gaining
considerable attention in the field of transportation. However,
their use in real-life operational safety-critical products, in
particular in the aeronautical domain subject to stringent
certification, raises several issues regarding functional cor-
rectness, compliance with requirements, formal verification,
safety or implementation. In order to tackle those issues, new
guidelines – named ED 324/ ARP 6983 standard [EUR21]
– are currently drafted by the EUROCAE WG-114/SAE G-
34 joint working group that cover the whole spectrum of the
system development including the data sets composition, the
ML model design and its implementation. In this paper, we
focus only on the implementation of the ML model.

A. Context

In the ML current practices, a training framework is used
to design an ML model and the resulting ML model is then
deployed on the target with a deployment framework. It is
up to the training framework or a designer to export the
trained model description in an exchange format and up to the
deployment framework to import the ML model description.
The left part of figure 1 shows those practices. The deployment
framework is most of the time an ML model interpreter, that
can accommodate any type of ML model architecture, and that
allocates at runtime the execution on the different available
accelerators (e.g. GPU, FPGA) of the target. These ML frame-
works have been designed 1) to ease as much as possible the
deployment of models for the users and 2) to optimize as much
as possible the execution performance (usually expressed in
trillion operations per second – TeraOp/s). As a result, they
are very impressive and allow for complex deployments and
optimizations. Those are hard, if not impossible, to reproduce
for a programmer without using ML libraries (e.g. CUDNN on
NVIDIA).

The counterpart of such an approach is 1) the absence or
limited information of internal computation and allocation; 2)
small modifications and adaptations of the ML model (e.g.
when exporting the ML model description or when quantizing
on the fly some matrix multiplication to execute on deep
learning accelerator – DLA). If this grey/black box approach
is acceptable and suitable for mainstream applications, it
is a blocking point for highly safety-critical applications.
As a result, the main objective of the ARP 6983 standard
with respect to the implementation process is the semantics
preservation of the off-line trained model on the final hardware
platform. This means that the execution of the ML model in
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Figure 1. Left part: current ML deployment practice and right part: proposed
aeronautical practice.

the training framework should be exactly reproduced on the
embedded target during execution. To reach that objective, an
alternative development process is proposed as illustrated in
the right hand part of figure 1.

B. Assurance development process

The principle of this trustable development process (figure
1) is to ensure the semantic preservation at each step of
the development cycle (e.g. between training framework and
description, between description and code, between code and
executable). This is guaranteed thanks to a series of require-
ments provided in the ARP 6983.

Requirement 1. First, the trained model must be formally
and unambiguously defined in what we call an adequate
format. Such a format must come with a formal syntax and
semantic, and should be agnostic of any (training and/or
deployment) framework.

Requirement 2. Second, the implementation process should
allow several deployments on hardware platforms and it must
be known beforehand how the ML model will be mapped
on the accelerators and when. This entails in particular that
the format should allow several types of deployment such as
distribution, parallelization or pipelining. Thus, there is a step
that consists in splitting the ML model description (in the
chosen format) as a series of item descriptions. Indeed, in the
avionics domain, a target processor is decomposed as a set of
software (SW) and/or hardware (HW) items. Let us consider
for instance an ULTRASCALE+ (ZCU102) platform [Xil19]:
it is composed of several ARM cores, a GPU and an FPGA.
If the ML model is spread over the different components, in
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particular on one ARM and the FPGA, there will necessarily
be several items. Indeed, the ARM associated code will be
considered as one SW item and will go through the ED-
12C/DO-178C [RTC11] development process. Whereas the
hardware design of the FPGA will be considered as another
item (HW) and will go through the ED-80/DO-254 [RTC00]
development process.

Requirement 3. Third, the implementation has to follow the
usual aeronautical development standards (e.g. ED-12C/DO-
178C [RTC11] for software). Thus, the description of a model
within the format must be compliant with a certified imple-
mentation process. This last objective concerns the capability
to implement an item description following standards such
as ED-12C/DO-178C [RTC11] or ED-80/DO-254 [RTC00].
Among the requirements from those standards, two are related
to the format. First, it must offer full traceability: looking at
the generated code (e.g. C or CUDA), it is humanly possible
to trace back to the original exported model. Second, the
execution must be predictable, meaning that it is possible to
assess a WCET (Worst Case Execution Time) [WEE+08]. This
entails that the code is expected to be allocated statically on
the resources, all the memory allocations are static and the
schedule (here the sequence of operations) is also static.

C. Contributions

Our general objective is to define an approach compatible
with the ARP 6983 requirements presented in the prior section.
We focus on a representative subset of deep neural networks
(DNNs) that is feed-forward neural networks trained off-line.
Our main goal is the definition of an adequate format, with a
formal syntax and semantics, able to describe both 1) a global
ML model, and 2) any parallelized allocation on several items,
the behaviour of which is equivalent to the global model.

For requirement 1. There are several initiatives to propose
an intermediate format between trained models and their im-
plementation such as ONNX [BLZ+19] (Open Neural Network
Exchange). After a thorough evaluation of different existing
formats, we identified NNEF (Neural Network Exchange For-
mat) [The22] as the most suited for our purpose: syntax and
semantics are public and moreover the authors made a strong
effort to provide a formal specification.

Since NNEF provided a potential candidate, we decided to
construct our format on top of it. As it is now, NNEF describes
formally the global ML model. Indeed, the semantics of NNEF
is almost fully defined (see section II). What is however
missing in NNEF is the clear formalization of the execution
model, that is the formal behaviour behind a series of NNEF
instructions. To fix this missing element, we rely on Petri nets,
a usual representation of program behaviours [Pet77]. This
choice is also consistent with the need to express distributed
behaviour on items, as Petri nets also allow to model all
combinations of execution: sequence, pipeline, recursion or
parallel [Old86].

For requirement 2. We illustrate in section III why de-
composing ML model into items is of interest. To that end,
we extend the syntax and semantics of NNEF. We rely in
particular on logical data exchange among items to distribute
the computation and express the semantics with coloured Petri

nets. We formally show that the synchronization of the Petri
nets behaves as the original non distributed Petri net.

For requirement 3. We do not propose a complete DO-
178C compatible approach but instead show a reasonable
implementation approach on the XAVIER platform [NVI19a]
that we believe could be with some effort compliant with the
ED-12C/DO-178C [RTC11].

II. FORMAT OF DESCRIPTION – NNEF

KHRONOS standardization group1 has defined the NNEF
(Neural Network Exchange format) format with a specification
that provides a syntax and a semantic. We focus on the NNEF
syntax and semantics elements needed for our purpose. The
reader can refer to [The22] for a complete description of NNEF.

A. Brief Reminder on Neural Network

The field of artificial intelligence has gained much research
attention in the past years. The power of AI resides in
the capacity of solving highly complex problems [GBC16].
Machine learning domain describes the study and development
of statistical algorithms that are able to efficiently generalize
on unknown input data after the extraction of patterns from
a similar, and representative, data set. Neural networks are
a class of ML algorithms. A neural network implements
a mathematical function FN that aims at approximating a
continuous real-valued function [HSW89], [SZ06]. FN is
composed of different mathematical functions called layers.

There are two types of deep neural networks: feed-forward
neural networks and recurrent neural networks. Recurrent
neural networks (RNN) feature layers that take as input some
of their output (or the output of a successor layer), thus
creating cycles. In feed-forward variants it is not true. We are
not addressing RNN in this paper. A common representation
of a feed-forward deep neural network (FDNN) is in the form
of a directed acyclic graph (DAG) defining how its layers are
connected together.

Definition 1 (Feed-forward Deep Neural Network): A feed-
forward deep neural network N = (V,E) is a directed acyclic
graph, wherein:

• V is the finite set of vertices of the graph, which represent
its layers l ∈ V ;

• E ⊆ V ×V is the set of edges of the graph, representing
the data flow within the neural network.

In order to construct the possible flows of data within the
feed-forward deep neural network, it is necessary to define
what are the predecessors and successors of a vertex, or layer.

Definition 2 (Predecessors / successors of a layer): The
direct predecessors (resp. successors) of a layer l are defined
as the layers of the set Pre(l) = {l′ ∈ V | (l′, l) ∈ E}
(resp. Succ(l) = {l′ ∈ V | (l, l′) ∈ E}). The predecessor
transitive closure of l is the set of all its predecessors layers
noted Pre∗(l) =

⋃k
n=1 Pren(l), wherein:

Pren(l) =

{
Pre(l), if n = 1⋃

l′∈Pren−1(l)(Pre(l′)∪{l′}), otherwise

1https://www.khronos.org/

https://www.khronos.org/
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A layer can be classified into input, output and intermediate,
or hidden. An input layer l only consumes input data, i.e.,
Pre(l) = ∅. Similarly, a final layer l only produces output
data, i.e., Succ(l) = ∅. We represent VI ⊆ V as the set of
input layers and VO ⊆ V as the set of output layers. Note that
VI ∩ VO = ∅. The remaining layers, l ̸∈ VI ∪ VO, are the
hidden layers. Finally, as a straight consequence of directed
acyclic graphs properties, l ̸∈ Pre∗(l).

The function performed by a layer is of the form fl : Rm →
Rn, wherein m and n represent respectively the input and
output dimensions of the given layer’s function.

Definition 3 (Function associated to a FDNN): Let N =
(V,E) be a feed-forward deep neural network and VO ⊆ V be
the set of output layers. Let us denote the function associated
to a set of layers such that:

∀U ⊆ V, FU =

{
(Fl1 , . . . , Fln), if U = {l1, ..., ln}
F∅, if U = ∅.

(1)

wherein:
∀l ∈ V, Fl = fl(FPre(l)) (2)

We note FN = FVO
the function associated to a feed-

forward deep neural network.
Example 1 (Single-path feed-forward deep neural network):

It corresponds to the particular case of a feed-forward deep
neural network, wherein: V = {l1, . . . , ln} and ∀i ≥ 2,
Pre(li) = {li−1}. Therefore, VI = {l1}, VF = {ln}. Such
an example is the LENET-5 shown in figure 2.
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Figure 2. LENET-5 neural network

According to Definition 3 the function associated to a single-
path DNN is the composition function: FN (x) = ◦fln−1 ◦ . . .◦
fl1(x) wherein ml1 in the input dimension of fl1 and pln is
the output dimension of fln .

B. Neural Network Description in NNEF

Our first goal concerns the definition of a format, with a
formal syntax and semantics, able to describe any ML model
such as the LENET-5 of example 1. Let us explain why NNEF
fulfils this goal. An NNEF description is composed of two
parts: 1) A computation graph described in a human readable
text file; and 2) the parameters provided in multiple raw data
file. The fact that the description is textual is important for the
traceability between the specification (output of the training
framework) and the embedded code.

The computation graph file describes all parameters needed
and operations to be done. More precisely, each line of
the computation graph is an elementary instruction (NNEF
compound fragment) that may be split into several atomic
operations (NNEF primitives). The result of each instruction is
stored in a named variable, that represents a tensor, and which
can be used as input for other instruction(s). To compute an
operation all its inputs variables shall be available.

Remark 1: NNEF description follows a SSA (static single
assignment) form [CFR+89] which helps the implementation
process. It is usual to translate a program in its SSA form
before compilation or optimization passes [BBD+17].

Example 2: Let us illustrate how to specify a neural
network with an example. The NNEF textual specification of
the LENET-5 detailed in example 1 is given in the listing 1.
First, all parameters are declared and stored as variables. e1
is the input tensor of size 1×32×32, v1 contains the 6 kernels
of size 1 × 5 × 5 of the first convolution and v2 is the bias
applied at the end of the first convolution. The parameters
needed by the layers should all be defined as variables in the
description file.

graph torch_jit_export(e1) -> (out)
{

e1 = external<scalar>(shape = [1, 1, 32, 32]);
v1 = variable<scalar>(shape = [6, 1, 5, 5],

label = ’v1’);
v2 = variable<scalar>(shape = [1, 6], label = ’

v2’);
v3 = variable<scalar>(shape = [16, 6, 5, 5],

label = ’v3’);
v4 = ...; v5 = ...; v6 = ...; v7 = ...;
v8 = ...; v9 = ...; v10 = ...;

o1 = conv(e1, v1, v2, stride = [1, 1], dilation
= [1, 1], padding = [(0, 0), (0, 0)], groups
= 1);

o2 = relu(o1);
o3 = max_pool(o2, size = [1, 1, 2, 2], stride =

[1, 1, 2, 2], dilation = [1, 1, 1, 1],
padding = [(0, 0), (0, 0), (0, 0), (0, 0)],
border = ’ignore’);

o4 = conv(o3, v3, v4, ...; o5 = relu(o4);
o6 = max_pool(o5, ...; o7 = reshape(o6, shape =

[0, -1]);
o8 = linear(o7, v5, v6); o9 = relu(o8);
o10 = linear(o9, v7, v8); o11 = relu(o10);
o12 = linear(o11, v9, v10);
out = softmax(o12, axes = [1]);

}

Listing 1. LENET-5 with NNEF syntax

After the variables declaration, comes the computation
graph itself. The output of the first convolution is stored in the
variable o1. When calling the function / compound fragment
conv, the user must instantiate the full set of parameters for
this type of layer: input tensor, kernels, bias, stride, dilation,
padding and groups. Every parameter appears explicitly in
the definition and there is no ambiguity. For instance, the
way to declare the padding explicitly states how the padding
applies on top / bottom / right / left. After the convolution, the
activation function has to be explicitly applied to o1 and thus is
not hidden in the convolution, ensuring again an unambiguous
description. The first pooling layer results in variable o3.
Reading the description, we recognize the LENET-5 detailed
before. The flat layer is encoded with a more expressive
function reshape that allows several reshaping. The dense
layer is called linear. The post-processing softmax is also
explicit.

The NNEF specification also provides the link between
instructions (e.g. conv) appearing in the file and their asso-
ciated mathematical functions. Subsequently, we will not use
NNEF terms, because the NNEF standard uses the generic term
fragment for both. We illustrate this with the max pooling
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layer only.

C. Max Pooling Layer Semantics

Let us illustrate issues that may arise without a formal
description. Let us first remind the functional semantics of
a max pooling layer where a padding (and no dilatation) is
applied. Thus, the function is defined by Poolk,s ◦Pp,v where
each function is defined below.

Definition 4 (Padding associated function – Pp,v): Let p =
(pt, pb, pl, pr) be a 4-tuple of integers representing the padding
to be applied on each border of a 3D-tensor and v the float
value to be used for the padding. The padding function Pp,v

applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-
tensor O = Pp,v(I) of size (oh, ow, oc) with oh = nh+pt+pb,
ow = nw + pl + pr and oc = nc such that

Ox,y,z =


v if (x ≤ pt) or (x > nh + pt) or

(y ≤ pl) or (y > nw + pl)

Ix−pt,y−pl,z otherwise
Definition 5 (Pooling layer associated function – Poolk,s):

Let s = (sh, sw) be the stride parameters and k = (kh, kw)
be the height and width of the window. The pooling applied
on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor
O = Poolk,s(I) of size (oh, ow, oc) with oh =

⌊
nh−kh

sh
+ 1

⌋
,

ow =
⌊
nw−kw

sw
+ 1

⌋
and oc = nc with Ox,y,z = max(I[sh ·

(x− 1)+ 1 : sh · (x− 1)+ kh +1][sw · (y− 1)+ 1 : sw · (y−
1)+kw +1][z]). Here, I[s11 : s21, ..., s1k : s2k] represents the
slice of I of all the values Is11+x1,...,s1k+xk

with i ∈ [1, k]
and xi ∈ [1, s2i − s1i].

The NNEF syntax of a max pooling layer describes the
padding values with an enumerate string. Ignoring the border
for a max pooling layer is equivalent to pad with the minimum
float value (MIN F). This corresponds to the neutral operator
of the max function. Looking now at the max pool elementary
instruction according to NNEF documentation [The22], it is de-
fined in the pseudo-code by 2 atomic operations. 1) argmax -
pool that computes an array of index (corresponding to the
max in each pool); 2) sample that returns for an array of index,
an array with corresponding values. This pseudo-code indeed
encodes the expected function Poolk,s ◦ Pp,v .

Of the importance of unambiguous description. We
propose to highlight the importance of making unambiguous
textual descriptions of ML models by comparing two state-of-
the-art training frameworks, namely PYTORCH and KERAS
(with TENSORFLOW).

• In KERAS, a padding inside a max pooling layer can
only be declared by a string ∈ {”valid”, ”same”}. ”valid”
means no elements to add, while ”same” means that
padding is added on the right and on the bottom borders
only to fit the size of the pool.

# KERAS SYNTAX for pool1
MaxPool = tf.keras.layers.MaxPooling2D(

pool_size=(2,2),strides=(2,2),padding
= ’same’)

# NNEF for KERAS SYNTAX
max_pool_keras = max_pool(input, size =

[1, 1, 2, 2], stride = [1, 1, 2, 2],
dilation = [1, 1, 1, 1], padding =

[(0, 0), (0, 0), (0, 1), (0, 1)],
border = ’ignore’);

This corresponds to Pool[2,2],[2,2] ◦ P[0,1,0,1],MIN F.
• In PYTORCH, a padding inside a max pooling layer can

only be declared by one or two integers. In case of one
integer, this defines the number of elements to add to
each border (top, bottom, left and right). In presence of 2
integers, the first gives the number of elements to add at
the top and bottom, and the second at the left and right.

#PYTORCH SYNTAX for pool1
MaxPool = NN.MaxPool2d(2, 2,

1)
# Kernel Size, Stride,

Padding

#NNEF for PYTORCH SYNTAX
max_pool_torch = max_pool(input, size = [1,

1, 2, 2], stride = [1, 1, 2, 2],
dilation = [1, 1, 1, 1], padding = [(0,
0), (0, 0), (1, 1), (1, 1)], border =
’ignore’);

This corresponds to Pool[2,2],[2,2] ◦ P[1,1,1,1],MIN F

The semantics of KERAS and PYTORCH are not equivalent,
and there is no possibility to convert one into another at once.
The only way to make a valid conversion is to explicitly add
a padding layer before the max pooling.

D. NNEF Execution Model Semantics

The semantics of the execution model, that is the formal be-
haviour behind a series of NNEF instructions, is not explicitly
given by the standard. It assumes that one instruction can be
executed when all its inputs are computed and available. Thus,
executing the instructions in sequence following the order of
the NNEF guarantees a correct execution. There are two types
of instructions: those reading parameters from binary files or
input tensors and layer-associated instructions based on one
or several atomic operations. An instruction is always of the
form

var = operation(v1, . . . , vk, cst1, . . . , cstj);

where var is a variable computed by the operation (any
NNEF fragment), vi are either variables computed beforehand,
the input tensor or fixed parameters (e.g. kernels), and csti
are constant (e.g. stride). The NNEF execution model can be
formally expressed using the Petri net formalism [Pet77].

Translation 1: A NNEF description, composed of n instruc-
tions, generates a Petri net (P, T, V ) where:

• the set of places P corresponds to all variables appearing
in the NNEF description (i.e. n places for a description
of n instructions);
– a token in a place means that the associated variable

is available for computation;
– initially there are as many tokens in each parameter-

associated place as the parameter is needed in the
instructions and as many tokens in the input tensor
place as the input tensor is used by the instructions;

– there is a unique final place corresponding to the last
variable computed in the NNEF file;
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• the set of transition names T corresponds to all instruc-
tions appearing in the NNEF description;

• V ⊆ 2P × T × N × P defines the set of transitions.
A transition can be fired if there is a token in all input
places. When it fires, the transition removes a token from
each of these places and generates as many tokens as
defined on the edge in the unique output place.
– each instruction var = op(v1, . . . , vk, cst1, . . . , cstj)

generates the transition given in figure 3 where p is
the number of time var will be consumed by other
instructions;

– when only one token is produced by a transition, we
omit the integer.

v2

v1

vk

. . . op

var
p

Figure 3. Translation
of one
instruction

e1 Conv
o1
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ReLU
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MaxPool
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o7Denseo8
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Figure 4. NNEF semantics of the LENET-5 express
with Petri net. Initial marking

The semantic of the Petri net clarifies the execution order
that is unclear in the NNEF formalism. Especially, the order of
the textual file should not impose a unique order when several
valid ones may exist.

Example 3: The LENET-5 model of figure 2 with its asso-
ciated NNEF description in listing 1 has the associated Petri
net given in figure 4. We recognize the instructions sequence
that describes the computation of the neural network graph.
There is a unique possible schedule for this NNEF description,
but we will see later other NNEF models that accept several
schedules (see section III).

Remark 2: The Petri net of figure 4 only defines the
semantics of a single inference pass. It is usual to repeat
the inference pass in order to process new inputs (e.g. in
a periodic manner). This can also be represented using the
Petri formalism by sending back tokens to e1 and vk places.
For demonstration and clarity, subsequently in the paper, we
always consider the semantics of a single inference.

A way to define the semantics of Petri nets is to compute
the set of reachable markings, where a marking defines the
number of tokens in each place at a given instant.

Definition 6 (Marking): Considering a Petri net with n
places, a marking is defined as a vector v ∈ Nn giving the
number of tokens v[i] in the i-th place. This initial location of
tokens is called the initial marking, this represents the starting
state of the system. A final marking is a marking such that
there is one token only in each final place and from which no
transition can be fired any more.

Example 4: In the Petri net of figure 4, there are 24 states.
There are 11 tokens in the initial making and there is a single
token in the unique final marking (in the place out).

Property 1 (Initial marking and unique final marking): The
unique initial marking is defined by the translation and consists
of token(s) in the input tensor variable place and parameters-
associated places. Because we consider feed-forward neural
networks, there is unique final marking.

Definition 7 (Paths and semantics): A valid path starts from
the initial marking mi, lists a series of fireable transitions and
ends in a final marking mf , i.e. mi −→t1 m1 −→t2 . . . −→tl

mf . The semantics of a Petri net is the set of valid paths.
Property 2 (Possible executions of an NNEF description):

Because we consider feed forward neural networks, the num-
ber of valid paths is finite and the valid paths correspond to
all possible execution orders respecting the semantics of the
ML model.
Semantics preserving code generation could lead to any im-
plementation the path of which is valid. Full sequential code
following the order of instructions of the NNEF file is one of
them.

III. IS DISTRIBUTION NEEDED?

Because we consider highly distributed platforms, a de-
signer may choose to split the ML model into several parts
in order to accelerate the execution and reduce the execution
time. In particular, it could lead to developing parts inde-
pendently and on different items following the aeronautics
standards [SAE10]. In such a case, there should be a formal
description for each item that becomes the input specification
for HW/SW item implementation. We identified 3 different
needs for distribution to be addressed that we illustrate on the
LENET-5 example.

Remark 3: Note that if the designer considers its platform as
a unique item, the NNEF description will be the specification.
Off-loading computation. Let us consider for instance
the implementation of the LENET-5 on an ULTRASCALE+
(ZCU102) platform [Xil19] composed of several ARM cores,
a GPU and an FPGA. Let us assume that we choose to execute
the convolution on the FPGA and all other layers on one ARM.
The idea will be to offload the input tensor of each convolution
on the FPGA and retrieve the feature maps from the FPGA (see
figure below).
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Parallelizing the layers. A second type of distribution could
be to refine the layers and exhibit more parallelism by dis-
tributing the computation of a layer across several items. It
will be up to the designer to show the semantic preservation
at this refinement level. Looking again at the LENET-5, we can
split the computation of the first two layers on two different
items. Each item will do the convolution+maxpool on a part
of the input image. To do so, the input image is split along
the height and two sub-parts are executed on two different
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6x14x14

conv2

16x10x10

pool2

16

16x5x5 400

flat

120 84

dense1 2 3

10

item1

item1

item2

item1

items (see figure below). In order to keep the semantics for the
convolution, some overlap exists between the two sub-images.
Pipelining the computation. A third type of distribution is
the pipelining of the DNN execution. In this case, each item
is in charge of computing a specific layer (or a group of
layers). The first item computes the first layer(s) on the first
tensor input and sends its output to the second item that will
compute the second group of layer(s) while the first item starts
processing the second input tensor. This classical mechanism
enables to reduce (e.g. for video processing) the frame rate
while degrading the latency. The depth of the pipeline is the
number of inputs that can be handled at the same time among
the pipeline.

conv1

1x32x32
6

pool1

6x28x28
6

conv2

6x14x14
16

pool2

16

16x10x10 16x5x5 400

flat

120 84

dense1 2 3

10

item1 item2 item3

IV. NNEF EXTENSION FOR MULTIPLE ITEMS

The purpose of this section is to propose a manner to
separate the specification of each item so that any execution
of the items respecting the specification properly encode the
global ML model. To that extent, we propose first to extend
the syntax of NNEF to allow explicit parallelization and then
to express the associated semantics with colored Petri nets.

A. Extension for item splitting

We first need to specify the item on which the description
will be implemented. To that end, we enrich the graph defini-
tion with the keyword graphitem to provide the logical id of
the HW or SW item.

Syntax1 GraphItem

<graph-definition> ::= <graph-declaration>
<graph-declaration-item> <body>

<graph-declaration-item> ::= "graphitem"
<identifier> <identifier>"("<identifier-list>")"
"-$>$" "("<identifier-list>")"

Semantics 1: The first <identifier> refers to the item id,
the second <identifier> is the name of the local node and
elements of the <identifier-list> will be input or output of the
graphitem. The semantic of the <graph-declaration-item> is
such that all instructions within the <body> are executed by
the item.

We also need to exchange data between several items
and ensure that those exchanged data are available before
computation. To that end, we introduce a new type of variable,

namely variablesync. This references a variable that could be
read from or write to another graphitem. We use a fragment
to define this new type.

Syntax2 VariableSync

fragment variablesync<? = scalar>
(shape: integer[]) -> ( output: tensor<?> )

Semantics 2: Each variablesync is a shared variable with
a unique writer and possibly multiple readers. Writer is in
charge to transmit the variable via the instruction send var
and each reader can access this data via get var instruction.

We then define new NNEF instructions to send or get data
between several graphitem.

Syntax3 get var

fragment get_var<? = scalar>(source : graphitem,
data : variablesync) -> ( output: tensor<?> )

Semantics 3: get var appears in each reader description.
The output of this instruction is a local variable that gets the
content of the shared variable and which is available for the
caller item. Source is the item that writes and provides the
shared variable the name of which is given by data.

Similarly, the writer must define the instruction to send a
shared variable to other items.

Syntax4 send var

fragment send_var<? = scalar>
( dest : graphitem[], data : scalar)
-> ( output: variablesync )

Semantics 4: send var appears in the writer description
only. It takes as input the list of reader items and the name
of the tensor that shall be sent. The output tensor is a global
variablesync that will support the synchronization.

The rest of the NNEF syntax remains unchanged.

B. Splitting an NNEF description into multi-item descriptions

Initially, the DNN is described in a unique NNEF description
as shown in section II. Such a description contains 3 types of
instructions:

• definition of input tensor(s);
• definition of fixed parameters;
• variables computed by each layer.

A splitting consists in partitioning the last type of instructions
among the items, adding the adequate definition(s) of tensors
/ fixed parameters and adding the adequate send var / get -
var. The composition of item descriptions shall respect the
semantics of the full NNEF description.

Example 5: Let us consider the DNN of listing 2 with its
associated Petri net (figure 5). Let us assume that the DNN is
allocated on 3 items such that o1, o6, o7 and out are computed
on item 1; o2, o3 are computed on item 2 and o4, o5 are
computed on item 3. Thus, the description on the items is
given in Listing 3.

The union of the instructions of each item corresponds to the
complete NNEF description with the additional variablesync
and the communication instructions. Locally in the item, the
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graph DNN(e1) -> (out)
{

e1 = external..
v1 = variable... ’variable1’); v2 = ...; v3 =

...; v4 = ...;
v5 = ...; v6 = ...; v7 = ...; v8 = ...; v9 = ...;

v10 = ...;
o1 = conv(e1,v1,v2,... ;
o2 = conv(o1,v3,v4,...; o3 = conv(o2,v5,v6,...;
o4 = conv(o1,v7,v8,...; o5 = conv(o4,v5,v6,...;
o6 = concat (o3, o5); o7 = flatten(o6,...;
out = gemm(o7, v9, v10...;

}

Listing 2. Complete DNN NNEF

e1
Conv

o1

v1

v2

2

Conv
o2

v3

v4

Conv
o3

v5 v6

Conv
o4v7

v8

Conv
o5

concat o6 flat
o7 gemm

v9

v10

out

Figure 5. Petri associated to DNN of listing 2. Initial marking

pointers to the input tensor and fixed parameters must also be
declared.

graphitem ITEM1 DNN1([e1, vsync2, vsync3]) -> ([
vsync1, out])

{
e1 = external...;
v1 = variable... ’variable1’); v2 = ...; v9 =

...; v10 = ...;
vsync1 = variablesync<scalar> (shape ...;
vsync2 = variablesync ...; vsync3 =

variablesync ...;

o1 = conv(e1,v1,v2,...;
vsync1 = send_var ([ITEM2, ITEM3], o1);
o3 = get_var(ITEM2, vsync2);
o4 = get_var(ITEM3, vsync3);
o6 = concat (o3, o4); o7 = flatten(o4,...;
out = gemm(o7, v9, v10...;

}

graphitem ITEM2 DNN2([vsync1]) -> ([vsync2])
{

v3 = variable... ’variable3’); v4 = ...; v5 =
...; v6 = ...;

vsync1 = variablesync ...; vsync2 = variablesync
...;

o1 = get_var(ITEM1, vsync1)
o2 = conv(e1,v3,v4,...; o3 = conv(o2,v5,v6,...
vsync2 = send_var ([ITEM1], o3);

}

graphitem ITEM3 DNN3([vsync1]) -> ([vsync3])
{

v5 = ...; v6 = ...; v7 = ...; v8 = ...
vsync1 = variablesync...; vsync3 = variablesync

...;

o1 = get_var(ITEM1, vsync1)
o4 = conv(o1,v7,v8,...; o5 = conv(o1,v5,v6,...
vsync3 = send_var ([ITEM1], o5);

}

Listing 3. NNEF for all items

C. Petri-based semantic

We define the execution model semantics of multi-item
descriptions using coloured Petri nets [JK09]. We associate
a colour to each item where the colour is set to the tokens and
edges (on which the coloured tokens transit).

Translation 2: Let assume there are N items. We first apply
the translation 1 for each item leading to N independent Petri
nets (Pi, Ti, Vi), each with a unique and distinct colour. For
the new instruction, the translation is extended as follows:

• a varsync does not generate any place;
• a get var does not generate any transition;
• a send var produces a transition sync with an incoming

edge from the variable the content of which is transmitted.
The set of NNEF item descriptions generates a Petri net

(P, T, V ) which is roughly speaking the union of the N Petri
nets (Pi, Ti, Vi). More precisely,

• any input tensor or fixed parameter that is duplicated in
the NNEF files appears in the Petri net of the item. Those
duplicated places are merged. Because we use the same
naming convention, P = ∪Pi;

• the initial tokens in the places are also merged leading to
places with possibly multiple tokens and multiple colours;

• T = ∪Ti ∪ T ′ where T ′ are the transitions connecting
places of one item to other items thanks to the sync
transition. More precisely,
– for each writer, there are k edges back from the sync

label where k is the number of readers. The colour
of the each arrow is the one of the reader and the
number of tokens sent back corresponds to the number
of time the shared variable appears in the reader item
instructions;

– for each reader, there is an edge from the writer place
before sync to each transition requiring the shared data;

• As before, when a coloured token is present in a place, it
means that the associated variable is available for the item
identified by the colour and can be used by transition.

Example 6: The Petri net associated to the example 5 is
given in figure 6. We present the initial marking with colored
tokens. Each color represents the state of one item. Compare
to the figure 4, we express here the multi items semantics with
synchronizations.

e1
Conv

o1

v1

v2

sync1

Conv
o2

v3

v4

Conv
o3

v5 v6

sync2

concat o6

Conv
o4v7

v8

Conv
o5 sync3

flat
o7 gemm

v9

v10

out

Figure 6. Semantic of the items synchronization

Property 3 (Equivalence between Petri nets): The semantics
of the multi-items behaviour is equivalent to the complete
original ML model.

Remark 4: It is important to explicitly describe the send -
var and get var either in the NNEF files but also in the
Petri net because items are supposed to be independent and
segregated. In particular, an item X is not allowed to access the
memory space of an item Y and interfere with its execution.
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This is classical in aeronautics, see Arinc 653 specification.
The XTRATUM hypervisor [CRM+09] is an example of time
and space partitioning hypervisor that provides communica-
tion with sampling and queuing ports (close to Arinc 653
requirements).

V. IMPLEMENTATION AND EXPERIMENTS

The previous sections showed how to fulfill the require-
ments 1 and 2 of the introduction. The purpose of this
section is to give some hint of how a DO-178C compatible
implementation process, as required per requirement 3, could
be defined taking as input an extended NNEF specification.
The considered target, a Jetson XAVIER TX system-on-chip,
is composed of 6 Carmel ARM cores, a GPU, 2 deep learning
accelerators (NVDLA) and other dedicated circuits. The use
of a NVIDIA platform is mainly motivated by its availability
and the ease to quickly deploy neural networks application.
We will not discuss the adequation of GPU and CUDA im-
plementation with DO-178C objectives because it is an open
problem.

The sync implementation relies on barrier mechanism and
each item NNEF description is manually coded. In order to
validate the semantic preservation, we made some instrumen-
tation to show that: (i) the execution trace is included in all
possible execution traces defined by the Petri net; (ii) the
numerical precision is kept; (iii) the measured execution time
does not vary. We will use the multi-items example presented
in example 5 as the specification. For our experiments, each
item is allocated to one CPU and all the CUDA cores of
the GPU (grouped in a CUDA stream). As a consequence, we
do not guarantee a segregation between items (as they share
the GPU) we instead focus on a way to implement parallel
operations of neural networks with a static code scheduling
while preserving the semantics. As for the Petri semantics, we
only developed a code for a single inference. Nevertheless, it
is easy to slightly modify the code by adding loops to handle
several input tensors.

A. Get/Send specification

We chose to implement get var and send var with 1)
global variables stored in the SRAM of the XAVIER and 2)
the POSIX barrier mechanism of the pthread library. A barrier
b, shared among several processes, will block them as long as
not all of them reach b. Such a behavior is strictly included
in the semantics of the sync transition within the Petri net.
However, it is not the most efficient as it prevents the sending
item to proceed until all the receiving items reach b, whereas
the semantics of sync transition only requires a receiver to
wait for the sender (not the sender to wait for all receivers).
Nonetheless, the barrier mechanism is optimal for our example
because no sender has to process any instruction before a
further get var or stop execution.

B. Manual code generation

There are C and PYTHON interpreters of the NNEF format
[NNE18] but only for traditional CPU target. Consequently, no

existing tool supports our syntax extension nor state-of-the-art
GPU. Thus we developed the code for each item using C++
and CUDA using the CUDNN library. Basically the C++ code
is executed by the ARM processor whereas CUDA allows the
definition of kernels that are executed synchronously by all
CUDA cores. The CUDNN library is built on top of CUDA for
executing common neural networks layers.

1) Software architecture: Practically, each type of layer is
implemented using a dedicated C++ class that inherits from
the abstract Layer class that defines common attributes and
methods to be implemented (init() and forward()) by child
classes. In effect, init statically allocates tensors and CUDNN
descriptors while forward launches the layer computation
based on CUDNN for Convolution and max pooling layers.
Each item contains one object implementing a static scheduler.
More precisely, during the init phase, each item creates an
object for each layer which are stored in ordered lists. Thus,
items 2 and 3 need one single ordered list whereas item 1
needs two ordered lists (one for the first part and one for the
second part). During forward, the scheduler calls in order the
forward of objects stored in ordered lists.

2) Scheduling: We define one separate thread for each item
allocated to one CPU + CUDA cores. More precisely, synchro-
nizations between threads use pthread barrier t and
associated APIs (barrier init and barrier wait).
Barriers synchronize accesses to shared variables.

tT1

T2

T3 init Item 3
create

init Item 2
create

init
create

head tail

barrier1 barrier2 barrier3 join

The execution sequence starts with the 3 threads creation
on the CPUs and then reaches the first synchronization barrier.
Then Item1 thread calls the forward method of layers of the
head (until send var) while Items 2 and 3 threads wait for the
second synchronization barrier. After, the second synchroniza-
tion barrier, Items 2 and 3 threads call forward method of their
layers while Item1 thread waits for the third synchronization
barrier. After the third synchronization barrier, Item 1 thread
calls forward method of layers of the tail. At last, threads join
and exit.

C. Semantic preservation of the Petri net

The first analysis aims at verifying that all observed schedul-
ing of layers on the XAVIER respects the Petri net semantics.
Because we use a static scheduler, all schedules should behave
as shown in section V-C which is included in the semantics
of coloured Petri net of figure 6. For that, we logged each
start/end of branches and layers and we stressed the robustness
of the implementation by addind some temporal noises (sleep
in the code).

All observed traces respected the schedule of section V-C
with some timing variations. When observing the implemen-
tation with no noise, execution traces of Item 2 and 3 are
interleaved on the GPU. When adding a wait of 1s at the
beginning of Item 2 (just after barrier1), all layers of Item
3 were executed before those of Item 2.
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D. Semantics preservation of the function

The second instrumentation mechanism aims at checking
that the functional semantics of the DNN is preserved. We
achieve this by re-implementing the NNEF specification in
PYTORCH. Then we define 100 random vectors that we
run both on the PYTORCH implementation and on the C++
implementation on the NVIDIA target. Finally, we compute
the overall average error mean between both executions for
the 100 runs.

We were not able to find the exact convolution algorithm
of PYTORCH. We think that it exists a non documented
heuristic that calls the best algorithm (considering execution
time) depending of the convolution parameters and available
hardware. According to the CUDNN documentation [NVI19b],
it is possible to select the convolution algorithm among a
list, but details of the implementation are not given. Thus,
there may be a discrepancy between convolutions that we
cannot fix. The average error mean is extremely small 1.10−7

for FLOAT32 using 3 CUDNN algorithms (namely gemm,
Winograd and direct). Nevertheless numeric precision results
for this experiment are in an acceptable range that is very
close to the available numeric precision of floating point
representation and this also is observed by other frameworks
[SCGP22].

E. Measured Execution Time (MET)

One objective of the DO-178C that we did not mention until
now is the capacity to estimate the Worst Case Execution Time
(WCET). Due to the complexity of NVIDIA target, a formal
demonstration using static analysis may be difficult. But at
least, a good property is a low variation of the measured
execution time among several executions. In our case, the
generated code does not contain any IF-THEN-ELSE patterns
or dynamic loop conditions. Thus, the variability is only linked
to the hardware behavior. We measured the MET of the
complete DNN and of the first convolution of Item 1 over
10 runs. We rely on the nsys tool from NVIDIA to get timing
measurements.

Mean(MET) MIN(MET) (MAX(MET)) STD(MET)
First Conv 324 2976 ns 322 688 ns 326 656 ns 1.45 ns
DNN 24 257 µs 16 285 µs 53 950 µs 13 526 µs

The MET of the first convolution is very stable with a very
low jitter. The MET distribution of the DNN is large and to un-
derstand why, we need to investigate the low level behaviour.
NVIDIA GPUs are black-boxes processors on which we cannot
guarantee worst-case execution time [AA21], [ACR22].

VI. RELATED WORK

There are plenty of different formats but no consensus
within the community. State-of-the-art frameworks like PY-
TORCH, or TENSORFLOW rely on custom black-box formats
built on top of protocol buffers [Goo01] developed by Google.
A protocol buffer is a structured binary format that is not
human readable and requires conversion tools and template
files to be interpreted. Thus, the syntax is not formally
defined and specification of layers are only available through
documentation website. For example, TENSORFLOW proposes

the .h5 [HDF01] format and KERAS format [Ten15] builds on
top of protocol buffer. Moreover the way to save a neural
network is not unified among frameworks and may evolve ev-
ery updated version with poor backward compatibility. When
moving from caffe to caffe2 (known today as PYTORCH), the
caffe [JSD+14] format was not supported anymore.

All previous formats were developed specifically for train-
ing frameworks (open source or proprietary) without any
objective for sharing models. Their main purpose was to allow
saving and reloading previous trained models without too
much consideration on syntax and semantics. ONNX [BLZ+19]
and NNEF [The22] were developed with the objective to
be independent from frameworks. ONNX is still based on
binary protocol buffers [Goo01] (so without a textual syntax)
but is proposing a functional semantics through its github
site. On the contrary NNEF is proposing a textual format
with a syntax and a semantics that is formally defined in a
specification. Unfortunately, the NNEF format suffers from a
small community and tools supporting the format.

NNet [The22] format is an example of ad-hoc format.
RELUPLEX neural networks examples [KBD+17] are in NNet.
It is based on textual files but without definition of syntax
and semantics. Import and export tools are provided, but its
utilization for sharing neural networks between teams remains
supremely painful.

Some other formats like [CE-17], [Apa18], [LAB+21a]
tackle the need for intermediate representation between a
neural network description and an implementation on a target.
Especially this supports different optimizations passes like
layers folding or low level tensor manipulation description
like in LLVM [Lat02]. We consider that we are closest to
programming language than from a neural network description
format. Most of the time ONNX or NNEF are used as input like
in [LAB+21b], [PBCPB20], [JBL+20].

Because DNN are data-flow, it is natural to translate them
into synchronous languages. There are some works such
as [LFG20] that proposed to encode them as Synchronous
Dataflow Graphs or SCADE tool suite [CPPP18] which is
currently developing a DNN libraries. Once the translation
is done, it is then possible to reuse all the qualified code
generation tools. This is complementary to our work as we
could use the NNEF description to generate the SCADE pro-
gram for instance. To the best of our knowledge, none of actual
available neural network description formats propose solution
for describing multi items implementation with concerns on
sharing variables among them.

VII. CONCLUSION

We have proposed a formal extension of NNEF that takes
into account the execution model of a description and allows
for the modification of a description of a trained model to
define traceable distribution and parallelisation optimizations
that preserves the semantics while improving the execution
time compared to a pure sequential aproach. We have also
proposed a code generation strategy based on barriers for
exchanging data between items. As a future work, a working
group has been set up to propose an ONNX aeronautics
profile.
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