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Abstract

Implementing deep neural networks in safety critical systems, in particular in the aeronautical

domain, will require to offer adequate specification paradigms to preserve the semantics of the trained

model on the final hardware platform. We propose to extend the nnef language in order to allow

traceable distribution and parallelisation optimizations of a trained model. We show how such a

specification can be implemented in cuda on a Xavier platform.

1 Introduction

Machine learning (ML) applications have been gaining considerable attention in the field of transporta-
tion. However, their use in real-life operational safety-critical products, in particular in the aeronautical
domain subject to stringent certification, raises several issues regarding functional correctness, compli-
ance with requirements, formal verification, safety or implementation. In order to tackle those issues, new
guidelines – named AS6983 standard [EUR21] – are currently drafted by the EUROCAE WG-114/SAE
G-34 joint working group that cover the whole spectrum of the system development including the data
sets composition, the ML model design and its implementation. In this paper, we focus only on the
implementation of the ML model.

1.1 Context

In the ML current practices, a training framework is used to design an ML model and the resulting ML
model is then deployed on the target with a deployment framework. It is up to the training framework
or a designer to export the trained model description in an exchange format and up to the deployment
framework to import the ML model description. The left part of figure 1 shows those practices. The
deployment framework is most of the time an ML model interpreter, that can accommodate any type of
ML model architecture, and that allocates at runtime the execution on the different available accelerators
(e.g. gpu, fpga) of the target. These ML frameworks have been designed 1) to ease as much as possible
the deployment of models for the users and 2) to optimize as much as possible the execution performance
(usually expressed in trillion operations per second – TeraOp/s). As a result, they are very impressive
and allow for complex deployments and optimizations. Those are hard, if not impossible, to reproduce
for a programmer without using ML libraries (e.g. cudnn on nvidia).

The counterpart of such an approach is 1) the absence or limited information of internal computation
and allocation; 2) small modifications and adaptations of the ML model (e.g. when exporting the ML
model description or when quantizing on the fly some matrix multiplication to execute on deep learning
accelerator – DLA). If this grey/black box approach is acceptable and suitable for mainstream applica-
tions, it is a blocking point for highly safety-critical applications. As a result, the main objective of the
AS6983 standard with respect to the implementation process is the semantics preservation of the off-line
trained model on the final hardware platform. This means that the execution of the ML model in the
training framework should be exactly reproduced on the embedded target during execution. To reach
that objective, an alternative development process is proposed as illustrated in the right hand part of
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Figure 1: Left part: current ML deployment practice and right part: proposed aeronautical practice

figure 1. The cost is the reduced performance and deployment capacities compared to ML deployment
approaches.

1.2 Assurance development process to ensure semantic preservation

The principle of this trustable development process (figure 1) is to ensure the semantic preservation at
each step of the development cycle (e.g. between training framework and description, between description
and code, between code and executable). This is guaranteed thanks to a series of requirements provided
in the AS6983.

Requirement 1. First, the trained model must be formally and unambiguously defined in what we
call an adequate format. Such a format must come with a formal syntax and semantic, and should be
agnostic of any (training and/or deployment) framework.

Requirement 2. Second, the implementation process should allow several deployments on hardware
platforms and it must be known beforehand how the ML model will be mapped on the accelerators
and when. This entails in particular that the format should allow several types of deployment such as
distribution, parallelization or pipelining. Thus, there is a step that consists in splitting the ML model
description (in the chosen format) as a series of item descriptions. Indeed, in the avionics domain, a
target processor is decomposed as a set of software (SW) and/or hardware (HW) items. Let us consider
for instance an UltraScale+ (ZCU102) platform [Xil19]: it is composed of several arm cores, a gpu

and an fpga. If the ML model is spread over the different components, in particular on one arm and
the fpga, there will necessarily be several items. Indeed, the arm associated code will be considered
as one SW item and will go through the ED-12C/DO-178C [RTC11] development process. Whereas the
hardware design of the fpga will be considered as another item (HW) and will go through the ED-
80/DO-254 [RTC00] development process. This is the reason why we need to be able to decompose a
global ML model description into several pieces equivalent to the global model description.

Requirement 3. Third, the implementation has to follow the usual aeronautical development stan-
dards (e.g. ED-12C/DO-178C [RTC11] for software).

1.3 Contributions

Our general objective is to define an approach compatible with the AS6983 requirements presented in the
prior section. We focus on a representative subset of deep neural networks (DNNs) that is feed-forward
neural networks trained off-line (see section 2.1). Our main goal is the definition of an adequate format,
with a formal syntax and semantics, able to describe both 1) a global ML model, and 2) any parallelized
allocation on several items, the behaviour of which is equivalent to the global model.

For requirement 1. There are several initiatives to propose an intermediate format between trained
models and their implementation such as onnx [BLZ+19] (Open Neural Network Exchange). After a
thorough evaluation of different existing formats, we identified nnef (Neural Network Exchange Format)
[The22] as the most suited for our purpose: syntax and semantics are public and moreover the authors
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made a strong effort to provide a formal specification.
Since nnef provided a potential candidate, we decided to construct our format on top of it. As it is

now, nnef describes formally the global ML model. Indeed, the semantics of nnef is almost fully defined
(see section 2). What is however missing in nnef is the clear formalization of the execution model, that
is the formal behaviour behind a series of nnef instructions. To fix this missing element, we rely on Petri
nets, a usual representation of program behaviours [Pet77]. This choice is also consistent with the need
to express distributed behaviour on items, as Petri nets also allow to model all combinations of execution:
sequence, pipeline, recursion or parallel [Old86].

For requirement 2. We illustrate in section 3 why decomposing ML model into items is of interest.
The first contribution (see section 4) is the definition of an extension of nnef to allow the distribution
of an ML model onto different items. To that end, we extend the syntax and semantics of nnef. We
rely in particular on logical data exchange among items to distribute the computation and express the
semantics with coloured Petri nets. We formally show that the synchronization of the Petri nets behaves
as the original non distributed Petri net.

For requirement 3. We do not propose a complete DO-178C compatible approach but instead show
a reasonable implementation approach on the Xavier platform [NVI19a] that we believe could be with
some effort compliant with the ED-12C/DO-178C [RTC11]. To that end, we define an automatic cuda-
based code generation from an ML description in the extended nnef format and assess in our evaluation
its code traceability, the deterministic behaviour on the platform and the semantics preservation from
the trained framework. All of that is detailed in section 5.

We will discuss the related work in section 6 before concluding.

2 Format of description – nnef

Khronos standardization group1 has defined the nnef (Neural Network Exchange format) format with a
specification that provides a syntax and a semantic. After outlining the definition of deep neural network,
we will present nnef. We focus on the nnef syntax and semantics elements needed for our purpose.
The reader can refer to [The22] for a complete description of nnef. We end the section by defining the
execution model semantics with a translation into Petri net.

2.1 Brief Reminder on Neural Network

There are multiple ways to define DNNs: directed graphs, computational graphs or simply the mathe-
matical functions transforming the input into the output. nnef relies on a computation graph approach.
In any case, the input of a neural network can be seen as a multi-dimensional vector also called tensor.

Definition 1 (Tensor) A 3D-tensor T is represented by its size (nc, nh, nw) where nc the number of
channels (or feature maps), nh is the height and nw the width. We denote by Tx1,x2,x3

the value of T for
the indices x1, x2, x3.

A feed-forward deep neural network consists of a series of layers executed without recursion.

Definition 2 (Feed-forward Deep Neural Network) A feed-forward neural network N =< Q, V >

is a directed graph where:

• Q = {l1, . . . , ln} the nodes are the layers li. A layer can be of many types such as an activation, a
convolution or a pooling. A layer comes with a set of parameters (e.g. weights or stride);

• Qi ⊆ Q is the set of input layers and Qf ⊆ Q is the set of final layers, in particular Qi ∩Qf = ∅;

• V ⊆ Q ×Q the arrows represent the data flow within the neural network. Pre(i) = {j|(lj, li) ∈ V }
is the set of layers lj such that output(lj) is an input of li. An input layer j ∈ Qi only consumes
input tensors, i.e Pre(j) = ∅;.

We can compute the ancestors of a layer, Pre∗(j) = ∪Pren(j) where Pren(j) = ∪ji∈Pren−1(j)Pre(ji) and

Pre1(j) = Pre(j)
Because the network is feed-forward, j 6∈ Pre∗(j).

1https://www.khronos.org/
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Example 1 The LeNet-5 [LBD+89] is a usual CNN developed for hand written digit images recognition.
Its structure (see figure 2) consists of 8 consecutive layers: convolution, pooling, flat and dense. Qi =
{conv1}, Qf = {softmax}, and for all layers i ≥ 2, Pre(i) = {i− 1}.

conv1

1x32x32

6

pool1

6x28x28

6

conv2

6x14x14

16

16x10x10

pool2

16

16x5x5 400

flat

120 84

dense1 2 3

10

Figure 2: LeNet-5 neural network

The size of the input / output tensors are shown on the figure. The first 2D-convolution conv1 which
takes inputs of size 1× 32× 32, is composed of 6 kernels of size 1× 5× 5 and a stride of (1, 1). Because
the sizes of the input and the kernel are well balanced taking into account the stride, no padding is needed.
The activation function ReLu is applied to the outputs. The first pooling layer pool1 is a max pooling
with stride (2, 2) and window (2, 2). The second 2D-convolution conv2 is composed of 16 kernels of size
6 × 5 × 5 and of a stride (1, 1). The activation function ReLu is applied to the outputs. The second
pooling layer pool2 is a max pooling with stride (2, 2) and window (2, 2). The 3D-tensor of size 16×5×5
is flattened in a 1D-tensor of size 400. Three dense layers are then applied, each followed by a ReLu. A
dense layer consists in applying a linear transformation W · I + B where W are the weights and B the
bias. Finally, the post-processing is a softmax.

Remark 1 In this article we are only focusing on the inference topic. Thus, whereas nnef provides the
possibility to express the batch size (number of inputs computing in one inference), we only consider a
batch size of 1. The possibility to increase the batch is motivated by the learning phase to improve the
optimization convergence (stochastic gradient).

Definition 3 (Function associated to a DNN) The function fN computed by a DNN N =< Q, V >

is the composition of the functions computed by each layer. In case of a directed DNN – i.e. where
Qi = {l1}, Qf = {ln} and ∀i ≥ 2, Pre(i) = {i− 1} – the function is simply given by fN = fln ◦ . . . ◦ fl1
where ◦ is the composition operator. Otherwise, fN = (flf1 , . . . , flfp ) where Qf = {lf1 , . . . , lfp} and the

functions are defined as follows: ∀i such that li 6∈ Qi, fli(flj1 , . . . , fljn ) where {j1, . . . , jn} = Pre(i). The
semantics of each elementary function (e.g. a 2D-convolution) is given for instance in nnef by providing
its mathematical function.

2.2 Neural Network Description in nnef

Our first goal concerns the definition of a format, with a formal syntax and semantics, able to describe
any ML model such as the LeNet-5 of example 1. Let us explain why nnef fulfils this goal. An nnef

description is composed of two parts: 1) A computation graph described in a human readable text file; and
2) the parameters provided in multiple raw data file. The fact that the description is textual is important
for the traceability between the specification (output of the training framework) and the embedded code.

The computation graph file describes all parameters needed and operations to be done. More precisely,
each line of the computation graph is an elementary instruction (nnef compound fragment) that may
be split into several atomic operations (nnef primitives). The result of each instruction is stored in a
named variable, that represents a tensor, and which can be used as input for other instruction(s). To
compute an operation all its inputs variables shall be available.

Remark 2 nnef description follows a SSA (static single assignment) form [CFR+89] which helps and
simplifies the implementation process. It is usual to translate a program in its associated SSA form before
compilation or optimization passes [BBD+17].

Example 2 Let us illustrate how to specify a neural network with an example. The nnef textual speci-
fication of the LeNet-5 detailed in example 1 is given in the listing 1. First, all parameters are declared
and stored as variables. e1 is the input tensor of size 1×32×32, v1 contains the 6 kernels of size 1×5×5
of the first convolution and v2 is the bias applied at the end of the first convolution. The parameters
needed by the layers should all be defined as variables in the description file.
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graph torch_jit_export (e1) -> (out)

{

e1 = external <scalar >( shape = [1, 1, 32, 32]) ;

v1 = variable <scalar >( shape = [6, 1, 5, 5], label = ’v1 ’);

v2 = variable <scalar >( shape = [1, 6], label = ’v2 ’);

v3 = variable <scalar >( shape = [16, 6, 5, 5], label = ’v3 ’);

v4 = ...; v5 = ...; v6 = ...; v7 = ...;

v8 = ...; v9 = ...; v10 = ...;

o1 = conv (e1 , v1 , v2 , stride = [1, 1], dilation = [1, 1], padding = [(0, 0) ,

(0, 0)], groups = 1);

o2 = relu (o1);

o3 = max_pool (o2 , size = [1, 1, 2, 2], stride = [1, 1, 2, 2], dilation = [1,

1, 1, 1], padding = [(0, 0), (0, 0), (0, 0), (0, 0)], border = ’ignore

’);

o4 = conv (o3 , v3 , v4 , ...; o5 = relu (o4);

o6 = max_pool (o5 , ...; o7 = reshape(o6 , shape = [0, -1]);

o8 = linear(o7 , v5 , v6); o9 = relu (o8);

o10 = linear(o9 , v7 , v8); o11 = relu (o10);

o12 = linear(o11 , v9 , v10);

out = softmax(o12 , axes = [1]) ;

}

Listing 1: LeNet-5 with nnef syntax

After the variables declaration, comes the computation graph itself. The output of the first convolu-
tion is stored in the variable o1. When calling the function / compound fragment conv, the user must
instantiate the full set of parameters for this type of layer: input tensor, kernels, bias, stride, dilation,
padding and groups. Every parameter appears explicitly in the definition and there is no ambiguity. For
instance, the way to declare the padding explicitly states how the padding applies on top / bottom / right
/ left. After the convolution, the activation function has to be explicitly applied to o1 and thus is not
hidden in the convolution, ensuring again an unambiguous description. The first pooling layer results in
variable o3. Reading the description, we recognize the LeNet-5 detailed before. The flat layer is encoded
with a more expressive function reshape that allows several reshaping. The dense layer is called linear.
The post-processing softmax is also explcit.

The nnef specification also provides the link between instructions (e.g. conv) appearing in the file
and their associated mathematical functions. We illustrate this with the max pooling layer only.

2.3 Max Pooling Layer Semantics

In order to illustrate issues issues that we may without having a formal description we propose to use
the Max Pooling example. Let us first remind the functional semantics of a max pooling layer where a
padding is applied and no dilatation is applied. Thus, the function is defined by Poolk,s ◦Pp,v where each
function is defined below.

Definition 4 (Padding associated function – Pp,v) Let p = (pt, pb, pl, pr) be a 4-tuple of integers
representing the padding to be applied on each border of a 3D-tensor and v the float value to be used for
the padding. The padding function Pp,v applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor
O = Pp,v(I) of size (oh, ow, oc) with oh = nh + pt + pb, ow = nw + pl + pr and oc = nc such that

Ox,y,z =











v if (x ≤ pt) or (x > nh + pt) or

(y ≤ pl) or (y > nw + pl)

Ix−pt,y−pl,z otherwise

Definition 5 (Pooling layer associated function – Poolk,s) Let s = (sh, sw) be the stride param-
eters and k = (kh, kw) be the height and width of the window. The pooling applied on a 3D-tensor

I of size (nh, nw, nc) outputs a 3D-tensor O = Poolk,s(I) of size (oh, ow, oc) with oh =
⌊

nh−kh

sh
+ 1

⌋

,

ow =
⌊

nw−kw

sw
+ 1

⌋

and oc = nc with Ox,y,z = max(I[sh · (x− 1)+1 : sh · (x− 1)+ kh+1][sw · (y− 1)+1 :
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sw · (y − 1) + kw + 1][z]). Here, I[s11 : s21, ..., s1k : s2k] represents the slice of I of all the values
Is11+x1,...,s1k+xk

with i ∈ [1, k] and xi ∈ [1, s2i − s1i].

The nnef syntax of a max pooling layer describes the padding values with an enumerate string. Ig-
noring the border for a max pooling layer is equivalent to pad with the minimum float value (MIN F ).
This corresponds to the neutral operator of the max function. Looking now at the max pool elementary
instruction according to nnef documentation [The22], it is defined in the pseudo-code by 2 atomic opera-
tions. 1. argmax pool that computes an array of index (corresponding to the max in each pool); 2. sample
that returns for an array of index, an array with corresponding values. This pseudo-code indeed encodes
the expected function Poolk,s ◦ Pp,v.

Of the importance of unambiguous description. We propose to highlight the importance
of making unambiguous textual descriptions of ML models by comparing two state-of-the-art training
frameworks, namely PyTorch and Keras (with TensorFlow). More specifically, we compare their
way of encoding max pooling. A first important remark is that it is not possible to pad the borders (top
/ bottom / left / right) with any combination.

• In Keras, a padding inside a max pooling layer can only be declared by a string ∈ {”valid”,
”same”}. ”valid” means no elements to add, while ”same” means that padding is added on the
right and on the bottom borders only to fit the size of the pool.

# KERAS SYNTAX for pool1

MaxPool = tf.keras.layers. MaxPooling2D (pool_size =(2 ,2) ,strides =(2 ,2) ,

padding = ’same ’)

# NNEF for KERAS SYNTAX

max_pool_keras = max_pool (input , size = [1, 1, 2, 2], stride = [1, 1,

2, 2], dilation = [1, 1, 1, 1], padding = [(0, 0), (0, 0), (0, 1)

, (0, 1)], border = ’ignore ’);

This corresponds to Pool[2,2],[2,2] ◦ P[0,1,0,1],MIN F.

• In PyTorch, a padding inside a max pooling layer can only be declared by one or two integers.
In case of one integer, this defines the number of elements to add to each border (top, bottom, left
and right). In presence of 2 integers, the first gives the number of elements to add at the top and
bottom, and the second at the left and right.

#PYTORCH SYNTAX for pool1

MaxPool = NN.MaxPool2d (2, 2, 1)

# Kernel Size , Stride , Padding

#NNEF for PYTORCH SYNTAX

max_pool_torch = max_pool (input , size = [1, 1, 2, 2], stride = [1, 1,

2, 2], dilation = [1, 1, 1, 1], padding = [(0, 0), (0, 0), (1, 1) ,

(1, 1)], border = ’ignore ’);

This corresponds to Pool[2,2],[2,2] ◦ P[1,1,1,1],MIN F

The semantics of Keras and PyTorch are not equivalent, and there is no possibility to convert one
into another at once. The only way to make a valid conversion is to explicitly add a padding layer before
the max pooling. This difference of semantic between the two frameworks leads to issues when we want
to convert a model from one framework to the other.

2.4 nnef Execution Model Semantics

The semantics of the execution model, that is the formal behaviour behind a series of nnef instructions, is
not explicitly given by the standard. It assumes that one instruction can be executed when all its inputs
are computed and available. Thus, executing the instructions in sequence following the order of the
nnef guarantees a correct execution. There are two types of instructions: those reading parameters from
binary files or input tensors and layer-associated instructions based on one or several atomic operations.
An instruction is always of the form

var = operation(v1, . . . , vk, cst1, . . . , cstj);
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where var is a variable computed by the operation (any nnef fragment), vi are either variables computed
beforehand, the input tensor or fixed parameters (e.g. kernels), and cst i are constant (e.g. stride). The
nnef execution model can be formally expressed using the Petri net formalism [Pet77].

Translation 1 A nnef description, composed of n instructions, generates a Petri net (P, T, V ) where:

• the set of places P corresponds to all variables appearing in the nnef description (i.e. n places for
a description of n instructions);

– a token in a place means that the associated variable is available for computation;

– initially there are as many tokens in each parameter-associated place as the parameter is needed
in the instructions and as many tokens in the input tensor place as the input tensor is used by
the instructions;

– there is a unique final place corresponding to the last variable computed in the nnef file;

• the set of transition names T corresponds to all instructions appearing in the nnef description;

• V ⊆ 2P ×T ×N×P defines the set of transitions. A transition can be fired if there is a token in all
input places. When it fires, the transition removes a token from each of these places and generates
as many tokens as defined on the edge in the unique output place.

– each instruction var = op(v1, . . . , vk, cst1, . . . , cstj) generates the transition given in figure 3
where p is the number of time var will be consumed by other instructions;

– when only one token is produced by a transition, we omit the integer.

v2

v1

vk

. . . op

var
p

Figure 3: Trans-
lation of one in-
struction

e1 Conv
o1

v1

v2

ReLU

o2

MaxPool

o3 Conv
o4

v3

v4

ReLU

o5

MaxPool

o6

Flat

o7Denseo8

v5

v6

ReLU

o9

Dense

o10

ReLU

o11

Dense

o12

SoftMax

out

v7

v8

v9

v10

Figure 4: nnef semantics of the LeNet-5 express with Petri
net. Initial marking

The semantic of the Petri net clarifies the execution order that is unclear in the nnef formalism.
Especially, the order of the textual file should not impose a unique order when several valid ones may
exist.

Example 3 The LeNet-5 model of figure 2 with its associated nnef description in listing 1 has the
associated Petri net given in figure 4. We recognize the instructions sequence that describes the compu-
tation of the neural network graph. There is a unique possible schedule for this nnef description, but we
will see later other nnef models that accept several schedules (see section 3).

Remark 3 The Petri net of figure 4 only defines the semantics of a single inference pass. It is usual to
repeat the inference pass in order to process new inputs (e.g. in a periodic manner). This can also be
represented using the Petri formalism by sending back tokens to e1 and vk places. For demonstration and
clarity, subsequently in the paper, we always consider the semantics of a single inference.

A way to define the semantics of Petri nets is to compute the set of reachable markings, where a
marking defines the number of tokens in each place at a given instant.
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Definition 6 (Marking) Considering a Petri net with n places, a marking is defined as a vector v ∈ N
n

giving the number of tokens v[i] in the i-th place. This initial location of tokens is called the initial
marking, this represents the starting state of the system. A final marking is a marking such that there is
one token only in each final place and from which no transition can be fired any more.

Example 4 In the Petri net of figure 4, there are 24 states. There are 11 tokens in the initial making
and there is a single token in the unique final marking (in the place out).

Property 1 (Initial marking and unique final marking) The unique initial marking is defined by
the translation and consists of token(s) in the input tensor variable place and parameters-associated places.
Because we consider feed-forward neural networks, there is unique final marking.

Definition 7 (Paths and semantics) A valid path starts from the initial marking mi, lists a series of
fireable transitions and ends in a final marking mf , i.e. mi −→t1 m1 −→t2 . . . −→tl mf . The semantics
of a Petri net is the set of valid paths.

Property 2 (Possible executions of an nnef description) Because we consider feed forward neu-
ral networks, the number of valid paths is finite and the valid paths correspond to all possible execution
orders respecting the semantics of the ML model.

Semantics preserving code generation could lead to any implementation the path of which is valid. Full
sequential code following the order of instructions of the nnef file is one of them.

3 Is distribution needed?

Because we consider highly distributed platforms, a designer may choose to split the ML model into several
parts in order to accelerate the execution and reduce the execution time. In particular, it could lead to
developing parts independently and on different items following the aeronautics standards [SAE10]. In
such a case, there should be a formal description for each item that will be the input specification for
HW/SW item implementation.

Remark 4 Note that if the designer considers its platform as a unique item, the nnef description will
be the specification.

Looking at the LeNet-5 model or other classical models, it is unclear why distributing across into
items would be beneficial.

Example 5 (Off-loading convolution) Let us consider for instance the implementation of the LeNet-

5 on an UltraScale+ (ZCU102) platform [Xil19] composed of several arm cores, a gpu and an fpga.
Let us assume that we choose to execute the convolution on the fpga and all other layers on the arm,
there will necessarily be several items. The idea will be to offload the input tensor of each convolution on
the fpga and retrieve the feature maps from the fpga (see figure 5).

conv1

1x32x32

6

pool1

6x28x28

6

conv2

6x14x14

16

16x10x10

pool2

16

16x5x5 400

flat

120 84

dense1 2 3

10

item1

fpga

item2

arm

Figure 5: LeNet-5 with off-loading

A second type of distribution could be to refine the layers and exhibit more parallelism by distributing
the computation of a layer across several items. It will be up to the designer to show the semantic
preservation at this refinement level.
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Example 6 (Parallelizing the layers) Looking again at the LeNet-5, we can split the computation
of the first two layers on two different items. Each item will do the convolution+maxpool on a part of
the input image. An idea is to split the input image along the height and execute the two sub-parts on
two different items (see figure below). In order to keep the semantics for the convolution, some overlap
exists between the two sub-images.

1x32x32

split

conv1

1x18x32
6

pool1

6x14x28
6

split

conv1

1x18x32
6 pool1

6x14x28
6

concat

6x7x14

6x7x14

6x14x14

conv2

16x10x10

pool2

16

16x5x5 400

flat

120 84

dense1 2 3

10

item1

item1

item2

item1

Example 7 (Pipelining the computation) A third type of distribution could be the pipelining of the
DNN execution. In this case, each item is in charge of computing a specific layer (or a group of layers).
The first item computes the first layer(s) on the first tensor input and sends its output to the second item
that will compute the second group of layer(s) while the first item starts processing the second input tensor.
This classical mechanism enables to reduce (e.g. for video processing) the frame rate while degrading the
latency. The depth of the pipeline is the number of inputs that can be handled at the same time among
the pipeline. Taking into account the pipelining should be done in the Petri net by restoring the tokens in
the initial places at the end of item 1 execution.

conv1

1x32x32

6

pool1

6x28x28

6

conv2

6x14x14

16

pool2

16

16x10x10 16x5x5 400

flat

120 84

dense1 2 3

10

item1 item2 item3

4 nnef extension for multiple items

The purpose of this section is to propose a manner to separate the specification of each item so that any
execution of the items respecting the specification will properly encode the global ML model. To that
extent, we propose first to extend the syntax of nnef to allow explicit parallelization and then to express
the associated semantics with colored Petri nets.

4.1 Extension for item splitting

We first need to specify the item on which the description will be implemented. To that end, we enrich
the graph definition with the keyword graphitem to provide the logical id of the HW or SW item.

Syntax1 GraphItem

<graph-definition> ::= <graph-declaration> <graph-declaration-item> <body>

<graph-declaration-item> ::= "graphitem" <identifier> <identifier>

"(" <identifier-list> ")" "-$>$" "(" <identifier-list> ")"

Semantics 1 The first <identifier> refers to the item id, the second <identifier> is the name of the
local node and elements of the <identifier-list> will be input or output of the graphitem. The semantic of
the <graph-declaration-item> is such that all instructions within the <body> are executed by the item.
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We also need to exchange data between several items and ensure that those exchanged data are
available before computation. To that end, we introduce a new type of variable, namely variablesync.
This references a variable that could be read from or write to another graphitem. We use a fragment to
define this new type.

Syntax2 VariableSync

fragment variablesync<? = scalar>(shape: integer[]) -> ( output: tensor<?> )

Semantics 2 Each variablesync is a shared variable with a unique writer and possibly multiple readers.
Writer is in charge to transmit the variable via the instruction send var and each reader can access this
data via get var instruction.

We then define new nnef instructions to send or get data between several graphitem.

Syntax3 get var

fragment get_var<? = scalar>( source : graphitem, data : variablesync)

-> ( output: tensor<?> )

Semantics 3 get var appears in each reader description. The output of this instruction is a local variable
that gets the content of the shared variable and which is available for the caller item. Source is the item
that writes and provides the shared variable the name of which is given by data.

Similarly, the writer must define the instruction to send a shared variable to other items.

Syntax4 send var

fragment send_var<? = scalar>( dest : graphitem[], data : scalar)

-> ( output: variablesync )

Semantics 4 send var appears in the writer description only. It takes as input the list of reader items
and the name of the tensor that shall be sent. The output tensor is a global variablesync that will support
the synchronization.

The rest of the nnef syntax remains unchanged.

4.2 Splitting an nnef description into multi-item descriptions

Initially, the DNN is described in a unique nnef description as shown in section 2. Such a description
contains 3 types of instructions:

• definition of input tensor(s);

• definition of fixed parameters;

• variables computed by each layer.

A splitting consists in partitioning the last type of instructions among the items, add the adequate
definition(s) of tensors / fixed parameters and add the adequate send var / get var. The composition
of item descriptions shall respect the semantics of the full nnef description.

Example 8 Let us consider the following DNN with its associated Petri net (figure 6).
Let us assume that the DNN is allocated on 3 items such that o1, o6, o7 and out are computed on item

1; o2, o3 are computed on item 2 and o4, o5 are computed on item 3. Thus, the description on the items
are given as follows:
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graph DNN(e1) -> (out)

{

e1 = external ..

v1 = variable ... ’variable1 ’); v2

= ...; v3 = ...; v4 = ...;

v5 = ...; v6 = ...; v7 = ...; v8

= ...; v9 = ...; v10 = ...;

o1 = conv (e1 ,v1 ,v2 ,... ;

o2 = conv (o1 ,v3 ,v4 ,...; o3 = conv

(o2 ,v5 ,v6 ,...;

o4 = conv (o1 ,v7 ,v8 ,...; o5 = conv

(o4 ,v5 ,v6 ,...;

o6 = concat (o3 , o5); o7 =

flatten(o6 ,...;

out = gemm (o7 , v9 , v10 ...;

}

Listing 2: Complete DNN nnef

e1
Conv

o1

v1

v2

2

Conv
o2

v3

v4

Conv
o3

v5 v6

Conv
o4

v7

v8

Conv
o5

concat
o6

flat
o7 gemm

v9

v10

out

Figure 6: Petri associated to DNN of listing 2.
Initial marking

graphitem ITEM1 DNN1 ([e1 , vsync2 , vsync3 ]) -> ([ vsync1 , out])

{

e1 = external ...;

v1 = variable ... ’variable1 ’); v2 = ...; v9 = ...; v10 = ...;

vsync1 = variablesync <scalar > (shape ...;

vsync2 = variablesync ...; vsync3 = variablesync ...;

o1 = conv (e1 ,v1 ,v2 ,...;

vsync1 = send_var ([ ITEM2 , ITEM3], o1);

o3 = get_var (ITEM2 , vsync2);

o4 = get_var (ITEM3 , vsync3);

o6 = concat (o3 , o4); o7 = flatten(o4 ,...;

out = gemm (o7 , v9 , v10 ...;

}

graphitem ITEM2 DNN2 ([ vsync1 ]) -> ([ vsync2 ])

{

v3 = variable ... ’variable3 ’); v4 = ...; v5 = ...; v6 = ...;

vsync1 = variablesync ...; vsync2 = variablesync ...;

o1 = get_var (ITEM1 , vsync1)

o2 = conv (e1 ,v3 ,v4 ,...; o3 = conv (o2 ,v5 ,v6 ,...

vsync2 = send_var ([ ITEM1], o3);

}

graphitem ITEM3 DNN3 ([ vsync1 ]) -> ([ vsync3 ])

{

v5 = ...; v6 = ...; v7 = ...; v8 = ...

vsync1 = variablesync ...; vsync3 = variablesync ...;

o1 = get_var (ITEM1 , vsync1)

o4 = conv (o1 ,v7 ,v8 ,...; o5 = conv (o1 ,v5 ,v6 ,...

vsync3 = send_var ([ ITEM1], o5);

}

Listing 3: nnef for all items

The union of the instructions of each item corresponds to the complete nnef description with the
additional variablesync and the communication instructions. Locally in the item, the pointers to the
input tensor and fixed parameters must also be declared.
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4.3 Petri-based semantic

We define the execution model semantics of multi-item descriptions using coloured Petri nets [JK09]. We
associate a colour to each item where the colour is set to the tokens and edges (on which the coloured
tokens transit).

Translation 2 Let assume there are N items. We first apply the translation 1 for each item leading to
N independent Petri nets (Pi, Ti, Vi), each with a unique and distinct colour. For the new instruction,
the translation is extended as follows:

• a varsync does not generate any place;

• a get var does not generate any transition;

• a send var produces a transition sync with an incoming edge from the variable the content of which
is transmitted.

The set of nnef item descriptions generates a Petri net (P, T, V ) which is roughly speaking the union
of the N Petri nets (Pi, Ti, Vi). More precisely,

• any input tensor or fixed parameter that is duplicated in the nnef files appears in the Petri net
of the item. Those duplicated places are merged. Because we use the same naming convention,
P = ∪Pi;

• the initial tokens in the places are also merged leading to places with possibly multiple tokens and
multiple colours;

• T = ∪Ti ∪ T ′ where T ′ are the transitions connecting places of one item to other items thanks to
the sync transition. More precisely,

– for each writer, there are k edges back from the sync label where k is the number of readers.
The colour of the each arrow is the one of the reader and the number of tokens sent back
corresponds to the number of time the shared variable appears in the reader item instructions;

– for each reader, there is an edge from the writer place before sync to each transition requiring
the shared data;

• As before, when a coloured token is present in a place, it means that the associated variable is
available for the item identified by the colour and can be used by transition.

Example 9 The Petri net associated to the example 8 is given in figure 7. We present the initial marking
with colored tokens. Each color represents the state of one item. Compare to the figure 4, we expressend
here the multi items semantics with synchronizations.

e1
Conv

o1

v1

v2

sync1

Conv
o2

v3

v4

Conv
o3

v5 v6

sync2

concat
o6

Conv
o4

v7

v8

Conv
o5 sync3

flat
o7 gemm

v9

v10

out

Figure 7: Semantic of the items synchronization
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Property 3 (Equivalence between Petri nets) The semantics of the multi-items behaviour is equiv-
alent to the complete original ML model.

Remark 5 It is important to explicitly describe the send var and get var either in the nnef files but
also in the Petri net because items are supposed to be independent and segregated. In particular, an item X
is not allowed to access the memory space of an item Y and interfere with its execution. This is classical
in aeronautics, see Arinc 653 specification. The xtratum hypervisor [CRM+09] is an example of time
and space partitioning hypervisor that provides communication with sampling and queuing ports (close
to Arinc 653 requirements).

5 Implementation and experiments

The previous sections showed how to fulfill the requirements 1 and 2 of the introduction. The purpose
of this section is to give some hint of how a DO-178C compatible implementation process, as required
per requirement 3, could be defined taking as input an extended nnef specification. The considered
target, a Jetson Xavier TX system-on-chip, is composed of 6 Carmel arm cores, a gpu, 2 deep learning
accelerators (NVDLA) and other dedicated circuits. The use of a nvidia platform is mainly motivated
by its availability and the ease to quickly deploy neural networks application. We will not discuss the
adequation of gpu and cuda implementation with DO-178C objectives because it is an open problem.

NN Items
Specification

Code files

PyTorch
NN representation

Binary
on target

Numeric trace

Numeric trace

Computation time

Program flow trace

sync specification
POSIX barriers
Global variables

Manual Code Compilation

Refine

Manual Code

E
x
ec
u
ti
o
n

Execution with PyTorch runtime

Generate

Verification

Verification

Figure 8: Implementation workflow

The proposed implementation process workflow is summarized in figure 8. The sync implementation
relies on barrier mechanism and each item nnef description is manually coded. In order to validate the
semantic preservation, we made some instrumentation to show that: (i) the execution trace is included
in all possible execution traces defined by the Petri net; (ii) the numerical precision is kept; (iii) the
measured execution time does not vary. We will use the multi-items example presented in example 8 as
the specification. For our experiments, each item is allocated to one CPU and all the cuda cores of the
gpu (grouped in a cuda stream). As a consequence, we do not guarantee a segregation between items (as
they share the GPU) we instead focus on a way to implement parallel operations of neural networks with
a static code scheduling while preserving the semantics. As for the Petri semantics, we only developed a
code for a single inference. Nevertheless, it is easy to slightly modify the code by adding loops to handle
several input tensors.

5.1 Get/Send specification

We chose to implement get var and send var with 1) global variables stored in the SRAM of the Xavier

and 2) the posix barrier mechanism of the pthread library. A barrier b, shared among several processes,
will block them as long as not all of them reach b. Such a behavior is strictly included in the semantics
of the sync transition within the Petri net. However, it is not the most efficient as it prevents the
sending item to proceed until all the receiving items reach b, whereas the semantics of sync transition
only requires a receiver to wait for the sender (not the sender to wait for all receivers). Nonetheless, the
barrier mechanism is optimal for our example because no sender has to process any instruction before a
further get var or stop execution.
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5.2 Manual code generation

There are C and Python interpreters of the nnef format [NNE18] but only for traditional CPU target.
Consequently, no existing tool supports our syntax extension nor state-of-the-art gpu. Thus we developed
the code for each item using C++ and cuda using the cudnn library. Basically the C++ code is executed
by the arm processor whereas cuda allows the definition of kernels that are executed synchronously by
all cuda cores. The cudnn library is built on top of cuda for executing common neural networks layers.

5.2.1 Software architecture

Practically, each type of layer is implemented using a dedicated C++ class that inherits from the abstract
Layer class that defines common attributes and methods to be implemented (init() and forward()) by
child classes. In effect, init statically allocates tensors and cudnn descriptors while forward launches
the layer computation based on cudnn for Convolution and max pooling layers. Each item contains one
object implementing a static scheduler. More precisely, during the init phase, each item creates an object
for each layer which are stored in ordered lists. Thus, items 2 and 3 need one single ordered list whereas
item 1 needs two ordered lists (one for the first part and one for the second part). During forward, the
scheduler calls in order the forward of objects stored in ordered lists.

5.2.2 Scheduling

We define one separate thread for each item allocated to one CPU + cuda cores. More precisely,
synchronizations between threads use pthread barrier t and associated APIs (barrier init and
barrier wait). Barriers synchronize accesses to shared variables.

tT1

T2

T3 init Item 3

create

init Item 2

create

init

create

head tail

barrier1 barrier2 barrier3 join

The execution sequence starts with the 3 threads creation on the CPUs and then reaches the first syn-
chronization barrier. Then Item1 thread calls the forward method of layers of the head (until send var)
while Items 2 and 3 threads wait for the second synchronization barrier. After, the second synchronization
barrier, Items 2 and 3 threads call forward method of their layers while Item1 thread waits for the third
synchronization barrier. After the third synchronization barrier, Item 1 thread calls forward method of
layers of the tail. At last, threads join and exit.

5.3 Semantic preservation of the Petri net

The first analysis aims at verifying that all observed scheduling of layers on the Xavier respects the Petri
net semantics. Because we use a static scheduler, all schedules should behave as shown in section 5.3
which is included in the semantics of coloured Petri net of figure 7. For that, we logged each start/end
of branches and layers and we stressed the robustness of the implementation by addind some temporal
noises (sleep in the code).

All observed traces respected the schedule of section 5.3 with some timing variations. When observing
the implementation with no noise, execution traces of Item 2 and 3 are interleaved on the gpu. When
adding a wait of 1s at the beginning of Item 2 (just after barrier1), all layers of Item 3 were executed
before those of Item 2.

5.4 Semantics preservation of the function

The second instrumentation mechanism aims at checking that the functional semantics of the DNN is
preserved. We achieve this by re-implementing the nnef specification in PyTorch. Then we define 100
random vectors that we run both on the PyTorch implementation and on the C++ implementation on
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the nvidia target. Finally, we compute the overall average error mean between both executions for the
100 runs.

We were not able to find the exact convolution algorithm of PyTorch. We think that it exists a
non documented heuristic that calls the best algorithm (considering execution time) depending of the
convolution parameters and available hardware. According to the cudnn documentation [NVI19b], it
is possible to select the convolution algorithm among a list, but details of the implementation are not
given. Thus, there may be a discrepancy between convolutions that we cannot fix. The average error
mean is extremely small 1.10−7 for FLOAT32 using 3 cudnn algorithms (namely gemm, Winograd and
direct). Nevertheless numeric precision results for this experiment are in an acceptable range that is very
close to the available numeric precision of floating point representation and this also is observed by other
frameworks [SCGP22].

5.5 Measured Execution Time (MET)

One objective of the DO-178C that we did not mention until now is the capacity to estimate the Worst
Case Execution Time (WCET). Due to the complexity of nvidia target, a formal demonstration using
static analysis may be difficult. But at least, a good property is a low variation of the measured execution
time among several executions. In our case, the generated code does not contain any IF-THEN-ELSE
patterns or dynamic loop conditions. Thus, the variability is only linked to the hardware behavior. We
measured the MET of the complete DNN and of the first convolution of Item 1 over 10 runs. We rely on
the nsys tool from nvidia to get timing measurements.

Mean(MET) MIN(MET) (MAX(MET)) STD(MET)
First Conv 324 2976 ns 322 688 ns 326 656 ns 1.45 ns
DNN 24 257 µs 16 285 µs 53 950 µs 13 526 µs

The MET of the first convolution is very stable with a very low jitter. The MET distribution of the
DNN is large and to understand why, we need to investigate the low level behaviour. nvidia gpus are
black-boxes processors on which we cannot guarantee worst-case execution time [AA21, ACR22].

6 Related work

There are plenty of different formats but no consensus within the community. State-of-the-art frameworks
like PyTorch, orTensorFlow rely on custom black-box formats built on top of protocol buffers [Goo01]
developed by Google. A protocol buffer is a structured binary format that is not human readable and
requires conversion tools and template files to be interpreted. Thus, the syntax is not formally defined
and specification of layers are only available through documentation website. For example, TensorFlow

proposes the .h5 [HDF01] format and Keras format [Ten15] builds on top of protocol buffer. Moreover
the way to save a neural network is not unified among frameworks and may evolve every updated version
with poor backward compatibility. When moving from caffe to caffe2 (known today as PyTorch), the
caffe [JSD+14] format was not supported anymore.

All previous formats were developed specifically for training frameworks (open source or proprietary)
without any objective for sharing models. Their main purpose was to allow saving and reloading previous
trained models without too much consideration on syntax and semantics. onnx [BLZ+19] and nnef

[The22] were developed with the objective to be independent from frameworks. onnx is still based on
binary protocol buffers [Goo01] (so without a textual syntax) but is proposing a functional semantics
through its github site. On the contrary nnef is proposing a textual format with a syntax and a semantics
that is formally defined in a specification. Unfortunately, the nnef format suffers from a small community
and tools supporting the format.

NNet [The22] format is an example of ad-hoc format. reluplex neural networks examples [KBD+17]
are in NNet. It is based on textual files but without definition of syntax and semantics. Import and
export tools are provided, but its utilization for sharing neural networks between teams remains supremely
painful.

Some other formats like [CE-17, Apa18, LAB+21a] tackle the need for intermediate representation
between a neural network description and an implementation on a target. Especially this supports
different optimizations passes like layers folding or low level tensor manipulation description like in LLVM
[Lat02]. We consider that we are closest to programming language than from a neural network description
format. Most of the time onnx or nnef are used as input like in [LAB+21b, PBCPB20, JBL+20].
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Because DNN are data-flow, it is natural to translate them into synchronous languages. There are
some works such as [LFG20] that proposed to encode them as Synchronous Dataflow Graphs or scade
tool suite [CPPP18] which is currently developing a DNN libraries. Once the translation is done, it is then
possible to reuse all the qualified code generation tools. This is complementary to our work as we could
use the nnef description to generate the scade program for instance. To the best of our knowledge,
none of actual available neural network description formats propose solution for describing multi items
implementation with concerns on sharing variables among them.

7 Conclusion

We have proposed a formal extension of nnef that takes into account the execution model of a description
and allows for the modification of a description of a trained model to define traceable distribution and
parallelisation optimizations that preserves the semantics while improving the execution time compared
to a pure sequential aproach. We have also proposed a code generation strategy based on barriers for
exchanging data between items.

As a future work, we would like to extend the nnef tools to parse our extensions and define an
automatic code generation in cuda. We will also improve the gpu utilization to ensure more predictable
behaviour. We will in particular reuse works from [AA21, ATV+21].
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