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Introduction

In many AI-related reasoning problems some notion of minimality is involved. Typically in belief change, e.g. revision or update, one of the basic principles is the principle of minimal change. We want to revise/update an agent's belief set by some new information. To this end we retain only those models of new information that have minimal distance to the models of the original agent's belief set. In the belief revision context distance between models is defined by the symmetric set difference of the atoms assigned to true in the compared models, and Dalal's operator [START_REF] Vollmer | Investigations into theory of knowledge base revision[END_REF], for instance, seeks to minimize the cardinality of this set. In abduction we search for an explanation (a set of literals) that is consistent with a given theory and which, together with this theory, logically entails all manifestations. It is natural to be interested not in all explanations but only in the minimal ones. Different notions of minimality might be considered, in particular minimality w.r.t set inclusion or w.r.t. cardinality [START_REF] Eiter | The complexity of logic-based abduction[END_REF].

In this paper, we focus on cardinality-minimality. With such a minimality condition the related reasoning tasks often give rise to Θ P 2 -complete problems (the class Θ P 2 is located at the second level of the polynomial hierarchy: polynomial time with only a logarithmic number of calls to the NP-oracle). For instance, model checking and implication are Θ P 2complete for Dalal's revision operator [START_REF] Eiter | On the complexity of propositional knowledge base revision, updates, and counterfactuals[END_REF][START_REF] Liberatore | Belief revision and update: Complexity of model checking[END_REF]. The relevance problem for abduction with a cardinality-minimality condition, deciding whether a literal belongs to a cardinalityminimal explanation, is Θ P 2 -complete when dealing with Horn formulas [START_REF] Eiter | The complexity of logic-based abduction[END_REF]. Propositional formulas play an important role in AI-reasoning problems. Since most relevant problems are intractable in full propositional logic, it is a natural question whether syntactic restrictions on the involved formulas can lead to tractable problems. Schaefer's framework offers an ideal framework to investigate this issue. It considers formulas in generalized conjunctive normal form and allows to systematically consider all fragments of propositional logic. Indeed, Schaefer's famous theorem [START_REF] Schaefer | The complexity of satisfiability problems[END_REF] shows that the SAT problem becomes tractable under some syntactic restrictions such as Horn, dual Horn, Krom or affine formulas, and remains intractable in all other, nontrivial, cases. Since then Schaefer's approach has been taken on numerous problems, among others on circumscription, abduction, and argumentation problems [START_REF] Nordh | A trichotomy in the complexity of propositional circumscription[END_REF][START_REF] Creignou | A complete classification of the complexity of propositional abduction[END_REF][START_REF] Nordh | What makes propositional abduction tractable[END_REF][START_REF] Creignou | Complexity classifications for logic-based argumentation[END_REF]. Tools from universal algebra prove to be a valuable tool for such endeavors, in particular when the problem questions are stable under introduction of existentially quantified variables and equality constraints [START_REF] Creignou | Boolean constraint satisfaction problems: When does post's lattice help?[END_REF]. Unfortunately, cardinality is not preserved under such introduction. Therefore, in this paper, we resort to advanced algebraic tools built around the concept of a weak base [START_REF] Schnoor | Partial polymorphisms and constraint satisfaction problems[END_REF][START_REF] Lagerkvist | Weak bases of boolean co-clones[END_REF].

There is a prototypical satisfiability problem for the class Θ P 2 , that could enlighten the complexity of many reasoning problems involving a cardinality-minimality condition: It is the CardMinSat problem, which asks, given a formula φ and an atom x, whether x is true in some cardinality-minimal model of φ. It provides a standard hard problem that can be useful to prove hardness results, especially in the context of knowledge representation and belief change. For instance, in [START_REF] Creignou | Do hard sat-related reasoning tasks become easier in the krom fragment? Log[END_REF] the relevance problem for abduction mentioned above was proved to be Θ P 2 -complete for the combined Horn-Krom case. The Θ P 2 -hardness reduction used in [START_REF] Creignou | Do hard sat-related reasoning tasks become easier in the krom fragment? Log[END_REF] is much easier than the one previously obtained in [START_REF] Eiter | The complexity of logic-based abduction[END_REF] for the Horn case, because it starts from the more closely related problem CardMinSat, restricted to conjunctions of positive 2-clauses. Similarly, the model checking and implication problems associated with Dalal's operator were proved in [START_REF] Creignou | Do hard sat-related reasoning tasks become easier in the krom fragment? Log[END_REF] to be Θ P 2 -complete for the combined Horn-Krom case by a reduction from the CardMinSat problem. Also the model checking problem associated with a syntactic revision operator for belief bases using a cardinalitymaximality criterion was proved to be Θ P 2 -complete for the combined Horn-Krom case in this way [START_REF] Creignou | Complexity of model checking for cardinalitybased belief revision operators[END_REF].

Our main contribution is a complete complexity classification of the CardMinSat problem in Schaefer's framework, which opens the door for a better understanding of the complexity of many reasoning problems. As an illustration we prove that the above mentioned relevance problem for abduction remains Θ P 2 -complete when restricted to affine formulas (conjunctions of XOR-clauses).

Preliminaries

Propositional logic. We assume familiarity with propositional logic. A literal is a variable (or an atom) x (positive literal) or its negation ¬x (negative literal). A clause is a disjunction of literals. For any integer k ≥ 1, a k-clause is a clause containing at most k literals. An XOR-clause is a clause in which the usual connective "or" is replaced by the exclusive-or connective, denoted by ⊕. A CNF-formula (resp., an XOR-CNF-formula) is a conjunction of clauses (resp., XOR-clauses), a k-CNF-formula is a conjunction of kclauses. For space economy we use occasionally the shorthands x := ¬x and xy := x ∧ y. Given a formula φ, we denote by var(φ) the variables of φ. A mapping σ : var(φ) → {0, 1} is called an assignment to the variables of φ. An assignment σ satisfies a (XOR-)CNFformula φ if σ satisfies all (XOR-)clauses simultaneously. In this case σ is called a model of φ. We call a variable x ∈ var(φ) frozen if x is assigned the same value in all models of φ. The weight or cardinality of an assignment σ, denoted by |σ|, is the number of variables x such that σ(x) = 1. A cardinality minimal model of φ is a model of φ of minimum cardinality among all models of φ. For two formulas ψ, φ we write ψ |= φ if every model of ψ also satisfies φ. The two formulas are equivalent, ψ ≡ φ, if they have the same set of variables and the same set of models. Observe that any XOR-clause is equivalent to a linear equation over the two-elements field, of the form x 1 ⊕ . . . ⊕ x n = a where a ∈ {0, 1}.

Schaefer's framework. A Boolean relation of arity k ∈ N is a relation R ⊆ {0, 1} k , and a constraint C is a formula C = R(x 1 , . . . , x k ),
where R is a k-ary Boolean relation, and x 1 , . . . , x k are (not necessarily distinct) variables. An assignment σ satisfies C, if (σ(x 1 ), . . . , σ(x k )) ∈ R. A constraint language Γ is a finite set of Boolean relations, and a Γ-formula is a conjunction of constraints using relations from Γ. Note that we do not consider infinite constraint languages in this paper. Finally, a Γ-formula φ is satisfied by an assignment σ, if σ simultaneously satisfies all constraints in it. In such a case σ is also called a model of φ. We say that a k-ary relation R is defined by a formula φ if φ is a formula over k distinct variables x 1 , . . . , x k and φ ≡ R(x 1 , . . . , x k ).

Moreover, we say that a Boolean relation R is:

• Horn (resp., dual-Horn) if it is definable by a CNF-formula φ that contains at most one positive (resp., negative) literal per each clause,

• Krom if it is definable by a 2-CNF-formula,

• affine it is definable by an XOR-CNF formula, or equivalently by a formula φ that is a conjunction of linear equations of the form x 1 ⊕ . . . ⊕ x n = a, where a ∈ {0, 1},

• width-2-affine it is definable by an XOR-2-CNF formula, or equivalently by a formula φ that is a conjunction of linear equations involving each at most two variables, that is either of the form x 1 = a or of the form x 1 ⊕ x 2 = a, where a ∈ {0, 1}.

• 1-valid (resp., 0-valid ) if (1, . . . , 1) ∈ R (resp., (0, . . . , 0) ∈ R).

• complementive if for every tuple (t 1 , . . . , t k ) ∈ R also (1 -t 1 , . . . ,

1 -t k ) ∈ R.
Furthermore, we say a relation is Schaefer if it is Horn, dual-Horn, Krom, or affine. Finally, for a property P of a relation, we say that a constraint language Γ is P if all relations in Γ are P.

We define the unary relations T = {1}, F = {0}, and the 6-ary relation R 1/3 3 = = {100011, 010101, 001110}. We denote by OR k the k-ary OR, by NAND k the k-ary NAND, and by XOR k the k-ary XOR. The relation EVEN k contains all k-ary tuples which contain an even number of 1's. The relation EVEN k k = denotes the 2k-ary relation defined by

EVEN k (x 1 , . . . , x k ) ∧ (x 1 = x k+1 ) ∧ • • • ∧ (x k = x 2k ).
In the following definition we introduce different notions of closure for a constraint language.

Definition 1.

1. The set Γ is the smallest set of relations that contains Γ, the equality constraint, =, and which is closed under primitive positive first order definitions, that is, if φ is a Γ∪{=}-formula and R(x 1 , . . . , x n ) ≡ ∃y 1 . . . ∃y l φ(x 1 , . . . , x n , y 1 , . . . , y l ), then R ∈ Γ . In other words, Γ is the set of relations that can be expressed as a Γ ∪ {=}-formula with existentially quantified variables.

2. The set Γ ∃ is the set of relations that can be expressed as a Γ ∪ {=}-formula (no existentially quantified variables are allowed).

3. The set Γ ∃, = is the set of relations that can be expressed as a Γ-formula (neither the equality relation nor existentially quantified variables are allowed).

Example 1. Let Γ = {R}, R(x 1 , x 2 ) = (x 1 → x 2 ), and S(x 1 , x 2 ) = (x 1 = x 2 ). We can express S as Γ-formula via S(x, y) ≡ R(x, y) ∧ R(y, x). Thus, S ∈ Γ ∃, = .

The set Γ is called a relational clone or a co-clone with base Γ [START_REF] Böhler | Bases for boolean co-clones[END_REF]. Notice that for a co-clone C and a constraint language Γ the statements Γ ⊆ C, Γ ⊆ C, Γ ∃ ⊆ C, and Γ ∃, = ⊆ C are equivalent. Throughout the paper, we refer to different types of Boolean relations and corresponding co-clones following Schaefer's terminology [START_REF] Schaefer | The complexity of satisfiability problems[END_REF]. Table 1 gives a complete list of all finitely generated co-clones with minimal weak base from Lagerkvist [START_REF] Lagerkvist | Weak bases of boolean co-clones[END_REF]. For clause type descriptions and simpler bases (not minimal weak bases) we refer to [START_REF] Nordh | What makes propositional abduction tractable[END_REF] and [START_REF] Böhler | Bases for boolean co-clones[END_REF], respectively.

A graph representation of the co-clone structure can be found in figure 1. This graph is usually called Post's lattice [START_REF] Post | The two-valued iterative systems of mathematical logic[END_REF]. Some important properties/names are labeled besides the respective co-clone. Informally explained, every vertex corresponds to a co-clone while the edges model the containment relation in this lattice structure.

Complexity Classes. All complexity results in this paper refer to classes in the Polynomial Hierarchy (PH) [START_REF] Papadimitriou | Computational Complexity[END_REF]. The building blocks of PH are the classes P and NP of decision problems solvable in deterministic, resp. non-deterministic, polynomial time. The class ∆ P 2 is the class of decision problems that can be decided by a deterministic Turing machine in polynomial time using an oracle for the class NP. One can put restrictions on the number of oracle calls. If on input x with |x| = n at most O(log n) calls to the NP oracles are allowed, then we get the class P NP[O(log n)] , which is also referred to as Θ P 2 . A large collection of Θ P 2 -complete problems can be obtained from [START_REF] Krentel | The complexity of optimization problems[END_REF][START_REF] Gasarch | OptP as the normal behavior of NP-complete problems[END_REF]. For the reductions we employ polynomial many-one reductions, denoted by ≤ P m .

CardMinSat

We aim at studying the following natural variant of SAT and analyzing its complexity.

CardMinSat

Instance :

A propositional formula φ and an atom x. Question : Is x true in a cardinality-minimal model of φ?

This problem is one of the prototypical problems of the class Θ P 2 , see [START_REF] Wagner | On restricting the access to an NP-oracle[END_REF][START_REF] Creignou | Do hard sat-related reasoning tasks become easier in the krom fragment? Log[END_REF]. It makes sense to study whether syntactic restrictions on the formulas make the problem easier and to go through a more fine-grained complexity study of CardMinSat, in the following also denoted Cms. To this aim we propose to investigate this problem within Schaefer's framework. Hence we consider the following problem, in which Γ is a constraint language, i.e., a finite set of Boolean relations.

Cms(Γ) Instance :

A Γ-formula φ and an atom x. Question : Is x true in a cardinality-minimal model of φ?

Analogously we denote by Sat(Γ) the Boolean satisfiability problem for Γ-formulas. Our goal is to obtain a complete complexity classification of Cms(Γ), depending on Γ. This issue has already been settled in the literature within the Krom fragment. Theorem 1. [START_REF] Creignou | Do hard sat-related reasoning tasks become easier in the krom fragment? Log[END_REF] Let Γ be a Krom constraint language. If Γ is width-2 affine or Horn, then Cms(Γ) is decidable in polynomial time. Otherwise it is Θ P 2 -complete.

We extend this result and obtain a complete complexity classification in all fragments of propositional logic.

Theorem 2. Let Γ be a constraint language. If Γ is width-2 affine or Horn or 0-valid, then Cms(Γ) is decidable in polynomial time. Otherwise it is Θ P 2 -complete.

Note that Cms(Γ) is trivial for 0-valid formulas (the answer is always "no"). The complexity classification of Cms in the Krom fragment had been obtained by means of partial frozen co-clones. While these partial frozen co-clones are well described within the Krom fragment [START_REF] Nordh | Frozen boolean partial co-clones[END_REF], they are only partially known in the full range of propositional logic. For this reason in order to get the complete classification we use another set of tools. In particular we will use a restricted notion of closure, and build on the notion of weak bases introduced in [START_REF] Schnoor | Partial polymorphisms and constraint satisfaction problems[END_REF]. This is described in the next section.

Technical tools Proof 's method

The above introduced closure operator • on sets of Boolean relations is relevant in order to obtain complexity results for the satisfiability problem. Indeed, assume that Γ 1 ⊆ Γ 2 . Then a Γ 1 -formula can be transformed into a satisfiability-equivalent Γ 2 -formula, thus showing that Sat(Γ 1 ) can be reduced in polynomial time to Sat(Γ 2 ) [START_REF] Jeavons | On the algebraic structure of combinatorial problems[END_REF]. Hence, the complexity of Sat(Γ) depends only on the co-clone Γ . Accordingly, in order to obtain a full complexity classification for the satisfiability problem one only has to study the co-clones.

Unfortunately, since we are here interested in cardinality-minimal models, we cannot a priori only study the co-clones. Indeed, existential variables and equality constraints that may occur when transforming a Γ 1 -formula into a satisfiability-equivalent Γ 2 -formula are problematic, as they can change the set of models and the cardinality of each model. Therefore, we will use a more restricted notion of closure, namely the above introduced closure operator • ∃, = . This operator avoids existential quantifiers and equality constraints. The only operation to express relations in Γ ∃, = is conjunction of Γ-constraints (see e.g. example 1). Consequently, when replacing in a reduction a relation R ∈ Γ ∃, = by its representing Γ-formula, R is represented exactly: no new variables are introduced and no constraints other than those built on Γ are allowed (in particular no equality constraints). Therefore, any reduction based on the closure operator • ∃, = preserves exactly the set of models, and, a fortiori, all cardinality-minimal models. Hence, we obtain the following property.

Proposition 3. Let Γ be a constraint language and R be a relation.

If

R ∈ Γ ∃, = then Cms(R) ≤ P m Cms(Γ).
The proof of our complete classification will consist in a systematic exploration of the coclones lattice, yet reductions can only be obtained via the restrictive operator • ∃, = , not via the more expressive, co-clone generating, operator • . In this context, the concept of a weak base is important [START_REF] Schnoor | Partial polymorphisms and constraint satisfaction problems[END_REF]. A weak base B for a co-clone C has the property that (1) B = C, and (2) B ∈ Γ ∃ for any Γ such that Γ = C. The existence of a weak base for each co-clone has been shown by Schnoor and Schnoor [START_REF] Schnoor | Partial polymorphisms and constraint satisfaction problems[END_REF]. For a finitely generated co-clone C there even exists a single relation weak base. If such a weak base B is in addition irredundant (that is, the matrix representation does not contain redundant columns), it holds even that B ∈ Γ ∃, = for any Γ such that Γ = C. Lagerkvist (2014) has identified minimal weak bases for all finitely generated co-clones [START_REF] Lagerkvist | Weak bases of boolean co-clones[END_REF]. The proof method to obtain our complete classification will use the minimal weak bases as follows. In order to show a hardness result for all constraint languages generating a certain co-clone C, we pick a minimal weak base B of C and show that Cms(B) is hard. This implies then hardness of Cms(Γ) for any Γ such that Γ = C by applying Proposition 3 (because B is a minimal weak base, it is irredundant, and we hence have that B ∈ Γ ∃, = ). We state this in the following proposition. To start with, we need hardness results for some specific relations, and this is the aim of the next section.

A relation R is minimal, if (1) R is irredundant, (2) R contains no fictitious coordinates, (3) there is no R R, such that R = R . A coordinate i is called fictitious if its value has no influence on the membership of a tuple, that is, (x 1 , . . . , x i-1 , 0, x i+1 , . . . , x k ) ∈ R if and only if (x 1 , . . . , x i-1 , 1, x i+1 , . . . , x k ) ∈ R.

Specific hardness results

We give here some hardness results for some specific relations, they will be used in order to get hardness results for co-clones in the next section. The classification obtained in Theorem 1 for the Krom fragments implies the following result.

Lemma 5. Cms(OR 2 ) is Θ P 2 -hard.
The next result will also be a cornerstone in our classification proof.

Lemma 6. Cms(XOR 3 ) is Θ P 2 -hard.
Proof sketch. Recall that XOR 3 (x, y, z) ≡ (x⊕y⊕z) and XOR 4 (x, y, z, u) ≡ (x⊕y⊕z⊕u).

Here we will also use the ternary relation NAE 3 = {0, 1} 3 \ {000, 111} and the problem Cms * (Γ), defined as follows:

Cms * (Γ) Instance :

A Γ-formula φ, atom x, integer k. Question : Is x true in a cardinality-minimal model of φ and is this cardinality ≤ k?

The proof consists of the following sequence of reductions.

1. Cms(OR 2 ) ≤ P m Cms(NAE 3 ) 2. Cms(NAE 3 ) ≤ P m Cms * (XOR 3 ) 3. Cms * (XOR 3 ) ≤ P m Cms(XOR 4 ) 4. Cms(XOR 4 ) ≤ P m Cms(XOR 3 , XOR 2 ) 5. Cms(XOR 3 , XOR 2 ) ≤ P m Cms(XOR 3 ) Then the result follows from Lemma 5.

We now give the reductions.

1. Cms(OR 2 ) ≤ P m Cms(NAE 3 ).

To each constraint OR 2 (x, y) we associate the constraint NAE 3 (x, y, f ) where f is a fresh variable. Observe that OR 2 (x, y) ≡ NAE 3 (x, y, 0). Therefore the idea is to use f in the place of 0 as a global variable (that is the same for all constraints) and to force it to take value 0 in all cardinality-minimal models. This can be done by giving a weight N to f big enough. For this we add the constraint NAE 3 (f, f, t), which expresses f = t, and N constraints NAE 3 (f j , f j , t), where the f j , for j = 1, . . . , N, are fresh variables. This ensures that if f = 1 then f 1 , . . . , f N = 1. Observe moreover that since NAE 3 is a complementive relation, the built NAE 3 -formula is satisfiable if and only if it has a model with f = 0. Taking N > n where n is the number of variables of the original formula ensures that f = 0 in any cardinality-minimal model.

Cms(NAE

3 ) ≤ P m Cms * (XOR 3 ).
Given a NAE 3 -formula φ = m i=1 NAE 3 (x i , y i , z i ) and an atom x ∈ var(φ), we want to construct an XOR 3 -formula φ , an atom x and an integer k such that:

x belongs to a minimal model of φ iff x belongs to a minimal model of φ that has cardinality ≤ k.

To build the triple (φ , x , k), we set x = x and we choose φ as the XOR 3 -formula:

φ = XOR 3 (t, t, t) ∧ m i=1                        XOR 3 (x i , y i , α i ) ∧ N j=2 XOR 3 (α i , α j i , t) ∧ XOR 3 (x i , z i , β i ) ∧ N j=2 XOR 3 (β i , β j i , t) ∧ XOR 3 (y i , z i , γ i ) ∧ N j=2 XOR 3 (γ i , γ j i , t)                        .
Here, the atoms not in var(φ) -namely, t and the variables of the form α i , β i , γ i , α j i , β j i and γ j i -, are fresh variables. For the integer N , we take the cardinality of var(φ). This will ensure that the cardinality of any model of φ is strictly smaller than N . (Notice that such a model maps at least one variable to 0). At last, we set k = (m + 1)N for reasons that will become clarified in the sequel of the proof.

Notice that any model τ of φ maps t to 1, which entails 1. τ (α j i ) = τ (α i ), 2. τ (β j i ) = τ (β i ) and 3. τ (γ j i ) = τ (γ i ) for all i, j. Thus, for each i the variables α j i are used to boost the weight of α i : mapping α i to 1 in an assignment automatically increases the cardinality of this assignment by N (and similarly for β i and γ i ).

Besides, observe that any assignment σ on var(φ) can be extended in a unique way to a model of φ by carefully choosing the values of the fresh variables. We denote by σ + this extension. In the particular case where σ satisfies φ, we obtain:

σ + = |σ| + mN. (2) 
Conversely, if τ is a model of φ , then for any i, the total weight of α i , β i , γ i in τ is 1 if τ |= NAE 3 (x i , y i , z i ) and 3 otherwise. Denoting by τ -the restriction of τ to var(φ), one can write |τ | = |τ -| + (m + 2k)N , where k is the number of i for which τ -|= NAE 3 (x i , y i , z i ). It yields, for any assignment τ which satisfies φ :

τ -|= φ iff |τ | = τ -+ mN. (3) 
This can be rephrased, since |τ | has the shape |τ -| + (m + 2k)N and since |τ -| < N :

τ -|= φ iff |τ | < (m + 1)N. (4) 
Now we can prove that Equivalence (1) holds when taking k = (m + 1)N . ⇒ Let σ be a minimal model of φ containing x. Then x also belongs to σ + which is a model of φ . Besides σ + is cardinality-minimal among the models of φ . Let (φ, x, k) be an instance of Cms * (XOR 3 ), where

φ = p i=1 XOR 3 (x i , y i , z i ).
We consider k fresh variables α 1 , . . . , α k and we set:

φ = p i=1 k j=1 XOR 4 (x i , y i , z i , α j ).
Observe that in all models of φ , equalities

α 1 = • • • = α k hold.
Moreover φ has one model of weight k, which assigns the α j 's to 1 and all other variables to 0. Each model σ of φ can be extended into a model of φ by mapping each α j to 0. We denote by σ + this extension. Notice that in this case, |σ| = |σ + |. Conversely, for any model τ of φ , we denote by τ -its restriction to var(φ). It is easily seen that if τ (α j ) = 0 for all j's then τ -|= φ and in this case, |τ | = |τ -|.

Let's now prove that the function (φ, x, k) → (φ , x) is a reduction from Cms * (XOR 3 ) to Cms(XOR 4 ).

Assume that (φ, x, k) is a positive instance of Cms * (XOR 3 ) and call σ a minimal model of φ containing x and such that |σ| ≤ k. Then σ + |= φ and σ + (x) = 1. Furthermore, σ + is minimal among the models of φ since for any model τ of φ : If τ (α j ) = 1 for all j's,

then |τ | ≥ k ≥ |σ| = |σ + |. If τ (α j ) = 0 for all j's, then τ -is a model of φ, which satisfies |τ -| ≥ |σ| by minimality of σ. Since in this case |τ -| = |τ | we get |τ | ≥ |σ| = |σ + |.
Thus, σ + is a minimal model of φ containing x and hence, (φ , x) is a positive instance of Cms(XOR 4 ).

Conversely, assume (φ , x) is a positive instance of Cms(XOR 4 ) and call τ a minimal model of φ containing x. Then |τ | ≤ k since τ is minimal and since the assignment that maps every α j on 1 and all other variables on 0 is a model of φ of cardinality k. From τ (x) = 1 we get τ (α j ) = 0 for all j' (otherwise |τ | would be greater than or equal to k +1). Hence, τ -is a model of φ containing x such that |τ -| ≤ k. It remains to verify that τ - is minimal among the models of φ. Consider any model σ of φ, then σ + is a model of φ . By minimality of τ , |σ

+ | ≥ |τ |, that is, |σ| ≥ |τ -|. Thus, τ -is a minimal model of φ containing x and |τ -| ≤ k, hence (φ, k, x) is a positive instance of Cms * (XOR 3 ). 4. Cms(XOR 4 ) ≤ P m Cms(XOR 3 , XOR 2 ).
Observe that XOR 4 (x 1 , x 2 , x 3 , x 4 ) ≡ ∃y, z : XOR 3 (x 1 , x 2 , y)∧XOR 3 (x 3 , x 4 , z)∧XOR 2 (y, z). The two fresh variables y and z take complementary values, so they will together contribute a weight 1 in any case.

5. Cms(XOR 3 , XOR 2 ) ≤ P m Cms(XOR 3 ).

Let (φ, x) be an instance of Cms(XOR 3 , XOR 2 ). If φ is unsatisfiable, we map (φ, x) to a trivial negative instance of Cms(XOR 3 ), e.g. (XOR 3 (x 1 , x 2 , x 3 ), x).

Otherwise, we replace any constraint XOR 2 (x, y) by XOR 3 (x, y, w) where w is a fresh variable of weight impact N big enough, say bigger than the number of variables of the original formula. This assures that the cardinality-minimal models of the formula are the models of φ extended with w = 0. The variable w can be given the needed weight impact by adding the constraints XOR 3 (t, t, t) ∧ N i=1 XOR 3 (t, w, w i ) where t and the w i 's are fresh variables.

Proof of the main theorem

We prove here Theorem 2. The classification can be visualized on Post's Lattice, see figure 1. The classification obeys the borders among co-clones and, as discussed in the previous section, will be obtained by a systematic exploration of the co-clones.

Observe that Theorem 1, the previously obtained classification in the Krom fragment, concerns co-clones in the lower part of the lattice, namely every co-clone C such that C ⊆ ID 2 . In the depiction of Post's Lattice in figure 1 the color coding is as follows. The "white" co-clones, for which the problem Cms is trivial, are the co-clones that contain only 0-valid relations. For those ones the cardinality-minimum solution is the all-0 solution, and the answer is always "no". The "grey" co-clones, for which the problem Cms is decidable in polynomial time, correspond to co-clones C such that either C ⊆ IE 2 or C ⊆ ID 1 . In the first case, all relations are Horn, and therefore there exists a unique cardinality-minimal model that can be found by unit propagation in polynomial time. In the second case, all relations are width-2-affine and the tractability result follows from Theorem 1.

Finally, to obtain the complexity classification it remains to prove hardness for the "black" co-clones, namely II 2 , II 1 , IN 2 , IL 2 , IL 3 , IL 1 , IV 2 , IV 1 , and, for any k ≥ 2, for the co-clones IS k 00 , IS k 01 , IS k 02 , IS k 0 . The "black" co-clone ID 2 is dealt with by Theorem 1. As we have discussed in the previous section, for each remaining co-clone C, given one of its weak bases B we will show that Cms(B) is hard. This will be done by a reduction from a known hard problem, either Cms(OR 2 ) or Cms(XOR 3 ). For example, given an instance (φ, x) of Cms(OR 2 ), where φ is a conjunction of OR 2 -clauses, we will build a B-formula φ such that x belongs to a cardinality-minimal model of φ if and only if x belongs to a cardinality-minimal model of φ . The construction of φ is obtained by a local replacement of each clause of φ by an equivalent B-formula. Usually this requires introduction of fresh (existentially quantified) variables. Some of these additional variables will be frozen, which means that their truth value is the same in all models, and thus their contribution to the weight of any model is fixed. In order to be sure that the weight of the non-frozen additional variables will not compromise the cardinality-minimal models, the trick is to neutralize them by adding for each such variable y, another one y and to force them to take complementary values, i.e. y = y . Thus the weight contribution of y and y together will always be 1 in all models. Sometimes, to do so we will have to express the truth value 0. When this is not possible directly, the idea is to replace 0 by a variable f , and then introduce a big number of copies of f such that any cardinality-minimal model of the formula has to set f to 0.

In the following when we speak about the minimal weak base of a co-clone we mean the weak base from Lagerkvist [START_REF] Lagerkvist | Weak bases of boolean co-clones[END_REF], given in table 1. In the proofs, we will always restate the exact definition of the corresponding weak base, and, where convenient, also its matrix representation.

The following proposition provides the missing hardness results.

Proposition 7. Let Γ be a constraint language. Then Cms(Γ) is

Θ P 2 -hard if Γ ∈ {II 2 , II 1 , IN 2 , IL 2 , IL 3 , IL 1 , IV 2 , IV 1 , IS k 00 , IS k 01 , IS k 02 , IS k 0 }, for any k ≥ 2.
The following lemmas provide the proof for Proposition 7, dealing with the different cases.

Lemma 8. Let Γ = II 2 . Then Cms(Γ) is Θ P 2 -hard. Proof. Let R II 2 be the minimal weak base of II 2 , that is, R 1/3 3 = (x 1 , . . . , x 6 ) ∧ F(x 7 ) ∧ T(x 8 )
, where R 1/3 3 = = {100011, 010101, 001110}. The matrix representation is as follows.

R II 2 =   10001101 01010101 00111001  
We show that Cms(OR 2 ) ≤ P m Cms(R II 2 ). Then the result follows from Lemma 5 and Proposition 4.

Let (φ, x) be an instance of Cms(OR 2 ), where φ = p i=1 (x

1 i ∨x 2 i ). Let {a i , b i , c i , d i , a i , b i , c i , d i | i = 1 . . . p}∪{t, f } be fresh variables. For each constraint (x 1 i ∨x 2 i ) we build the constraint R II 2 (a i , b i , c i , d i , x 1 i , x 2 i , f, t). Observe that OR 2 (x 1 i , x 2 i ) ≡ ∃a i , b i , c i , d i , f, t R II 2 (a i , b i , c i , d i , x 1 i , x 2 i , f, t).
The existential variables are uniquely determined. The variables f and t are frozen, while the values of a i , b i , c i , d i are not. Nevertheless their values can be neutralized by the introduction of additional fresh variables a i , b i , c i , d i who are forced to take complementary values. In the case of a i and a i this can be achieved by the constraint R II 2 (a i , a i , f, a i , a i , t, f, t). Analogous constraints are added for b i , b i , c i , c i and d i , d i .

Consider φ the conjunction of all these constraints. Observe that the formulas φ and φ are equivalent when quantifying on the fresh variables. Moreover, the models of φ and φ are in one-to-one correspondence. Each model σ of φ can be extended to a model σ of φ whose weight is |σ | = |σ| + 4p + 1. Consequently, x belongs to a cardinality-minimal model of φ if and only if x belongs to a cardinality-minimal model of φ , thus concluding the proof.

Lemma 9. Let Γ = II 1 . Then Cms(Γ) is Θ P 2 -hard. Proof. Let R II 1 be the minimal weak base of II 1 , that is, R II 1 (x 1 , x 2 , x 3 , x 4 ) = (x 1 ∨ x 2 ) ∧ (x 1 x 2 ↔ x 3 ) ∧ T(x 4 )
. The matrix representation is as follows.

R II 1 =   0101 1001 1111  
We show that Cms(OR 2 ) ≤ P m Cms(R II 1 ). Then the result follows from Lemma 5 and Proposition 4.

Let (φ, x) be an instance of Cms(OR 2 ), where φ = p i=1 (x

1 i ∨ x 2 i ). For each con- straint (x 1 i ∨ x 2 i ) we build the constraint R II 1 (x 1 i , x 2 i , y i , t). Observe that (x 1 i ∨ x 2 i ) ≡ ∃y i ∃tR II 1 (x 1 i , x 2 i , y i , t)
. The variable t is frozen to 1. The variable y i is not, but we can neutralize its weight by adding the constraint R II 1 (y i , z i , f, t), which will force z i ≡ ¬y i as soon as f is evaluated to 0. We force f to be evaluated to 0 in any cardinality-minimal model by adding the constraints R II 1 (f 1 j , f 2 j , f, t), for j = 1, . . . , N . If f = 1, these constraints force all the f 1 j , f 2 j to 1, that is, 1 + 2N variables. If f = 0, one of the f 1 j , f 2 j is forced to 1 and the other to 0, that is, the weight contribution is only N .

Consider φ the conjunction of all these constraints. Observe that the formulas φ and φ are equivalent when quantifying on the fresh variables. Moreover, the models of φ and the models of φ in which f = 0 are in one-to-one correspondence. Each model σ of φ can be extended to a model σ of φ with σ (f ) = 0, whose weight is

|σ | = |σ| + p + N + 1.
Observe that φ is always satisfiable and therefore, by the above observation, φ always admits a model with f = 0. Moreover, the models of φ in which f = 1 are of cardinality at least 2N +2, while the models of φ in which f = 0 are of cardinality at most n+p+N +1, where n is the number of variables of φ. Now, if we choose N big enough, e.g. N ≥ p + n, we ensure that an assignment with f = 1 can never be a cardinality-minimal model. Consequently, putting all together shows that x belongs to a cardinality-minimal model of φ if and only if x belongs to a cardinality-minimal model of φ , thus concluding the proof.

Lemma 10. Let Γ = IN 2 . Then Cms(Γ) is Θ P 2 -hard. Proof. Let R IN 2 be the minimal weak base of IN 2 , that is, R IN 2 = EVEN 4 4 = (x 1 , . . . , x 8 ) ∧ x 1 x 4 ↔ x 2 x 3 . The matrix representation is as follows. R IN 2 =         00001111 00110011 01010101 10101010 11001100 11110000        
We show that Cms(OR 2 ) ≤ P m Cms(R IN 2 ). Then the result follows from Lemma 5 and Proposition 4. Observe that OR 2 (x

1 i , x 2 i ) ≡ ∃a i , b i , c i , d i R IN 2 (0, a i , b i , c i , d i , x 1 i , x 2 i , 1 
). In this co-clone we can express f = t, but not f = 0 and t = 1. The idea is to use f and t in place of 0 and 1 as global variables (that is, the same for all constraints) and to force them to take the appropriate values in all cardinality-minimal models. This can be done by adding the constraint R IN 2 (f, f, f, f, t, t, t, t), which expresses f = t, and by adding a number N big enough of constraints R IN 2 (f j , f j , f j , f j , t, t, t, t), where the f j , for j = 1, . . . , N , are fresh variables.

In choosing N bigger than the number of variables of the original formula, we can assure that in any cardinality-minimal model f is assigned 0 and t is assigned 1. In using this trick we can mimic the reduction proposed in the proof of Proposition 8 and hence transform an OR 2 -formula into an R IN 2 -formula in preserving the cardinality-minimal models, thus providing the reduction from Cms(OR 2 ) to Cms(R IN 2 ). Let (φ, x) be an instance of Cms(XOR 3 ), where φ = p i=1 (x

1 i ⊕ x 2 i ⊕ x 3 i ). Let {u i , v i , w i , u i , v i , w i | i = 1 . . . p}∪{t, f } be fresh variables. For each constraint (x 1 i ⊕x 2 i ⊕x 3 i ) we build the constraint R IL 2 (u i , v i , w i , x 1 i , x 2 i , x 3 i , f, t). Observe that XOR 3 (x 1 i , x 2 i , x 3 i ) ≡ ∃f, t, u i , v i , w i R IL 2 (u i , v i , w i , x 1 i , x 2 i , x 3 i , f, t
). The variables f, t are frozen, and the other existential variables are uniquely determined and can be neutralized by adding three additional variables u i , v i , w i and the constraint

R IL 2 (u i , v i , w i , u i , v i , w i , f, t).
Consider φ the conjunction of all these constraints. Observe that the formulas φ and φ are equivalent when quantifying on the fresh variables. Moreover, the models of φ and φ are in one-to-one correspondence. Each model σ of φ can be extended to a model σ of φ whose weight is |σ | = |σ| + 3p + 1. Consequently, x belongs to a cardinality-minimal model of φ if and only if x belongs to a cardinality-minimal model of φ , thus concluding the proof.

Lemma 12. Let Γ = IL 3 . Then Cms(Γ) is Θ P 2 -hard.

Proof. Let R IL 3 be the minimal weak base of IL 3 , that is, R IL 3 = EVEN 4 4 = (x 1 , . . . , x 8 ). The matrix representation is as follows.

R IL 3 =             00001111 11000011 10100101 10010110 01101001 01011010 00111100 11110000            
We show that Cms(XOR 3 ) ≤ P m Cms(R IL 3 ). Then the result follows from Lemma 6 and Proposition 4.

All relations in the co-clone IL 3 are complementive. In particular, up to some permutation of the variables (columns) R IL 3 is the complementive closure of R IL 2 . Thus, we use the same reduction idea as for IL 2 , and then proceed analogously as we have done for the case of IN 2 : replace 0 and 1 by f and t, express f = t ≡ R IL 3 (f, f, f, f, t, t, t, t) and put a big weight on f , hence forcing f = 0 and t = 1 in any cardinality-minimal model.

Lemma 13. Let Γ = IL 1 . Then Cms(Γ) is Θ P 2 -hard. Proof. Let R IL 1 be the minimal weak base of IL 1 , that is, R IL 1 (x 1 , x 2 , x 3 , x 4 ) = XOR 3 (x 1 , x 2 , x 3 )∧ T(x 4 )
. The matrix representation is as follows.

R IL 1 =     1001 0101 0011 1111    
It is easy to verify that XOR 3 (x 1 , x 2 , x 3 ) ≡ ∃ t R IL 1 (x 1 , x 2 , x 3 , t). Observe that the value of t is frozen to 1 in R IL 1 (x 1 , x 2 , x 3 , t). Thus, by the introduction of a fresh variable t and the local replacement of each clause we can build a reduction from Cms(XOR 3 ) to Cms(R IL 1 ). Then the result follows from Lemma 6 and Proposition 4.

Lemma 14. Let Γ = IV 2 . Then Cms(Γ) is Θ P 2 -hard. Proof. Let R IV 2 be the minimal weak base of IV 2 , that is, R IV 2 (x 1 , x 2 , x 3 , x 4 , x 5 ) = (x 1 ↔ x 2 x 3 ) ∧ F(x 4 ) ∧ T(x 5 )
. The matrix representation is as follows.

R IV 2 =     00001 10101 11001 11101    
It is easy to verify that OR 2 (x, y) ≡ ∃ t, f R IV 2 (t, x, y, f, t). Observe that the values of t and f are frozen in R IV 2 (t, x, y, f, t), they take respectively the values 1 and 0 in all models. Thus, we can reduce Cms(OR 2 ) to Cms(R IV 2 ). Then the result follows from Lemma 5 and Proposition 4.

Lemma 15. Let Γ = IV 1 . Then Cms(Γ) is Θ P 2 -hard.
This concludes the proof of Theorem 2. We restate here Theorem 2 in terms of coclones.

Theorem 19. Let Γ be a finite constraint language. The problem Cms(Γ) is

• Θ P 2 -complete if C ⊆ Γ ⊆ II 2 for C ∈ {IS 2 0 , IL 3 , IL 1 }, • polynomial time solvable if either ID ⊆ Γ ⊆ ID 1 or IR 1 ⊆ Γ ⊆ IE 2 ,
• trivial otherwise (Γ is 0-valid)

Example of application

Let us now consider the following relevance problem for abduction. A propositional abduction problem (PAP) P consists of a tuple V, H, M, T , where V is a finite set of variables, H ⊆ V is the set of hypotheses, M ⊆ V is the set of manifestations, and T is a consistent theory in the form of a propositional formula. A set S ⊆ H is a solution (also called explanation) to P if T ∪ S is consistent and T ∪ S |= M holds. Often, one is not interested in any solution of a given PAP P but only in minimal solutions, where minimality is defined w.r.t. set inclusion or smaller cardinality.

For subset-minimality the relevance problem has been completely classified in Schaefer's framework by Creignou and Zanuttini [START_REF] Creignou | A complete classification of the complexity of propositional abduction[END_REF]. Here we consider the following decision problem.

Card-min-Relevance Instance :

PAP P = V, H, M, T and hypothesis h ∈ H. Question : Is h relevant, i.e., does P admit a cardinality-minimal solution S such that h ∈ S?

It is known that the Card-min-Relevance problem is Θ P 3 -complete in its full generality and Θ P 2 -complete in the Horn case [START_REF] Eiter | The complexity of logic-based abduction[END_REF]. The Krom case has been considered afterwards [START_REF] Creignou | Do hard sat-related reasoning tasks become easier in the krom fragment? Log[END_REF]. The complexity results obtained so far for the Card-min-Relevance problem were restricted, due to an incomplete picture of the complexity of CardMinSat. With the help of Theorem 2 we extend these results in showing that the complexity of Card-min-Relevance in the affine case matches the Horn and Krom cases.

Theorem 20. Card-min-Relevance is Θ P 2 -complete even if the theory is restricted to XOR-CNF-formulas.

Proof. Membership follows from the fact that one can decide the satisfiability of an XOR-CNF formula in polynomial time. The hardness proof is obtained via a reduction from Cms(XOR 3 ).

Consider an arbitrary instance (φ, x i ) of Cms(XOR 3 ). Let φ = p i=1 (x 1 i ⊕ x 2 i ⊕ x 3 i ) over variables X = {x 1 , . . . , x n } and let G = {g 1 , . . . , g p } be a set of fresh, pairwise distinct variables. We define the PAP P = V, H, M, T as follows:

V = X ∪ G H = X M = G T = {(x 1 i ⊕ x 2 i ⊕ x 3 i ⊕ ḡi ) | 1 ≤ i ≤ p}
It is easy to verify that the models of φ coincide with the solutions of P. Hence, x i is in a cardinality-minimal model of φ if and only if x i is in a cardinality-minimal solution of P. Note that, more precisely, the proof shows the hardness of Card-min-Relevance for XOR 4 -formulas.

Conclusion

In this paper we obtained a complete complexity classification of the problem CardMinSat(Γ) for all finite constraint languages Γ: if Γ is width-2-affine, Horn or 0-valid, CardMinSat(Γ) is solvable in polynomial time, otherwise it is Θ P 2 -complete. The weak base method developed by Schnoor and Schnoor [START_REF] Schnoor | Partial polymorphisms and constraint satisfaction problems[END_REF], completed with the description of minimal weak bases for co-clones by Lagerkvist [START_REF] Lagerkvist | Weak bases of boolean co-clones[END_REF] proved to be a valuable tool for this endeavor. As described in the introduction understanding the complexity of CardMinSat is crucial for the study of several reasoning tasks in artificial intelligence that are based on minimizing cardinality. As we have motivated and outlined above we believe the establishment of the complete complexity picture of CardMinSat(Γ) is a cornerstone for future research in this direction: it will allow the precise analysis of the computational complexity of problems such as relevance questions and belief revision operators. To obtain a richer picture we further plan to investigate the parametrized complexity of such problems. For instance, in [START_REF] Mahmood | Parameterized complexity of abduction in Schaefer's framework[END_REF] a rich picture of the parametrized complexity of abduction problems is obtained. Yet, the named abduction relevance problem in this picture is missing. With the now established complete complexity classification of CardMinSat it seems in reach to complete this picture. Table 1: All finitely generated co-clones with minimal weak bases from Lagerkvist [START_REF] Lagerkvist | Weak bases of boolean co-clones[END_REF]. 
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 21342134112233 ∧ T(x 2 ) -IM (x 1 → x 2 )implicative and 0-and 1-validIM 0 (x 1 → x 2 ) ∧ F(x 3 )implicative and 0-validIM 1 (x 1 → x 2 ) ∧ T(x 3 )implicative and 1-validIM 2 (x 1 → x 2 ) ∧ F(x 3 ) ∧ T(x 4 ) implicative IS k 0 , k ≥ 2 OR k (x 1 , . . . , x k ) ∧ T(x k+1 ) positive of width k IS k 02 , k ≥ 2 OR k (x 1 , . . . , x k ) ∧ F(x k+1 ) ∧ T(x k+2 ) essentially positive of width k IS k 01 , k ≥ 2 OR k (x 1 , . . . , x k ) ∧ (x k+1 → x 1 • • • x k ) ∧ T(x k+2 ) -IS k 00 , k ≥ 2 OR k (x 1 , . . . , x k ) ∧ (x k+1 → x 1 • • • x k ) ∧ F(x k+2 ) ∧ T(x k+3 ) IHS-B+ of width k IS k 1 , k ≥ 2 NAND k (x 1 , . . . , x k ) ∧ F(x k+1 ) negative of width k IS k 12 , k ≥ 2 NAND k (x 1 , . . . , x k ) ∧ F(x k+1 ) ∧ T(x k+2 ) essentially negative of width k IS k 11 , k ≥ 2 NAND k (x 1 , . . . , x k ) ∧ (x 1 → x k+1 ) ∧ . . . ∧ (x k → x k+1 ) ∧ F(x k+2 ) -IS k 10 , k ≥ 2 NAND k (x 1 , . . . , x k ) ∧ (x 1 → x k+1 ) ∧ . . . ∧ (x k → x k+1 ) ∧ F(x k+2 ) ∧ T(x k+3 ) IHS-B-of width k ID (x 1 = x 2 ) strict 2-affine ID 1 (x 1 = x 2 ) ∧ F(x 3 ) ∧ T(x 4 ) 2-affine ID 2 OR 2 (x 1 , x 2 ) ∧ (x 1 = x 3 ) ∧ (x 2 = x 4 ) ∧ F(x 5 ) ∧ T(x 6 ) Krom, bijunctive, 2CNF IL EVEN 4 (x 1 , x 2 , x 3 , x 4 )affine and 0-and 1-validIL 0 EVEN 3 (x 1 , x 2 , x 3 ) ∧ F(x 4 )affine and 0-validIL 1 XOR 3 (x 1 , x 2 , x 3 ) ∧ T(x 4 )affine and 1-validIL 2 (x 1 , . . . , x 6 ) ∧ F(x 7 ) ∧ T(x 8 ) affine IL 3 (x 1 , . . . , x 8 ) -IV (x 1 ↔ x 2 x 3 ) ∧ (x 2 ∨ x 3 → x 4 )dualHorn and 1-and 0-validIV 0 (x 1 ↔ x 2 x 3 ) ∧ F(x 4 ) definite dualHorn IV 1 (x 1 ↔ x 2 x 3 ) ∧ (x 2 ∨ x 3 → x 4 ) ∧ T(x 5 )dualHorn and 1-validIV 2 (x 1 ↔ x 2 x 3 ) ∧ F(x 4 ) ∧ T(x 5 ) dualHorn IE (x 1 ↔ x 2 x 3 ) ∧ (x 2 ∨ x 3 → x 4 )Horn and 0-and 1-validIE 0 (x 1 ↔ x 2 x 3 ) ∧ (x 2 ∨ x 3 → x 4 ) ∧ F(x 5 )Horn and 0-validIE 1 (x 1 ↔ x 2 x 3 ) ∧ T(x 4 ) definite Horn IE ∧ F(x 4 ) ∧ T(x 5 ) Horn IN EVEN 4 (x 1 , x 2 , x 3 , x 4 ) ∧ x 1 x 4 ↔ x 2 x 3complementive and 0-and 1-validIN 2 (x 1 , . . . , x 8 ) ∧ x 1 x 4 ↔ x 2 x 3 complementive II (x 1 ↔ x 2 x 3 ) ∧ (x 4 ↔ x 2x 3 ) 0-and 1-validII 0 (x 1 ∨ x 2 ) ∧ (x 1 x 2 ↔ x 3 ) ∧ F(x 4 ) 0-valid II (x 1 , . . . , x 6 ) ∧ F(x 7 ) ∧ T(x 8 ) all Boolean relations

  valid) no statement (infinite languages only)
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 1 Figure 1: Complexity overview for CardMinSat illustrated on Post's Lattice.

  Table 1 contains a complete list of all finitely generated co-clones with minimal weak bases.
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Proof. Let R IV 1 be the minimal weak base of IV 1 , that is, R IV 1 (x 1 , x 2 , x 3 , x 4 , x 5 ) = (x 1 ↔ x 2 x 3 ) ∧ (x 2 ∨ x 3 → x 4 ) ∧ T(x 5 ). The matrix representation is as follows.

Observe that the value of t is frozen to 1, but the value of f is not frozen. Nevertheless, any model with f = 1 will remain a model when flipping f to 0. Therefore, this additional variable will always be set to 0 in a cardinality-minimal model. Thus, by the introduction of two fresh variables f and t and the local replacement of each clause we can build a reduction from Cms(OR 2 ) to Cms(R IV 1 ). Then the result follows from Lemma 5 and Proposition 4.

We prove that Cms(OR 

). We prove that Cms(OR 2 ) ≤ Cms(R IS k 01 ). Then the result follows from Lemma 5 and Proposition 4.

x) be an instance of Cms(OR 2 ). Let f and t be fresh variables.

. This time t is frozen, but f is not.

Nevertheless, if there is any model with f = 1, it will remain a model when flipping f to 0. Therefore, this reduction preserves the cardinality-minimal models. Hence, x belongs to a cardinality-minimal model of φ if and only if x belongs to a cardinality-minimal model of φ .

In exactly the same way, but even more easily, we obtain the following.

Lemma 18. Let Γ = IS k 02 or Γ = IS k 0 . Then Cms(Γ) is Θ P 2 -hard.

Proof. We use exactly the same reduction as for IS k 01 and IS k 00 , the only difference in the weak bases is the non-presence of the clause (x k+1 → x 1 • • • x k ) which will be omitted.