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Abstract 

We summarize in this article the recent progress made in our laboratories in the development of 

numerical approaches dedicated to investigating ultrafast physicochemical responses of biological 

matter subjected to ionizing radiations. Our modules are integrated into the deMon2k software which 

is a readily available program with highly optimized algorithms for conducting Auxiliary-Density-
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Functional-Theory (ADFT) calculations. We have developed a computational framework based on Real-

Time Time-dependent ADFT to simulate the electronic responses of molecular systems to strong 

perturbations, while molecular dynamics simulations in the ground and excited states (Ehrenfest 

dynamics) are available to simulate irradiation-induced ultrafast bond breaking/formation. 

Constrained ADFT and Multicomponent ADFT have also been incorporated to simulate charge transfer 

processes and nuclear quantum effects, respectively. Finally, a coupling to polarizable force fields 

further permits to realistically account for the electrostatic effects that the systems’ environment has 

on the perturbed electron density. The code runs on CPU or hybrid CPU/GPU architectures affording 

simulations of systems comprised of up to 1000 atoms at the DFT level with controlled numerical 

accuracy. We illustrate the applications of these methodologies by taking results from our recent 

articles that aimed principally at understanding experimental data from pulse radiolysis experiments. 

List of Acronyms 

ADFT : Auxiliary DFT 

ADSIC : Average Density Self-Interaction Correction 

BOMD : Born-Oppenheimer molecular dynamics 

CAP : Complex Absorbing Potential 

CT : Charge Transfer 

DFT : Density Functional Theory 

ELF :  Electron Localization Function 

EMD : Ehrenfest Molecular Dynamics 

GGA : Generalized Gradient Approximation 

ITP : Imaginary-Time-Propagation 

KS : Kohn-Sham 

LDA : Local Density Approximation 

MC-DFT : Multi-Component DFT 

MD : Molecular Dynamics 

MO : Molecular Orbital 

NBE : Non-Bonded-Electrons 

PBE : Perdew, Burke and Ernzerhof 

QM/MM : Quantum Mechanics / Molecular Mechanics 

RT-TD-DFT : Real-Time TD-DFT 

SCF : Self-Consistent-Field 

TD : Time-Dependent  

USP : Urinidine Sugar Phosphate 

XC : Exchange-correlation 

XUV : eXtreme Ultra-Violet 
 



3 
 

1 Introduction   

The consequences of matter irradiation by high-energy particles is a topic of major interest in biology, 

medicine, physics, chemistry, or material sciences [1]. Fast ions (H+, He2+, …. ) or other massive particles 

(-, e+, ….) with average kinetic energy falling in the range of a few tens of keV to a few MeV, as well 

as high energy photons (extreme UV, X, …) are ionizing radiations. They interact so strongly with the 

electron cloud of molecules that they cause high-energy electronic excitations, eventually expelling 

electrons toward the continuum. Ionizing radiations leaves matter with several electronic holes and a 

great amount of energy deposited within the electron cloud, not to mention the production of copious 

amounts of near-free electrons that further irradiate surrounding matter. A complex succession of 

physical, chemical, and eventually biological processes—spanning up to sixteen orders of magnitude 

in space and time—follows, finally leading to functional alterations of the irradiated systems. 

Irradiation damage of biological systems is a well-known example of radio-induced dysfunctions which, 

for example, are helpful to kill cancer cells (i.e. radiotherapies) [2,3]. Actually, the issues raised by  

ionizing radiations are important also in the nuclear industry, aeronautics, space industry, or for 

understanding astrochemistry. In all cases, the ultra-fast events taking place upon, and immediately 

after irradiation, are of the utmost importance as they condition all successive events.  

It is customary to define the physical stage as the one covering the atto-to-femtosecond timescale (10-

18-10-15 s). Only the light electrons manifest appreciable motion within this timescale. The physical stage 

sees the deposition of energy into the electron cloud by the irradiating particle(s), inducing electronic 

excitations and, eventually, ionizations. In the latter situation, the photoelectrons (also known as 

secondary electrons) emitted to the continuum thermalize by collisions with surrounding matter and, 

eventually, excite other molecules. After the physical stage, the physicochemical stage (10-15-10-12 s) 

witnesses complex non-adiabatic nuclear dynamics propelled by the energy deposited in the electron 

cloud. Energy is dissipated into vibrational modes, eventually leading to covalent bond cleavage. Subtle 

quantum effects involving electronic state crossings, interferences, coherence/decoherence, etc. are 

at play at this stage too. Secondary electrons lying in the continuum might get solvated or trapped in 

molecular cavities, typically in less than 1 ps in water [4,5]. They may also be captured in molecular 

resonant states, opening the door toward chemical bond breaking by dissociative electron attachment 

mechanisms [6]. Once the irradiated system has relaxed back to the ground electronic state, a rich 

chemistry is expected to expand over the nano-to-microsecond timescale depending on the reaction 

energy barriers to be overcome. This is usually referred to as the chemical stage of irradiation and has 

been extensively studied over the last decades, for instance, in the context of biological damages [7,8]. 

The biological stage refers to consequences happening in even longer timescales at the level of large 
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biological structures [9], DNA repair mechanisms [10], genome instability and epigenetic regulations 

[11,12] … 

Focusing back on the ultrafast time scales, the first quarter of the XXI century has been particularly 

exciting due to the emergence of ultrafast spectroscopies and the advent of sophisticated numerical 

algorithms [13]. It is now possible to uncover the earliest mechanisms taking place after irradiation. 

High-harmonic generation and extreme free electron lasers provide extraordinary approaches to 

probe the responses of matter with attosecond resolution. For example, Loh et al. observed that 

proton transfer from an ionized water molecule to neighboring water takes place within a few tens of 

femtoseconds using tunable femtosecond soft x-ray pulses from an x-ray free electron laser [14]. Other 

examples are the observation of ultrafast charge migrations following ionization [13,15], or the 

formation of doubly ionized water by intra-coulomb decay in water. As often, the development of 

experimental techniques stimulates that of theoretical frameworks and of numerical simulation 

algorithms (e.g. [16–19]). The French theoretical community is also very active and develops diverse 

methodologies. Far from being exhaustive, and restricting here our attention to the short time scales, 

we mention Miteva, Sisourat, and co-workers who have developed a configuration interaction method 

to model Fano resonances with application to intra-coulomb decay processes [20]. Luppi and co-

workers have explored the use of time-dependent configuration interaction for high-Harmonic 

generation spectroscopy calculations [21]. Other groups have developed dedicated theoretical 

frameworks to interpret attosecond experiments, including photoionization [22–25]. Semi-classical 

theoretical frameworks to deal with non-adiabatic dynamics are developed by Vacher [26,27], Agostini 

[28,29], Lasorne [30], Joubert-Doriol [31]  and co-workers, while other groups develop fully quantum 

dynamical approaches such as the multiconfiguration time-dependent Hartree scheme [32,33], or 

dissipative quantum dynamics approaches [34,35]. Other groups in France have investigated by 

simulation the first stages of biological matter radiolysis [36,37] or even the longer consequences for 

large biostructures [38]. In this article, our objective is to review recent methodological developments 

carried out in our group at the Institute of Physical Chemistry to address the early stages involved in 

the radiolysis of biological matter by means of numerical simulations.  

Our primary focus is to decipher the molecular mechanisms that lead to physicochemical damage on 

biological systems, although we occasionally explore other intriguing territories such as the chemical 

degradation of organic extractants of interest for the nuclear industry. We work in tight collaboration 

with experimental groups (atto- and femtosecond spectroscopists, radiation chemists, and 

biochemists). Having in mind the perspective of reaching more and more realistic descriptions of the 

simulated systems, we have decided to base our work on Density Functional Theory (DFT). DFT has 

emerged as a powerful quantum mechanical method in the second half of the XX century to investigate 
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the electronic structure of molecules and solids [39,40]. The extension of DFT to the time-dependent 

(TD) domain in the early 1980s has opened the door to the investigation of excited electronic structure 

and time-dependent phenomena [41,42]. In particular, Real-Time TD-DFT (RT-TD-DFT) permits the 

simulation of the responses of the electron cloud subject to strong, ionizing radiations [43–45]. In 

particular, it gives access in principle to the superposition of states produced by the irradiation. When 

coupled to the classical Newtonian dynamics of the atom nuclei (“ions” in physicists' language), it gives 

access to the physicochemical stages of matter radiolysis [37,46]. 

Within the overwhelming literature dedicated to (TD-)DFT developments [47,48], our objective has 

been modestly focused on new implementations of RT-TD-DFT, for dedicated applications to radiolysis 

simulations of nanometric, inhomogeneous systems such as those encountered in biology. Our 

objective is to devise, step-by-step, a set of integrated methodologies within a consistent simulation 

environment. In this article, we summarize these efforts and illustrate the kind of insights that becomes 

accessible to large-scale simulations. We mainly borrow illustrative examples from our previous 

publications, although some new results are presented too. We start our review by introducing the 

equations-of-motion to conduct electron dynamics simulations in the framework of Auxiliary DFT 

(ADFT), describing the main algorithms enabling simulations of large molecular systems. A 

multicomponent ADFT method to simulate proton transfers in electronic excited states with the 

inclusion of nuclear quantum effects, or electrons/positrons systems is then introduced. We then 

move on to the description of computational techniques to deal with the emission of electrons in the 

continuum. Notably, we detail the complex absorbing potentials available in our code to cope with 

these phenomena. We dedicate a section to issues arising from the approximations of exchange-

correlation functionals available in our code. Regarding the problem of electronic self-interaction 

error, we report a time-dependent descriptor designed to chase spurious charge transfer dynamics in 

RT-TD-DFT simulations. We then introduce the topological analyses of the time-dependent electron 

localization function. In the last sections, we describe, on one hand, the coupling of (TD-)ADFT to 

molecular dynamics in the ground or excited electronic states and, on the other hand, the coupling of 

RT-TD-DFT to polarizable molecular mechanics. We review a few examples of applications we have 

published recently using these methodologies.  

2 Electron dynamics simulations 

When a high-energy photon or a particle irradiates matter, the interaction takes place at the level of 

the electron cloud. A methodology giving access to the dynamics of electrons on the attosecond time 

scale is therefore mandatory to properly capture the physics at play. On this time scale, atom nuclei 

can be regarded as static, and in the so-called pure RT-TD-DFT approach, only electronic motion is 

propagated in time. In this first section, we introduce the basic equations-of-motion for electron 
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dynamics simulations together with the kind of irradiation amenable to simulation with our code. All 

our implementations have been carried out in the framework of the deMon2k program [49], which is 

a readily available program for academic groups. deMon2k is specialized in the realization of stationary 

electronic structure calculations, in the calculation of response properties by perturbative approaches, 

and in first-principles molecular dynamics. Instead of devising an RT-TD-DFT program from scratch, we 

considered it more appealing to build on an already existing and highly optimized code. Unless 

otherwise stated, we will use Hartree atomic units throughout the article. Vectors will be written with 

bold characters.   

2.1 Real-time propagation of electron densities  

The foundations of DFT for stationary electronic structure calculations were exposed in the seminal 

article of Hohenberg and Kohn [39]. There, it was proven the existence of a one-to-one mapping 

between the electron density and the external potential, up to a constant potential value. In principle, 

the electronic energy can be obtained as a functional of the electron density, comprising the electronic 

kinetic energy, the electron-electron interaction, and the potential energy arising from the interaction 

of the electron density with an external potential. Later, Kohn and Sham proposed to invoke an 

auxiliary (reference) non-interacting electron gas that has the same density as the real system [40]. In 

this approach, the total electronic energy is the sum of the kinetic energy of the non-interacting 

electron gas, of the classical Coulomb repulsion between electrons, of their interaction with the 

external potential (𝑣𝑒𝑥𝑡 ), and an exchange-correlation (XC) energy that collects all the interacting 

quantum effects related to the quantum nature of the electrons. The external potential includes that 

created by atom nuclei of the quantum system and eventually by the environment (see below).  

The extension of DFT to time-dependent external potentials is due to Runge and Gross [41]. These 

authors showed that there is a unique mapping between the time-dependent external potential (up 

to a constant) of a system and its time-dependent density provided that an initial wave function is 

known. The TD-DFT equations may be expressed with a Liouville-von Neumann equation [50,51].   

𝑖
𝜕𝜌(𝑟, 𝑡)

𝜕𝑡
= [𝐻(𝑟, 𝑡), 𝜌(𝑟, 𝑡)] 

(1) 

in which 𝜌 is the electron density and 𝐻 is the electronic Hamiltonian. Within the Kohn-Sham (KS) 

framework, 𝜌 is built from the so-called KS molecular orbitals (MO): 

𝜌(𝑟, 𝑡) = ∑ 𝜓𝑖
∗(𝑟, 𝑡)𝜓𝑖(𝑟, 𝑡)

𝑖

 (2) 

where the sum index 𝑖  runs over all electrons of the system. The full electronic Hamiltonian can 

therefore be written as: 
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𝐻(𝑡) = − ∑
1

2
𝛻𝑖

2

𝑖

+ ∫
𝜌(𝑟′, 𝑡)

|𝑟 − 𝑟′|
𝑑𝑟′ + 𝑣𝑋𝐶[𝜌(𝑟, 𝑡)] + 𝑣𝑒𝑥𝑡(𝑟, 𝑡) 

(3) 

The second term on the r.h.s., 𝑣𝑋𝐶, 𝑣𝑒𝑥𝑡 are respectively the electronic Coulomb repulsion potential, 

the exchange-correlation potential and the external potential, the sum of which defines the so-called 

Kohn-Sham potential 𝑣𝐾𝑆. External perturbations such as the electric field generated by laser fields or 

by fast-moving ions are other contributors to 𝑣𝑒𝑥𝑡. The types of perturbations available in deMon2k 

will be described in a following section. The numerical propagation of Eq. (1) faces the issue that 𝐻, 

being a functional of the density, is intrinsically time dependent. Propagation over long time scales 

(e.g. for tens of attoseconds) is therefore not possible. In practice, we achieve propagation by 

discretizing the time variable into small time steps Δ𝑡𝑒  of the order of 0.1-5 as. The propagator should 

fulfill two important properties: it has to be unitary and time-reversible [48,52]. In deMon2k we 

currently have implemented the second-order Magnus method [48,53]. 

𝜌(𝑡𝑛 + Δ𝑡𝑒) = 𝑒−𝑖𝐻(𝑡+
Δ𝑡𝑒

2
)∗𝛥𝑡𝜌(𝑡𝑛)𝑒𝑖𝐻∗(𝑡+

Δ𝑡𝑒
2

)∗𝛥𝑡 
(4) 

 

Eq. (4) propagates the electron density from 𝑡𝑛  to 𝑡𝑛 + Δ𝑡𝑒 , knowing the Kohn-Sham potential at time 

𝑡𝑛 +
𝛥𝑡

2
. Two propagation schemes, relying either on an iterative [52] or on a predictor-corrector [54] 

(PC) solvers, are available in deMon2k. The iterative solver is the most robust and, provided a 

sufficiently small time step, almost always ensures a stable propagation [48]. The PC solver turned out, 

in our experience, to be also stable in most simulations if it is used with time steps of the order of 1 as. 

As the PC solver needs only one evaluation of the KS potential per propagation step, it allows large 

computational time savings. A demanding task is the evaluation of the exponential of the KS matrix. In 

deMon2k, the user has the choice between a straightforward diagonalization of the matrix, a Taylor 

expansion, a Chebyshev expansion, or a Baker–Campbell–Haussdorff [51] expansion to operate this 

task [52].  

2.2 Imaginary time propagation of electron densities 

Before conducting RT-TD-DFT propagation, it is necessary to obtain the electronic ground state density 

of the system. This can be done by solving the stationary Kohn-Sham equations [55]. Each orbital 𝜓𝑖  is 

the solution of an eigenvalue equation, (−
1

2
∇𝑖

2 + 𝑣𝐾𝑆) 𝜓𝑖 = 𝜀𝑖𝜓𝑖 , involving the KS potential 𝑣𝐾𝑆 . 

These eigenvalue equations are highly nonlinear because the KS potential is itself a functional of the 

electron density. As with most quantum chemistry codes, deMon2k solves the set of homogeneous KS 

equations via a self-consistent-field procedure (SCF) involving the diagonalization of the KS 
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Hamiltonian1. Imaginary time propagation (ITP) is an alternative to obtain the electronic ground state 

[57]. ITP has been made available in deMon2k as part of this work. ITP is an approach based on the 

Wick rotation of time, from 𝑡 to −𝑖𝑡, in Eq. (3). This leads to the propagator 𝑈(𝑡 + ∆𝑡) = 𝑒𝐻(𝑡+
Δ𝑡𝑒

2
)∗𝛥𝑡  . 

Therefore, starting from a trial wavefunction |𝛹(0)⟩  decomposed over the eigenstates |𝜙𝑖⟩  with 

amplitudes 𝐴𝑖(0), ITP leads to a wave function |𝛹(𝜏)⟩ = ∑ 𝐴𝑖(0)𝑒−𝜏𝐸𝑖|𝜙𝑖⟩∞
𝑖=0  after a propagation 

time 𝜏. Because of the exponential term, it is apparent that the system accumulates ground state 

character over time.  

ITP may have advantages over SCF in cases where SCF convergence is tedious to obtain, for example 

in systems with highly degenerate electronic structures like transition metal complexes with partially 

filled d, or in lanthanides with partially filled 4f orbitals. For instance, Flamant et al. reported ITP 

simulations for Cu15 and Ru55 nanoclusters [58]. The implementation in periodic DFT systems reported 

by McFarland et al. [59] and Hekele et al. [60] evidenced that the ITP framework allows to reach ground 

state energy of metallic systems, usually difficult to achieve with conventional SCF iterations. In 

addition to SCF convergence issues, the diagonalization step involved at each SCF cycle may also 

become computationally expensive for large systems and can be handled more easily by ITP. ITP also 

permits to find electronic ground states in the presence of complex absorbing potentials, a feature 

that proves useful when trying to identify resonant states.  

 

2.3 Ground state density perturbation, first applications 

An electronic propagation is generally launched from the ground state density on which an external 

perturbation is applied. deMon2k currently implements several kinds of perturbations opening the 

door toward the simulation of several physicochemical phenomena of interest. Our code can cope with 

irradiation with XUV (eXtreme Ultra-Violet) photons (or lower energy photons) and with light fast ions 

(e.g. H+, He2+…). Irradiation with higher energy photons (X-, -rays), heavy ions (e.g. Ni22+, …), or with 

another kind of quantum particles (e.g. -) are left for future work.  

For photon irradiation, we adopt the electronic dipole approximation. The electric field component 

(𝑭𝑒) of the electromagnetic wave interacts with the dipole moment of the molecule (𝝁): 𝐸𝑝𝑒𝑟𝑡(𝑡) =

−𝝁(𝑡) ∙ 𝑭𝑒(𝑡). 𝑭𝑒  may be modeled as the product of a monochromatic light electric field and a carrier 

function (i.e. a Gaussian pulse, a squared sinusoidal pulse or a linear ramp). Although not yet 

implemented, a succession of pulses is also straightforward to implement and would be useful to 

                                                             
1 To mitigate this last statement though, we indicate that a diagonalization-free SCF solver has been recently 
developed by Köster and co-workers in deMon2k [56]. 
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simulate pump-probe experiments. 𝑭𝑒 may alternatively be an instantaneous electric kick, which is 

useful for simulating the absorption spectra of a molecule. Indeed, the line shape of the absorption 

spectrum of a molecule can be estimated from the dipole strength function 𝑆 that is related to the 

absorption cross-section tensor 𝜎  expressed in the frequency domain: 𝑆(𝜔) =
1

3
𝑇𝑟[𝜎(𝜔)] . 𝜎  is 

evaluated from the imaginary part of the complex polarizability tensor 𝛼, i.e. 𝜎 =
4𝜋𝜔

𝑐
Im[𝛼(𝜔)], with 

𝑐  being the speed of light. Therefore, an absorption spectrum can be evaluated using RT-TD-DFT 

launching three individual electron dynamics simulations from a stationary electron density and 

perturbed by a weak electric field of strength 𝜅 applied along either the x, y or z directions (𝑑). The 

Fourier transform of the dipole moment (𝜇𝑗 ) recorded along the simulation gives access to the 

polarizability tensor 𝛼: 𝛼𝑑,𝑗 =
1

𝜅
𝜇𝑑,𝑗(𝜔) [61]. Eventually, one may simplify the procedure and run a 

unique simulation with the field aligned in the x, y and z directions at a time. As an illustrative example, 

Figure 1 depicts the absorption spectra of gold nanoparticles, that we have calculated for this article 

with one RT-TD-ADFT simulation for each field direction. The spectra reveal a red-shift of the lowest-

energy absorption peak when increasing the nanoparticle size. 

Excitations caused by fast ions are achieved via Coulomb scattering. The interaction energy for a 

projectile holding an electric charge 𝑞𝑝𝑟𝑜𝑗  and traveling with speed 𝑣𝑝𝑟𝑜𝑗  is best described with a 

Liénard-Wiechert potential [62]: 𝐸𝑝𝑒𝑟𝑡(𝑡) = ∫ 𝛾𝜌(𝑟)𝑞𝑝𝑟𝑜𝑗 𝑅⁄
𝑠𝑝𝑎𝑐𝑒

𝑑𝑟  with 𝛾  being the angle-

dependent Lorentz factor (1 − 𝑣𝑝𝑟𝑜𝑗
2 (𝑠𝑖𝑛𝛩)2 𝑐2⁄ )

−1 2⁄
 . In these last expressions, 𝑅  is the distance 

between an electron and the projectile, and 𝛩 is the angle formed between the projectile propagation 

line and electron-projectile axis. For projectiles traveling at speeds much smaller than 𝑐, the Liénard-

Wiechert reduces to a standard Coulomb potential (𝛾 → 1). 
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Figure 1: absorption spectra of gold nanoparticles of different sizes obtained by RT-TD-DFT simulations with deMon2k. After 
ITP a Dirac electronic kick of strength 0.06 a.u. was applied. RT-TD-ADFT propagations were pursued for 9 fs with a 0.001 fs 
time step. PBE XC functional [63] and relativistic core potentials with associated basis set have been used [64].  

Finally, an alternative method to the application of an external perturbation to the ground state 

density is to manually modify the occupation numbers of the ground state MOs so as to create a 

fictitious starting electronic state. We may either conduct a separate Casida’s TD-DFT calculation [42] 

to prepare a desired excited state or hole(s) can be created in the electronic structure (“sudden 

ionization approximation”). Figure 2 compares the charge migrations taking place after the ionization 

of an uridine monophosphate molecule, around the sugar moiety, caused either by a collision with an 

α-particle or by depopulation of a MO localized in the sugar (after applying a Pipek-Mezey MO 

localization procedure [65]). Both approaches indicate that the hole initially created on the sugar part 

delocalizes on the nucleobase after a few fs, while the phosphate group does not accumulate charge 

over the simulation. On the other hand, we see noticeable differences between the two graphs. The 

charge on the nucleobase is higher 3 fs after ionization with the sudden ionization approximation . The 

charge on the water solvation shell is largely negative when we simulate collision indicating the 

localization sites of the electrons expelled from the sugar. In fact, with the sudden ionization 

approximation an electron is completely removed from the system, thus the water shell’s charge 

remains rather small. We refer the reader to [66] for a deeper analysis of these results.  
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Figure 2: charge migrations following ionization a uridine monophosphate molecule solvated in water at the level of the sugar 
moieties. The hole on the sugar group is created either upon collision with an α-particle at 3.2 fs (top) or by depopulation of 
MO localized on the sugar (bottom) at time 0. The curve represents Hirshfeld [67] charge variations with respect to the ground 
state. Color code: sugar in red, nucleobase in green, phosphate group in yellow and solvation shell in blue, sugar+nucleobase 
in red-green. Adapted with permission from [66]. 

2.4 Electronic propagations with Auxiliary DFT potentials 

We describe in this section some practical details of our implementation within the so-called Auxiliary 

Density Functional Theory framework. First, we expand the Kohn-Sham molecular orbitals as linear 

combinations of atomic orbitals: 

𝜓𝑖(𝑟) = ∑ 𝑐𝜇𝑖

𝜇

𝜇(𝑟) (5) 

where 𝜇 represents a basis function and 𝑐𝜇𝑖 , are the complex molecular orbital coefficients. We use 

Gaussian-type functions as basis sets. This methodological choice raises caution points regarding the 

ability to describe certain processes induced by strong perturbation of the density, such as ionization. 

A section will be dedicated to this point below. The reason for choosing Gaussian functions is the 

availability of highly performant algorithms developed by the quantum chemistry community to 

calculate electronic integrals [68,69]. The Kohn-Sham energy expression for the system in the presence 

of an external perturbation reads: 
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𝐸 = ∑ 𝑃𝜇𝜈

𝜇,𝜈

𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 +

1

2
∑ ∑ 𝑃𝜇𝜈

𝜎,𝜏

𝐻𝜇𝜈〈𝜇𝜈||𝜎𝜏〉

𝜇,𝜈

+ 𝐸𝑥𝑐[𝜌] + 𝐸𝑝𝑒𝑟𝑡[𝜌] 
(6) 

where the 𝑃𝜇𝜈 is the density matrix defined as: 

𝑃𝜇𝜈 = 2 ∑ 𝑐𝜇𝑖
∗ 𝑐𝜈𝑖

𝑜𝑐𝑐

𝑖

, 
(7) 

and 𝐻𝜇𝜈
𝑐𝑜𝑟𝑒  are elements of the core Hamiltonian for one-electron interactions. The double vertical bar 

( || ) denotes the Coulomb operator. Although our code deals either with closed- or open-shell 

electronic structures, we will be focusing on the former case here, for the sake of simplicity. The 

classical electron-electron repulsion (second term on the r.h.s. of Eq. (6)) represents a computational 

bottleneck. If solved, a second bottleneck comes from the evaluation of the XC contribution (𝐸𝑥𝑐). To 

overcome these issues, deMon2k implements the ADFT framework [70]. ADFT relies on the variational 

fitting of the Coulomb potential, which approximates four-center-electron-repulsion-integrals (ERIs) 

by two- and three-center integrals [70–72]. To this end, an auxiliary density function (𝜌̃), expressed as 

a linear combination of auxiliary basis functions (𝜌̃(𝑟) = ∑ 𝑥𝑘𝑘(𝑟)𝑘 ), is fitted to reproduce as closely 

as possible the Coulomb repulsion energy. The procedure is variational and leads to the following 

energy: 

𝐸𝐴𝐷𝐹𝑇 = ∑ 𝑃𝜇𝜈

𝜇,𝜈

𝐻𝜇𝜈
𝑐𝑜𝑟𝑒 + ∑ ∑ 𝑃𝜇𝜈〈𝜇𝜈||𝑘̅〉𝑥𝑘

𝑘𝜇,𝜈

−
1

2
∑ 𝑥𝑘

𝑘,𝑙

〈𝑘̅||𝑙〉̅𝑥𝑙 + 𝐸𝑥𝑐[𝜌̃] + 𝐸𝑝𝑒𝑟𝑡[𝜌] 
(8) 

 

Note that the auxiliary density enters the exchange-correlation contribution (XC) too. deMon2k is 

equipped with an algorithm to automatically generate auxiliary function sets ({𝑘̅}) from a given atomic 

orbital basis set. For the sake of computational efficiency, the auxiliary basis set functions are atom-

centered primitive Hermite-Gaussian functions grouped in sets sharing the same exponent [73].  

Importantly, ADFT is variational and the error made by introducing the fitted density can be 

systematically reduced by augmenting the quality of the auxiliary basis set. The matrix elements of the 

Kohn-Sham potential derived from the ADFT energy expression reads: 

𝐾𝜇𝜈  = (
𝜕𝐸𝐴𝐷𝐹𝑇

𝜕𝑃𝜇𝜈
) = 𝐻𝜇𝜈

𝑐𝑜𝑟𝑒 + ∑⟨𝜇𝜈‖𝑘⟩(𝑥𝑘 + 𝑧𝑘)

𝑘

+ (
𝜕𝐸𝑝𝑒𝑟𝑡[𝜌]

𝜕𝑃𝜇𝜈
) 

(9) 

𝑧𝑘 = ∑⟨𝑘‖𝑙⟩
−1

⟨𝑙|𝑣𝑥𝑐⟩

𝑙

 (10) 

𝑣𝑥𝑐 ≡ 𝜕𝐸𝑥𝑐 𝜕𝜌̃⁄  is the exchange-correlation potential. The KS potential does not explicitly depend on 

the orbital density, but only on the fitted density, hence the ADFT denomination [74]. To investigate 

ionization processes or electronic transport, it may be useful to add complex absorbing potentials 
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(CAP) to the KS potential. This approach will be detailed in section 3.1. Actually, depending on the sign 

of the CAP, electrons can be removed from or injected into the system during RT-TD-ADFT simulations. 

All integrals, except those involving XC contributions or CAP (when defined in the real space, see 

below), are evaluated by analytical methods, providing almost machine precision (16 decimals). The 

other integrals are evaluated by numerical integration over atom-centered Lebedev grids [75]. 

Tabulated grids or adaptive grids [75] with user-defined accuracy are available to carry out this task.    

deMon2k implements a wide range of models to evaluate XC contributions and is interfaced with the 

LibXC library [76]. The choice of functionals available includes Local Density Approximation (LDA), 

generalized gradient approximation, or meta-generalized-gradient-approximation functionals. Global 

hybrids and range-separated hybrids that incorporate constant or distance-dependent Fock potential 

contributions are also available for RT-TD-ADFT simulations. In the latter case, a variational fitting of 

the Fock potential is introduced to avoid four-centers-integrals and reduce computational cost. 

Importantly this algorithm is coupled to a localization procedure that permits the screening of integrals 

that do not contribute to the Fock potential  (see References [77,78] for details). So far, all functionals 

available in deMon2k to conduct RT-TD-ADFT simulations ignore memory effects in the XC potential 

(adiabatic approximation). This point will be discussed in depth in section 3.2. 

In summary, the ADFT methodology from deMon2k allows a drastic reduction of the computational 

cost and the scaling law with system size, with controllable accuracy, as compared to a “naïve” 

implementation of KS-DFT. We have adapted this technology to RT-TD-ADFT thereby enabling electron 

dynamics simulations within large systems. We extensively assessed the reliability of RT-TD-ADFT for 

the calculation of absorption spectra, electronic stopping power, or attosecond charge migrations, and 

found that ADFT is a reliable methodology [79].  

2.5 High-Performance Computing  

We have dedicated substantial efforts to improving the computational performance of our RT-TD-ADFT 

module. Currently, systems with up to 1,000 atoms can be handled in routine simulations or, said 

alternatively, systems containing a few thousands electrons [61,80]. Effective core potentials and 

model core potentials [81] are available to remove core electrons from the list of explicitly represented 

particles and to reduce computational timing. Figure 3, left, is an example of the benchmarks we have 

published in the last years for a series of water clusters ranging from 50 to 500 molecules [19,61,79]. 

Obviously, the cost associated with the calculation of the Kohn-Sham potential is manageable even for 

the largest droplet (5,000 electrons) and exhibits a favorable scaling law. This result indicates that our 

RT-TD-ADFT module fully benefits from the algorithmic machinery developed by Köster and co-workers 

for stationary calculations, notably, the MINRES approach [82] to density fitting and the double 
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asymptotic expansions schemes [83,84] to handle electronic integrals calculations. The most 

demanding computational task in RT-TD-ADFT is the calculation of the propagator (“matrix 

exponentiation”), Eq. 4. It is evaluated here using a Taylor series with an interface with the ScaLAPACK 

library [85] which shows good parallelization properties [19,61]. In the case depicted in Figure 3, one 

could use up to 400 CPUs with appreciable gain and to further strongly decrease the cost of the 

simulation [19]. To go one step beyond in terms of efficiency, we have recently developed a hybrid 

CPU/GPU code with very encouraging results [86]. In our current implementation, matrix 

exponentiation and basis transformations are handled by GPUs. The graph on the right-hand side 

attests to the drastic decrease in the computational cost now associated with these tasks, showing a 

reduction by a factor of almost 40 for the largest droplet containing 500 molecules. There is actually 

still room for further improvement of code performance.  

  

Figure 3: large water droplets containing up to 5,000 electrons are amenable to RT-TD-ADFT simulations (version 6.1.6). 
Timings to conduct 1 fs simulations with a time step of 50 as, PBE functional with a direct scheme to calculate electronic 
repulsion integrals. The x-axis represents the number of atomic orbitals. Calculations run on the Jean Zay supercomputer (at 
IDRIS) on 2 Intel Cascade Lake 6248 processors (20 cores at 2.5 GHz), namely 40 cores per node, 192 GB of RAM memory and 
4 Nvidia Tesla V100 16GB GPU cards. Left: Pure CPU simulations conducted with ScaLAPACK (40 CPU cores). Right: hybrid CPU-
GPU simulations (40 CPUs and 4 GPUs used). Note the change of scale between the two graphs. Adapted with permission from 
[79] and [86].  

2.6 Real-Time Time-Dependent Multicomponent ADFT  

Multicomponent DFT (MC-DFT) provides a theoretical framework to describe quantum mechanical 

systems composed of particles with different masses, charges, or spins. MC-DFT is rooted in an 

extension of the Hohenberg-Kohn theorems for composite systems where the total energy is a 

functional of the one-particle densities, which are built from reference non-interacting orbitals under 

the Kohn-Sham formalism [87]. MC-DFT has been employed to incorporate nuclear quantum effects 

beyond the Born-Oppenheimer approximation [88–90] and to analyze the interaction of atoms and 

molecules with exotic particles such as positrons   [91] and muons [92]. The MC-DFT approach provides 

a more efficient framework for the inclusion of quantum effects as compared to traditional path 
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integral methods [93]. Moreover, time-dependent (TD) MC-DFT methodologies have been formulated 

based on an extended Runge-Gross theorem for multicomponent quantum systems [94]. Linear 

response TD-MC-DFT has been employed to simultaneously compute the vibrational and electronic 

absorption spectra of small molecules [95,96]. Those spectra have also been computed from real-time 

(RT) propagation of the electronic and nuclear densities [97]. In addition, RT-TD-MC-DFT propagation 

has been used to study the dynamics of a positronic molecule in a laser field [98]. Furthermore, the 

RT-TD-MC-DFT method has been coupled with Ehrenfest dynamics to study excited-state proton 

transfer reactions [99]. In this approach, the transferred proton and the electron propagations are 

described with RT-TD-MC-DFT while the remaining nuclei move classically [97]. 

It is important to note, however, that despite many advances in the field, the development of 

quantum-particle-electron correlation functionals is still a major challenge that hinders the widespread 

adoption of MC-DFT methods. 

Recently, we extended the Auxiliary DFT (ADFT) formulation to multicomponent systems [100,101]. In 

the current deMon2k code, auxiliary densities can be safely used to evaluate the electron-electron, 

proton-proton, and electron-proton Coulomb interactions, along with the electron-proton correlation 

energy [101]. A few LDA functionals have been implemented to evaluate the latter contribution [88–

90]. Including the ADFT formalism in the MC-DFT framework significantly decreases the computational 

effort, as it reduces the formal scaling of the MC-DFT calculations with respect to the number of 

electrons and protons [101]. The real-time propagation of the auxiliary density for multicomponent 

systems has also been proposed. The implementation of this RT-TD-MC-ADFT method is currently 

underway and will be described in due course. 

 

3. Matter under strong perturbations  

3.1 Complex absorbing potential, Gaussian basis sets and all that  

RT-TD-ADFT simulations give access to response properties of molecules subjected to weak or strong 

perturbations. Above and near ionization transitions raise several issues related to the description of 

continuum states (non-bonded electrons, NBEs). These transitions are characterized by resonance 

states that quickly decay, eventually through auto-ionization channels [102]. Furthermore, because of 

the localized basis set used in deMon2k, the continuum turns out to be represented as a succession of 

discrete electronic states [21]. This leads to artificially higher ionization transitions than expected. 

These transitions also create spurious absorption bands at high energy spectra that further can 

contribute to unreal auto-ionization events. NBEs, on the other hand, are reflected back to the 

molecular system when they reach the border of the space spanned by the chosen basis set, while in 
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reality, NBEs would escape the system. In the presence of a laser field, NBEs are driven back to the 

bath of bound electrons, therefore perturbing the “real” electron dynamics taking place there. NBEs 

finally pose technical issues when trying to define atomic charges and charge flows when analyzing the 

outputs of the simulations. 

To cope with the artificial confinement of NBEs, a common approach is to introduce a complex 

absorbing potential (CAP) that removes fractions of electrons in the course of the simulation. As their 

name indicates, CAPs are introduced in the imaginary part of the Kohn-Sham potential (Eqs. 3 and 9). 

Two flavors of CAP are available in deMon2k. In the first one, the potential is defined according to 

distance criteria in the real space (“spatial CAP”) [102], while in the other it is defined according to the 

energies of the Kohn Sham MOs describing NBEs. As in the work of Schlegel and co-workers, the former 

is built from a superposition of atom-centered CAPs (𝑣𝑎
𝑠𝑝𝑎𝑐𝑒

)[103].  

𝑣𝑠𝑝𝑎𝑐𝑒(𝑟) = 𝑚𝑖𝑛𝑎 ∑ 𝑣𝑎
𝑠𝑝𝑎𝑐𝑒 (𝑟)

𝑁𝑎𝑡𝑜𝑚𝑠

𝑎=1

 
(11) 

𝑣𝑎
𝑠𝑝𝑎𝑐𝑒(𝑟) = {

0, 𝑟 ≤ 𝑅°

𝑉𝑚𝑎𝑥𝑠𝑖𝑛2 [
𝜋

2𝑊
(𝑟 − 𝑅°)] , 𝑅° < 𝑟 < 𝑅° + 𝑊

𝑉𝑚𝑎𝑥 , 𝑟 ≥ 𝑅° + 𝑊

 

(12) 

 

The CAP strength smoothly increases beyond a threshold distance from the molecule (𝑅°) and reaches 

a maximum value (𝑉𝑚𝑎𝑥), when the distance reaches 𝑅° + 𝑊. In our code, spatial CAPs are calculated 

by numerical integration of atom-centered Lebedev grids, with a user-defined accuracy. The 

parameters 𝑅°, 𝑊 and 𝑉𝑚𝑎𝑥  have to be carefully optimized, for example, by running a perturbation-

free RT-TD-ADFT simulation from the SCF solution and by checking energy and wavefunction’s norm 

conservations. A spatial CAP positioned too close to the molecule would absorb bound electrons in the 

ground state, which is generally not the desired outcome. Spatial CAPs are tricky to use with localized 

basis sets. First, basis functions need to be present to describe electrons at large distances, using very 

diffuse functions and/or grids of ghost atoms [103]. This causes an increase of computational cost due 

to the increase of the number of basis functions and of the grid points necessary to evaluate XC 

integrals, not to mention the risk of linear dependences within the basis set. Second, spatial CAPs do 

not distinguish unbound electrons from bound electrons in very diffuse states (e.g. Rydberg states). As 

a consequence, a spatial CAP will not absorb the sole NBE, making the interpretation of results delicate 

sometimes. Ideally one would position a spatial CAP far away from the molecule (e.g. by setting 𝑅° >

50 Å), but this would be associated to an explosion of the computational cost with a code relying on 

localized basis sets.  



17 
 

An alternative is to define CAP based on another property of NBEs, namely their energies. We may 

indeed decide to absorb electrons populating MOs of high energy in the course of RT-TD-ADFT 

simulations. Lopata and coworkers used this method to simulate near-edge X-ray absorption spectra 

[104]. Energy CAP can be defined as follow: 

𝑣𝑒𝑛𝑒𝑟 = 𝐶′(𝑡)Γ𝐶′∗(𝑡) (13) 

𝛾𝑖 = {
0, ἐ𝑖 ≤ 0,

𝛾0[𝑒𝑥𝑝(𝜉ἐ𝑖) − 1], ἐ𝑖 > 0.
 

(14) 

 

𝐶′ is the matrix of the MO coefficients in an orthonormal basis [105] and Γ is a diagonal matrix, the 

non-zero elements of which are defined by Eq. 14. 𝛾𝑖  can be interpreted as an ionization rate of an 

electron in state 𝑖  associated to a lifetime 1 2𝛾𝑖⁄ . Three empirical parameters define this lifetime, 

namely 𝛾0, 𝜉 and 𝜀𝑂. 𝛾0 has units of energy and sets the energy scale. 𝜉 specifies the speed at which 

electrons populating state i will be absorbed. It has units of reciprocal energy. The higher the Kohn-

Sham state the smaller the lifetime. 𝜀𝑂 is the vacuum energy cut-off introduced to shift the ith MO level  

ἐ𝑖 = 𝜀𝑖 − 𝜀𝑂. This shift is needed to account for the underestimation of the ionization potential with 

almost all XC functionals (see the dedicated section 3.2). It is thus strongly dependent on the 

functional. As the energy of the lowest unoccupied MO (𝜀𝐿𝑈𝑀𝑂) equals the opposite of electron affinity 

for the exact functional [106], one can set  𝜀𝑂 to enforce this equality provided separate calculations 

are done to evaluate the electron affinity of the system of interest. Alternatively, one can use Casida’s 

formulation of TD-DFT to estimate 𝜀𝑂 [104]. In general, 𝜀𝑂  is thus also system dependent 

For weak perturbations, the energy CAP may be evaluated only once from the SCF solution (see e.g. 

[104]). On the other hand, for stronger perturbations associated with significant electron density 

absorption the electronic spectrum varies (𝜀𝑖) and one should re-evaluate the CAP on-the-fly. This is 

not an option we have explored so far. At present, our experience with CAP defined by Eq. 11-14 is 

mitigated because of the sensitivity of the results obtained with the chosen CAP parameters. Room 

certainly exists to further improve the treatment of electron emission with our code.  

For the sake of illustration, we report here the irradiation of molecular nitrogen N2 (aligned along the 

z-axis with bond distance 1.09 Å) with an XUV pulse and with a fast proton. We start our discussion 

with XUV irradiation. We apply a squared cosine-shaped pulse along the z-axis. The maximum electric 

field strength and energy of the XUV pulse are established at 0.005 Ha/bohr (3.5 x 1012 W/cm2) and 30 

eV, respectively. The total duration of the pulse is 30 fs. We have used the PBE XC functional [63]. The 

simulation was conducted for 50 fs with a time step of 1 as. A diffuse basis set built from the aug-cc-

pVTZ but complemented with 28 diffuse functions was used [103].  
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The threshold distance 𝑅°, width 𝑊 and maximum potential 𝑉𝑚𝑎𝑥   of the spatial CAP are set to 15 Å, 

5 Å, and 15 Ha, respectively. For the energy CAP, the energy scale 𝛾0 and damping strength 𝜉 are set 

to 0.2 Ha and 0.05 Ha-1 respectively. The vacuum energy cut-off has been approximated as 0.0318 Ha 

so that the corrected energy of the lowest unoccupied MO equals the electron affinity calculated from 

two separate SCF calculations of the neutral and anionic forms of the molecule.  

,  

Figure 4: N2 ionization by 30 eV XUV pulse (Top) and by an impact with a 0.07 MeV H+ ion (Bottom).  (a) variation of total 
energy (XUV-pulse), energy deposition (H+ ion), (b) number of electrons absorbed by the CAP and (c) the numbers of electrons 
still in positive energy KS MOs, all as function of the simulation time (fs). (d) corresponds to the propagation of the dipole 
moment on the z axis and the pulse field between 16 and 18 fs. In order to easily compare the amplitude of the pulsed field is 
scaled.    
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Time-dependent profiles of the variation of total energy relative to the ground state (E), of the 

number of absorbed electrons by the CAP (𝑁𝑒
𝑎𝑏𝑠), and of the number of electrons in KS MOs of positive 

energy (𝑁𝑒
𝑀𝑂+) are depicted in Figure 4. For simulations without CAP (green line), E increases upon 

application of the pulse with a maximum at around 17 fs, then decreases and remains stable after 

application of the pulse. Panel c shows that the 𝑁𝑒
𝑀𝑂+ curves follow the same evolution as E. This 

feature arises when the delay of propagation of the dipole moment varies compared to the pulse field 

which produces destructive and constructive superpositions, as shown in Panel d. When adding a 

spatial or energy CAP, NBEs are quickly absorbed and the number of electrons is, as expected, no 

longer conserved (blue and red line) which also scales down E, but both kinds of CAP give similar 

results. After a sharp increase at around 15 fs, when the external electric field is the most intense, a 

rather steady situation is obtained. In the end, the introduction of CAP was necessary to correctly 

describe the ionization and dynamics of the XUV pulse interaction. Either type of CAP can successfully 

remove the NBEs and decrease 𝑁𝑒
𝑀𝑂+ . 

We now consider the irradiation with a proton having 70 keV of kinetic energy. The same methodology 

and parameters are employed, except the CAP strength which is slightly modified: the threshold 

distance 𝑅° of the spatial CAP was changed from 15.0 to 12.5 Å and, the energy scale 𝛾0 of energy CAP 

from 0.25 to 0.05 Ha. These modifications were needed to ensure the stabilization of the propagation. 

The proton was initially positioned 30 Å away from N2 and struck the N-N bond after 816 as. 

60 eV are deposited upon collision with the ion (Figure 4, bottom).  In the absence of CAP, the energy 

is conserved after the collision, as expected for an isolated system. The number of electrons in positive 

energy KS MOs suddenly rises from 0 to 1.25 and smoothly increases up to 1.5 electrons. The sharp 

increase is clearly due to electronic excitations at the moment of the collision, while the slower phase 

is likely due to many internal electronic transitions taking place within the electron cloud (e.g. some 

auto-ionization processes). When a CAP is added, a fraction of electrons is absorbed, with a 

consequent reduction of total energy. CAP does not seem to affect much the amount of energy 

deposited by charged particles. This may be explained by the short interaction time compared to a 

photon pulse. On the other hand, the two flavors of CAP, either defined in spatial or in energy space, 

give different results. With the chosen parameters, the energy CAP absorbs electrons faster than the 

spatial CAP. The low energy electrons emitted upon collision need time to reach the 𝑅° distance of the 

spatial CAP while they are more readily absorbed with the energy CAP after energy deposition. After 

30 fs, the number of electrons and the total energy of the system haven’t converged to the same 

values. One could probably tune the parameters of the energy CAP to match more closely the results 

obtained with the spatial CAP, for instance by decreasing the 𝛾0 term. It is actually hard to tell which 
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of the two CAP formulations is the most appropriate. This discussion illustrates the aforesaid comment 

on the use of CAP with deMon2k and the fact that more work is needed along this line.  

 

3.2 Exchange-correlation functionals  

The exact exchange-correlation functional appearing in the total energy expression in the Kohn-Sham 

formulation is unknown. In practice, different approximate XC functionals have been proposed and 

implemented in deMon2k software (see section 2.3).  

Several issues are raised when using common functionals to simulate matter under strong 

perturbations. A prominent difficulty is the time dependence of the XC potential, 𝑣𝑥𝑐[𝜌](𝒓, 𝑡) that 

should incorporate memory effects from previous times. This time dependence is actually absent from 

most TD-DFT implementations, including ours. The adiabatic approximation becomes problematic 

when the system is brought far away from the ground state, as in the case of strong perturbation. Well-

known limitations of adiabatic TD-DFT are the difficulty to describe multiple electron/hole transitions, 

and the inability to simulate charge migrations after photoionization [107]. Important efforts are made 

to go beyond the adiabatic approximation but the track is long and tedious [108–111].  

Besides the time dependence of 𝑣𝑥𝑐 , another difficulty is the incorrect asymptotic decay of the 

exchange potential, which should decay as −1 𝑟⁄ . A wrong asymptotic behavior was shown to severely 

underestimate high-lying excited states such as Rydberg states [42]. In addition, the improper 

treatment of the Derivative Discontinuity and of fractional occupations [112,113] are other sources of 

concern when dealing with charge migrations flowing in and out of atoms in large systems. In the past, 

we have used the correct-asymptotic-potential generalized-gradient-approximation functional 

developed by Carmona-Espíndola, Gázquez and co-workers[114]. Their recent “nearly correct CAP” 

exchange functional (NCAP)[115,116] that includes approximated  the derivative discontinuity looks 

promising too.  

Global hybrids functionals, as they adopt a fraction of exact exchange with the correct energy and 

potential asymptotic character, allow a more accurate description compared to their generalized-

gradient-approximation counterpart. Nevertheless, the asymptotic decay of these XC functionals is 

modulated by a factor that ranges from 0 to 1 representing the amount of the exact exchange. As a 

consequence, the exchange potential decay will be underestimated depending on this factor and the 

one related to the DFT exchange. In range-separated hybrid functionals, the asymptotic decay of the 

potentials can be improved relative to their global hybrid counterparts, allowing a better description 

of a wide range of properties [117–119]. A physical justification of range-separated hybrid functionals 

was proposed by Savin in the 1990s [120,121] 
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Another drawback arising from the use of an approximate XC functional is the so-called self-interaction 

error [122]. The latter can be better illustrated considering a one-electron system in which the electron 

should experience only the external potential and for which we exactly know the KS potential and the 

total energy. In the ground state density, the system, which is assumed to be self-interaction free, 

should fulfill the following condition: 

𝐸𝐻[⍴𝑖,𝜎]−𝐸𝑋𝐶[⍴𝑖,𝜎] = 0 (15) 

Over the years, several studies have shown how the self-interaction error can affect, for example, 

ionization processes [123], dissociation of molecules, and the prediction of the energy of charge-

transfer states (the latter is further explored below). To address this issue, self-interaction correction 

(SIC) methods, based on the Perdew-Zunger correction [122], are frequently used. The latter involves 

the explicit subtraction of the self-interaction error for each orbital. An alternative is the average 

density SIC (ADSIC) [124], which assumes that the single electrons can be represented by equal single-

particle densities, then replacing the single-electron density ⍴𝑖  with the averaged density ⍴ 𝑁⁄  (with N 

the total number of electrons). ADSIC method is simple and shows good scaling properties with system 

size. It was shown to largely correct the ionization potential for a variety of atoms and molecules of 

different sizes and chemical compositions [125,126]. ADSIC was later tested in attosecond electron 

dynamics simulations with comparisons against time-dependent Schrodinger equation on top of 

correlated field-free stationary electronic states. RT-TD-DFT with ADSIC was found to perform 

qualitatively well in the case of strong but non-ionizing laser field irradiation [127]. On the other hand, 

a recent (RT-)TD-DFT study of a protein chromophore (bacterial chlorophyll) suggests that ADSIC still 

faces difficulties for charge transfer excited states [128]. 

Self-interaction error, together with the incorrect asymptotic behavior and the missing derivative 

discontinuity of XC functionals, can lead to an incorrect description of long-range charge transfer (CT) 

processes and charge recombination [129,130]. Computational tools have been developed to 

understand the reliability of TD-DFT approach in describing CT processes. A formula originally proposed 

by Mulliken [131] allows evaluating the lower excitation energy for one electron intermolecular CT 

(𝜔𝐶𝑇) between a donor (D) and an acceptor (A):  

𝜔𝐶𝑇 = 𝐼𝑃𝐷 − 𝐸𝐴𝐴 −
1

𝑅
 

(16) 

𝐼𝑃𝐷  is the ionization potential of the donor, 𝐸𝐴𝐴  is the electron affinity of the acceptor and 1/R 

represents the hole-electron coulombic interaction after CT. Inspired by this expression, the MAC  index 

[132,133], originally developed in linear response TD-DFT, uses a Koopman-type approach in which the 
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𝐼𝑃𝐷 and 𝐸𝐴𝐴 are replaced by the weighted average of the starting (𝜖𝑖 ) and final (𝜖𝑎 ) DFT-Hartree-

Fock orbital energies that are involved in the CT transition under analysis: 

𝑀𝐴𝐶 =
∑ [𝑐𝑖𝑎

2(𝜖𝑎
𝐷𝐹𝑇−𝐻𝐹− 𝜖𝐼

𝐷𝐹𝑇−𝐻𝐹)]𝑖𝑎

∑ 𝑐𝑖𝑎
2

𝑖𝑎
−

1

𝐷𝐶𝑇
 

(17) 

The weights 𝑐𝑖𝑎 are the configuration interaction coefficients obtained as solutions of perturbative TD-

DFT equations using Casida’s formulation and the DFT- Hartree-Fock orbital energies are obtained with 

a single-cycle Hartree-Fock calculation on the converged SCF KS orbitals 𝜖𝑎
𝐷𝐹𝑇−𝐻𝐹  and 𝜖𝑖

𝐷𝐹𝑇−𝐻𝐹. This 

ad hoc correction aims at qualitatively correcting the underestimation of virtual orbitals due to self-

interaction error as discussed in [133]. Finally, the geometrical distance between the donor and the 

acceptor units is replaced by the 𝐷𝐶𝑇  (distance of charge transfer) index, a descriptor able to quantify 

the degree of locality of a charge transfer process by giving an estimate of the hole-electron separation 

at the excited state only on the basis of the density redistribution upon the excitation [134]. The 

resulting MAC energy value represents in this way a lower bound to the transition energy related to the 

charge transfer state under analysis and the comparison of this value with the energy computed at TD-

DFT level of theory allows the identification of unphysical states. If a given TD-DFT transition has an 

energy greater than the related 𝑀𝐴𝐶  energy, it will be associated with a real state, while a TD-DFT 

energy lower than the 𝑀𝐴𝐶  index will identify a ghost or a spurious state. Recently, some of us were 

involved in the modification of the 𝑀𝐴𝐶  index for simulation in the RT-TD-DFT domain [135]. The time-

dependent 𝑀𝐴𝐶
𝑅𝑇 index at time 𝑡𝑗  takes the following expression: 

𝑀𝐴𝐶
𝑅𝑇(tj) =

∑ [𝑛𝑣𝑖𝑟𝑡(𝑡𝑗)𝜖𝑣𝑖𝑟𝑡
𝐷𝐹𝑇−𝐻𝐹] − ∑ [𝑛𝑜𝑐𝑐𝑢(𝑡𝑗)𝜖𝑜𝑐𝑐

𝐷𝐹𝑇−𝐻𝐹]𝑜𝑐𝑐𝑢𝑣𝑖𝑟𝑡

∑ 𝑛𝑣𝑖𝑟𝑡(𝑡𝑗)𝑣𝑖𝑟𝑡 + ∑ 𝑛𝑜𝑐𝑐𝑢(𝑡𝑗)𝑜𝑐𝑐𝑢

−
1

DCT(tj)
 

(18) 

 

where 𝜖𝑜𝑐𝑐𝑢
𝐷𝐹𝑇−𝐻𝐹  and 𝜖𝑣𝑖𝑟𝑡

𝐷𝐹𝑇−𝐻𝐹  are respectively the eigenvalues of the contributing occupied (starting) 

and virtual (final) molecular orbitals with single-cycle Hartree-Fock correction, while the weights 

𝑛𝑣𝑖𝑟𝑡(𝑡𝑗) and 𝑛𝑜𝑐𝑐𝑢(𝑡𝑗) are the related occupation number at time 𝑡𝑗  extracted on-the-fly during the 

electron dynamics. As well, the DCT index is computed at every time 𝑡𝑗  using the on-the-fly density 

snapshots. Finally, by comparing the set of 𝑀𝐴𝐶  energy values from 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to 𝑡𝑓𝑖𝑛𝑎𝑙  with the charge 

transfer state energy resulting from the dynamics, it is possible to assess which regions of the 

simulation derive from a correct or erroneous description of the process for a given exchange and 

correlation functional. We here report an example of the 𝑀𝐴𝐶
𝑅𝑇  application for a long-range charge 

transfer state simulation in RT-TD-DFT. In the latter study, the molecules under analysis are a family of 

typical push-pull systems containing two groups, one acting as an electron donor (-NH2) and another 
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playing the role of electron acceptor (-NO2), connected via a spacer of different lengths. We here 

consider as an example the molecule with three phenyl groups as a spacer in order to show the ghost 

states identification in a long-range CT process (Figure 5, left). After converging the ground state 

density via an SCF procedure, we applied a 𝑐𝑜𝑠2-shaped electric pulse fulfilling the -pulse condition, 

namely  𝝁𝟎𝒏𝑭0 ∫ 𝑠(𝑡) 𝑑𝑡 =  ℏπ
+∞

−∞
, where 𝝁𝟎𝒏, 𝑭0 and 𝑠 are the transition dipole moment, obtained 

by a separate Casida’s equation TD-DFT calculation, the oscillatory electric field associated to the 

HOMO-LUMO transition and the envelop function, respectively [135]. The simulation has been done 

using an LDA functional in order to magnify the presence of ghost states. 

 

Figure 5: On the right: the CT distance (Å) in the regions of the simulation corresponding to real (green) and ghost states (red). 
Mean CT distance considering all data points of the simulation (dashed line in black), mean CT length values derived from the 
ghost (dashed line in red) and real states (dashed line in green). On the left: the molecule under analysis and a table showing 
the result of the MAC index applied on the transition energy of the CT state predicted in the TD-DFT approach and the 
percentage of ghost states predicted by the MAC index in the RT-TD-DFT simulation. Reproduced with permission from [135]. 

 

Figure 5 shows the evolution during the simulation of the distance of the charge transfer computed 

with DCT index for a time range of 10 fs. By computing the 𝑀𝐴𝐶
𝑅𝑇  index at the same timeframe and 

comparing it with the transition energy predicted during the RT simulation, we have been able to spot 

potential spurious states appearing during the dynamics. Indeed, the red color identifies time frames 

for which RT energies are expected to be incorrectly described with the LDA functional, while the green 

color is for time frames corresponding to correctly predicted RT energies. Overall, one can remark that 

the percentage of densities during the simulation corresponding to ghost states is higher than the real 

one, a result that agrees with the linear-response calculation that shows the presence of a low-lying 

CT ghost state. In summary, the 𝑀𝐴𝐶
𝑅𝑇  provides the researcher with a tool to identify those excited 

states that result to be erroneously shifted in energy, thus allowing to assess the reliability of the RT-
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TD-DFT simulations. Note that the index is not able by itself to cure the presence of unphysical/ghost 

states which are caused by an inexact exchange-correlation potential. 

 

4 Topological analyses of time-dependent electronic structures 

Dedicated analysis tools are mandatory to extract insights from RT-TD-DFT electron dynamics 

simulations. deMon2k implements the calculation of atomic charges, and more generally intrinsic 

atomic multipole, up to quadrupole, moments following various partition schemes of the real space 

(Hirshfeld [136], Becke [137], Voronoi, …). To this end, numerical integrations of the electron density 

over the atoms are conducted at regular intervals along the simulation. As this task can become 

computationally intensive, the user has the possibility to tune the quality of the integration grid, and, 

more importantly, can substitute the Kohn-Sham density with the auxiliary density to extract atomic 

multipole moments, which is a very safe procedure in most cases [67]. Another kind of analysis is to 

project the time-dependent electronic structure onto the set of ground state MOs, providing 

information on the orbitals’ population fluctuations over time. deMon2k can further generate specific 

files in “cube” format to visualize various molecular fields of interest such as the electronic density, 

the spin density, the electrostatic potential, the Kohn-Sham density currents, or the time-dependent 

electron localization function (TD-ELF) [138,139]. The cube file format can be read by many 

visualization software packages including VMD (Visual Molecular Dynamics) [140]. Finally, one can 

generate “wfn” files along the simulations as input to popular analysis packages such as Multiwfn [141] 

or Topchem2 [142].  

We have proposed to extend the approach relying on the topological analysis of stationary electronic 

[143,144] structures to the time-dependent regime, focusing so far on the electron density and on TD-

ELF [145,146]. Topological analyses of TD-ELF allow following changes in the Lewis structure under the 

effect of strong perturbation. TD-ELF incorporates a wealth of information on the time evolution of 

the chemical structures which allows the qualitative and quantitative characterization of the 

formation/breakage of bonds between atoms, the migration of charge between topological basins, 

and the eventual attachment of electron density to the projectile [146]. For the sake of illustration, 

Figure 6 shows the evolution of TD-ELF basins of a guanine nucleobase upon collision by a 1 MeV α-

particle [146]. Just before collision (panel a), the electronic structure resembles that of the ground 

state with typical ELF topological basins, some being highlighted on the Figure. Immediately after 

collision (panel b), the disruption of the C=C central double bonds (showed in green characters) is 

clearly apparent, while the overall structure is recovered 400 as after (panel c) as a result of electronic 
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relaxation. The analysis also reveals the perturbation of other topological basins further away from the 

collision site, for example, the double C-O bond (V(C-O)) or nitrogen lone pairs (V(N)). 

 

 

 

Figure 6: Topological analyses of TD-ELF after collision of guanine by a 1 MeV  particle traveling along the z direction. a-c: 
for each TD-ELF topological basin we indicate, in order, the volume (Å3), the electronic population, and the intrinsic dipole 
moment (D, components in brackets). Collision is defined Color code: green: carbons, white: hydrogens, blue: nitrogen, red: 

oxygen, yellow: helium ( particle), and orange: off-nuclei ELF attractors. Adapted with permission from [146]. 

 

5 Mixed quantum-classical simulations 

In this section, we describe two methodologies that are useful for modeling ultrafast phenomena when 

nuclear motion comes into play. Indeed, while RT-TD-DFT is a useful methodology to simulate the 

physical stage, albeit with limitations described above, nuclear motion inevitably becomes significant 

after a few femtoseconds and must be taken into account. Ehrenfest molecular dynamics (MD) is a 

natural extension of RT-TD-DFT whereby atom nuclei are moving in the mean-field potential created 
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by the superposition of electronic states provided by RT-TD-DFT. This methodology finds application 

to simulate the physicochemical stage. On the other hand, Born-Oppenheimer molecular dynamics 

(BOMD) assumes electrons stick to the ground state potential energy surface. BOMD is therefore more 

adapted to simulate the chemical stage. We emphasize that the ab initio MD research field is incredibly 

vast. We thus do not claim any exhaustivity here but only focus on some methods implemented in 

deMon2k so far for applications to radiation chemistry problems. 

5.1 Born-Oppenheimer Molecular Dynamics 

In theory, the exact description of a system is achieved if the time-dependent Schrödinger equation is 

solved for both nuclei and electrons. BOMD simplifies the problem using the Born-Oppenheimer 

approximation to deal with the electrons and nuclei independently. The electronic ground state energy 

is described by DFT while the nuclei dynamics are based on the classical equations of Newton. As for 

electron dynamics simulations, we introduce a time step Δ𝑡𝑁  to propagate nuclear motion. With 

BOMD, one assumes that the relaxation of the electron cloud is instantaneous from one nuclear 

propagation step to another. In deMon2k, it is implemented [147,148] using the leapfrog method [3], 

which consists in the following steps: 1) Calculate mid-step velocities 𝑹̇   at 𝑡 +
Δ𝑡𝑁

2
 (Eqn. 19), 2) 

calculate position vectors 𝑹 at time 𝑡 + Δ𝑡𝑁  (Eqn. 20), 3) calculate forces 𝑭 at time 𝑡 + Δ𝑡𝑁 (Eqn. 21), 

and finally 4) calculate velocities 𝑹̇ at time 𝑡 + Δ𝑡𝑁 (Eqn. 22) 

 

 

𝑹̇ (𝑡 +
Δ𝑡𝑁

2
) = 𝑹̇(𝑡) + [

𝑭(𝑡)

𝑚
]

Δ𝑡𝑁

2
 

(19) 

𝑹(𝑡 + Δ𝑡𝑁) = 𝑹(𝑡) + 𝑹̇ (𝑡 +
Δ𝑡𝑁

2
) Δ𝑡𝑁 

(20) 

𝑭(𝑡 + Δ𝑡𝑁) = −𝜵𝐸[𝜌(𝑟)] + 𝑍𝐴 ∑ 𝑍𝐵

𝑹𝐴 − 𝑅𝐵

|𝑅𝐴 − 𝑅𝐵|3
𝐵≠𝐴

 
(21) 

𝑹̇(𝑡 + Δ𝑡𝑁) = 𝑹̇ (𝑡 +
Δ𝑡𝑁

2
) + [

𝑭(𝑡 + Δ𝑡𝑁)

𝑚
]

Δ𝑡𝑁

2
 

(22) 

 
In these equations 𝑍𝑋  stands for the nuclear charge of atom X and m is the mass of the atom. The 

micro-canonical ensemble is often used due to its ease of implementation. However, it is easier to 

control temperature instead of energy during experiments and the systems are usually studied in the 

canonical ensemble. Several thermostats were thus implemented in deMon2k by Köster and 

collaborators to work in the canonical ensemble (Berendsen, Hoover or Nose-Hoover 

thermostats)[147]. 
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We now illustrate the BOMD methodology with two applicative examples relevant to radiation 

chemistry. In the first example, we consider the difficult problem of Dissociative Electron Attachment. 

This is a well-known degradation reaction of molecules [6], however, the mechanism is complex and 

remains the topic of investigations using computational methods including molecular dynamics 

[149,150]. Kohanoff and co-workers proposed to approximate that the incoming electron, binds to the 

molecule and has time to relax to form a ground-state anion while the excess energy is transferred to 

a specific vibrational mode [151]. Let 𝑹𝐴, 𝑹𝐵 and  𝑹̇𝐴
(0)

, 𝑹̇𝑏
(0)

, be the initial position and velocity vectors 

of atoms A and B, 𝜂𝐴, 𝜂𝐵 , the extra velocity vectors of atom A and B, and 𝑚𝐴, 𝑚𝐵, the masses of the 

atoms. The new velocities of atoms A and B after energy deposition are given by Eqn. 22. 

𝑹̇𝐴 = 𝑹̇𝐴
(0)

+ 𝜂𝐴𝝁̂ ;     𝑹̇𝐵 = 𝑹̇𝐵
(0)

+ 𝜂𝐵𝝁̂(11) (22) 

𝝁̂ =
𝑹𝐴 − 𝑹𝐵

|𝑹𝐴 − 𝑹𝐵|
 

(23) 

The extra velocities are calculated from momentum conservation law given the gap energy 𝛥𝐸 

between the resonant state and the lowest unoccupied molecular orbital: 

1

2
𝑚𝐴𝜂𝐴

2 +
1

2
𝑚𝐵𝜂𝐵

2 + 𝑚𝐴𝜂𝐴𝑹̇𝐴
(0)

. 𝝁̂ + 𝑚𝐵𝜂𝐵𝑹̇𝐵
(0)

. 𝝁̂ = 𝛥𝐸 
(24) 

𝑚𝐴𝜂𝐴 + 𝑚𝐵𝜂𝐵 = 0 (25) 

The sum of equations 24 and 25 gives: 

1

2
𝑚𝐴 (1 +

𝑚𝐴

𝑚𝐵
) 𝜂𝐴

2 + 𝑚𝐴 [(𝑹̇𝐴
(0)

− 𝑹̇𝐵
(0)

) . 𝝁̂] 𝜂𝐴 = 𝛥𝐸 
(26) 

with  𝜂𝐵 = −𝑚𝐴𝜂𝐴 𝑚𝐵⁄ . Under the approximation that 𝛥𝐸 ≫ 𝑚𝐴 [(𝑹̇𝐴
(0)

− 𝑹̇𝐵
(0)

) . 𝝁̂] 𝜂𝐴 , one gets the 

following expression for the extra velocities: 

𝜂𝐴 = √
2𝛥𝐸

𝑚𝐴 (1 +
𝑚𝐴
𝑚𝐵

)
; 𝜂𝐵 = √

2𝛥𝐸

𝑚𝐵 (1 +
𝑚𝐵
𝑚𝐴

)
 

(27) 

 

Using this method, Kohanoff and co-workers investigated the consequences of low-energy electron 

attachment to the thymine nucleobase. They showed for example that the dissociation energy 

increases in the presence of a solvent as hydrogen bonds can form between solvent molecules and the 

system [151]. We refer the reader to [151,152] for more extensive studies on other molecules, 

including solvation effects. We have implemented this method in deMon2k and we illustrate it here 
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for the first time by considering DEA on tributylphosphate. This molecule is an organic extractant of 

Uranium (VI) and Plutonium (IV) used in the recycling process in the nuclear industry [153,154]. 

Assuming that a low-energy electron can attach to the phosphate group, an excess of 2.8 eV was 

injected into one of the three O-C bonds connected to it (Figure 7). A butyl radical is quickly ejected 

from the rest of the molecule in a few fs. The relative total charge of the ejected butyl chain increases 

by 0.32 while the one of the phosphate group decreases by the same quantity. The spin charge fully 

localizes on the leaving butyl moiety too, leaving a negatively charged dibutyl phosphate (data not 

shown). We observe charge oscillations between the phosphate group and the other butyl chains at 

longer times. After 60 fs, the radical part is 4 Å away from the anion and is not influenced by these 

atomic charge oscillations.  

 

Figure 7: Dissociation of a butyl chain of tributylphosphate upon the addition of an electron bringing an excess of 2.8 eV in the 
C-O bond.  BOMD simulations were carried out with the PBE0 XC functional and aug-cc-DZVP/GEN-A2* basis sets. The bond 
breaking is shown in the upper snapshots as a dark dotted line alongside the distance between the carbon and oxygen atoms. 

 

We come to a second example of the application of BOMD simulations we have reported recently [66]. 

In a campaign of picosecond time-resolved radiolysis of anionic uridine monophosphate (USP, standing 

for Uridine, Sugar, Phosphate), it was found that 5 ps after application of the ionizing pulse, no 

spectroscopic signature of the ionized nucleobase (U+) moieties could be detected, pointing toward 

the existence of an ultrafast (< 5ps) charge transfer mechanism that would have reduced the ionized 

nucleobase (U+
→ U). We investigated two distinct nuclear-driven charge transfer mechanisms. In the 

first one, we followed the Marcus theory of electron transfers and evaluated the free energy and free 

reorganization energy associated with the charge transfer from the phosphate group to the uracil 
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group (Figure 8, top). This was achieved by means of constrained DFT BOMD simulations [155]. Despite 

strong electronic coupling between the charge transfer electronic states (0.076 ± 0.017 eV), we found 

that a Marcus-theory-like electron transfer could not explain the reduction of U+ on the sub-picosecond 

time scale. On the other hand, we discovered that a non-adiabatic relaxation could provide an 

explanation. Indeed, the topology of the potential energy surfaces creates the conditions that after 

ionization, the system relaxes on the U+SP PES, crossing on the way the charge transfer USP+ state 

(Figure 8, bottom). The hopping probability is significant and strongly depends on the electronic 

coupling between the states and on the electronic decoherence time scale. In summary, our numerical 

simulations provided a molecular explanation for intriguing experimental results [66,156].  

 

Figure 8: ab initio MD simulations using constrained DFT to explain the ultrafast reduction of ionized U+SP. Top: Marcus theory 
modeling based on constrained DFT BOMD simulations between the U+SP and USP+ charge transfer states. Bottom: sketch of 
non-adiabatic decays following USP ionization, that competes with a Marcus electron transfer. Adapted with permission from 
[66]. 

 

5.2 Ehrenfest Molecular Dynamics 

The physicochemical stage of irradiation may be described by TD-DFT-based Ehrenfest molecular 

dynamics (EMD), which is a mean-field scheme belonging to the so-called mixed quantum-classical 

methodologies [36,46,157,158]. This means that some degrees of freedom are treated quantum 
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mechanically (in this case, electrons) while others are treated in the classical mechanics limit. As in 

BOMD, atom nuclei are considered classical point particles to which Newton’s equations-of-motion  

apply. However, while in BOMD the nuclear and electron degrees of freedom are treated in a self-

consistent manner, by relaxing the electrons for every new nuclear configuration invoking the so-called 

adiabatic approximation, EMD attempts to couple electronic to nuclear degrees of freedom. 

The time-dependent solution of the coupled equation-of-motions starts by defining the general TD 

Schrödinger equations for both nuclei (28) and electrons (29): 

𝑖
𝜕𝛺(𝑹, 𝑡)

𝜕𝑡
= −

1

2
∑

1

𝑚𝑏
𝛻𝑹𝒃

2 𝛺(𝑹, 𝑡)

𝑏

+ {∫ 𝛹∗(𝒓, 𝑡)ℋ𝑟(𝒓, 𝑹)𝛹(𝒓, 𝑡)d𝑹} 𝛺(𝑹, 𝑡) 
(28) 

𝑖
𝜕𝛹(𝒓, 𝑡)

𝜕𝑡
= −

1

2
∑ 𝛻𝒓𝒂

2 𝛹(𝒓, 𝑡)

𝑎

+ {∫ 𝛺∗(𝑹, 𝑡)𝑉𝑟𝑅(𝒓, 𝑹)𝛺(𝑹, 𝑡)d𝑹} 𝛹(𝒓, 𝑡) 
(29) 

The model introduces a feedback between the nuclear (𝛺(𝑹, 𝑡)) and electron (𝛹(𝒓, 𝑡)) states in the 

quantities in curly brackets. Since such quantities are integrated, the potential given by one type of 

particle acting on the other type of particle is averaged. This will represent a disadvantage if the 

simulation traverses a region of possible states with very different energies since one may end up with 

wave functions that do not represent a physically realistic situation for the system under study. Thus, 

it is highly recommended to apply EMD in situations where electron states are relaxed in a time scale 

much shorter than the time scale for nuclei or ultrafast processes triggered by strong intense laser 

fields. There are other limitations of EMD and alternatives have been proposed by the researchers to 

overcome them [159]. Interested readers are referred for example to the surface hopping [160] or 

exact factorization [28] mixed quantum-classical approaches. 

Considering the difference in the typical time scales for electrons (attoseconds) and nuclei 

(femtoseconds), it is reasonable to implement the EMD in such a way that the nuclear equation-of-

motion are not necessarily solved for every electron step (Δ𝑡𝑒). An interpolation scheme borrowed 

from Ref [158] is adopted: nuclear positions are propagated every Δ𝑡𝑁  according to Newton’s law 

using the forces acting on the nuclei (Eqn 19-22), while an intermediate time step (Δ𝑡𝑁𝑒) is introduced 

to interpolate nuclear positions between two nuclear steps. In this way, the energy gradients are 

calculated only every few Δ𝑡𝑁 , reducing the overall computational cost. On the other hand, the values 

for Δ𝑡𝑒 , Δ𝑡𝑁𝑒  and Δ𝑡𝑁  must be chosen with care to ensure energy conservation. As usual, the time 

steps should be small enough to resolve the physical phenomena to be simulated. A strong 

perturbation of the electronic degrees of freedom requires smaller time steps A first application of our 

EMD code was reported in Ref. [161] for the irradiation of a peptide by a 100 keV proton. In this 
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example, Δ𝑡𝑁  was set to 20 as and Δ𝑡𝑁𝑒  and Δ𝑡𝑒  were both set to 0.33 as. We plan further applicative 

studies in the coming months. 

6 Accounting for environment effects  

So far, apart from the example of the USP molecule, we have discussed molecular systems in the gas 

phase, but most problems of interest in radiation chemistry take place in the condensed phase. We 

describe below the methodologies available in deMon2k to account for environment effects. We 

describe here the hybrid QM/MM methodology using either non-polarizable or polarizable force fields.  

6.1 Hybrid QM/MM 

 

The QM/MM methodology, i.e the combination of quantum chemical (QM) and molecular mechanics 

(MM) simulation methods, was initially formulated in 1976 by Warshel and Levitt [162], with the aim 

to extract the best of both worlds: the accuracy of QM methods (semi-empirical [163], Kohn-Sham 

Density Functional Theory [40] or wavefunction methods) and the applicability of force-field-based 

MM[164] to a large number of atoms. Its continued relevance to chemical, and especially biochemical, 

questions means that it is still the subject of developments and implementations today (see non-

exhaustively [161,165–168]). 

Indeed, for inhomogeneous atomic systems, such as those that can be separated into a « QM region » 

which requires a description of its electronic structure and an « MM region » for which atomic 

positions and electrostatic interactions constitute a sufficient description, there is a need for a method 

bridging the gap between the too expensive DFT/wavefunction methods and the too inaccurate 

MM/MD. The crux of the problem here is the computational cost of representing the full chemical 

system at a quantum chemical level of accuracy, i.e with its electron density in the case of DFT or its 

wavefunction in post-Hartree-Fock methods. A typical strategy to treat a system with the QM/MM 

methodology would be to limit the « QM region » of interest to the order of 100 to 103 atoms, while 

the « MM region » would contain the rest of the protein or macromolecule, and as much solvent as 

needed to properly reproduce the system of interest. 

 

The in-deMon2k QM/MM implementation [168] follows an additive scheme, or electrostatic 

embedding [169]. It was historically implemented by A. G. Goursot†, and later developed in our group 

for modeling complex biological systems [161]. In such a setup, and choosing DFT as our method of 

choice to evaluate the energy of the QM region, the total energy of the system can be computed in 

several ways. In this scheme, the total energy 𝐸𝑄𝑀 𝑀𝑀⁄ [𝜌] expression in equation 30 is composed of 
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three terms: the energy of the QM region 𝐸𝑄𝑀[𝜌], the energy of the MM region 𝐸𝑀𝑀 , and the 

interaction energy between the QM and MM regions 𝐸𝑄𝑀∗𝑀𝑀[𝜌]. 

 

𝐸𝑄𝑀 𝑀𝑀⁄ [𝜌] = 𝐸𝑄𝑀[𝜌] + 𝐸𝑀𝑀 + 𝐸𝑄𝑀∗𝑀𝑀[𝜌] (30) 

 

In deMon2k, the energy of the QM region is determined at the ADFT (Eqn. 30) or RT-TD-ADFT levels 

that were explained in section 2.2. As the atoms in the MM region are described as classical particles, 

the total energy is a function of the force field applied to them. Eqn. 31-33 bring the main types of 

interaction together: the bonded and non-bonded interactions. On one hand, 𝐸𝑏𝑜𝑛𝑑𝑒𝑑  includes bond 

energies 𝐸𝑏𝑜𝑛𝑑 , bond-angles energies 𝐸𝑎𝑛𝑔𝑙𝑒, torsion-angle energies 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 , and improper dihedral-

angle energies 𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 . On the other hand, the non-bonded energies 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑are described by 

the sum of Coulomb's law energy 𝐸𝑒𝑙𝑒𝑐  and a Lennard-Jones potential 𝐸𝐿𝐽 for the van der Waals 

interactions. 

 

𝐸𝑀𝑀 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑  (31) 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟  (32) 

𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐿𝐽 (33) 

 

deMon2k implements the OPLS [170] or Amber [171] force fields to define the explicit form of the 

bonded terms. The interaction energy makes the connection between the QM and the MM regions 

(Eqn 35). It is formed by the interaction energy between the electron density 𝜌 of the QM region and 

the atomic charges 𝑞𝐾  of the MM region, then the Coulomb interaction energy 𝐸𝑍𝑞 between MM 

atomic charges 𝑞𝐾  and nuclei 𝑍𝐴  of the QM region, and the sum of the Lennard-Jones interactions 

between MM and QM atoms. 

 
𝐸𝑄𝑀∗𝑀𝑀[𝜌] = 𝐸𝑝𝑞 + 𝐸𝑍𝑞 + 𝐸𝐿𝐽 
 

(34) 

𝐸𝑄𝑀∗𝑀𝑀[𝜌] = − ∑ ∫
𝑞𝐾 . 𝜌(𝑟)

|𝑟 − 𝑅𝐾|

𝑀𝑀

𝐾

𝑑𝑟 + ∑ ∑ [
𝑞𝐾 . 𝑍𝐴

|𝑅𝐴𝐾|
+ 𝜀𝐴𝐾 [(

𝑟𝐴𝐾
𝑚𝑖𝑛

𝑅𝐴𝐾
)

12

− 2 (
𝑟𝐴𝐾

𝑚𝑖𝑛

|𝑅𝐴𝐾|
)

6

]]

𝑀𝑀

𝐾

𝑄𝑀

𝐴

 

(35) 

 
 
Since 𝐸𝑄𝑀∗𝑀𝑀depends explicitly on 𝜌, the external potential includes a contribution from the external 

MM charges. It is often the case that the boundary between QM and MM region cuts through a 

covalent bond; in such cases, link atoms or tuned pseudo-potentials are available with deMon2k [161]. 
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Figure 9: Typical QM/MM setup in deMon2k adapted to run MD simulations. Reproduced with permission from [66]. 

 

For large solvated systems such as that shown in Figure 9, a convenient way to model long-range 

effects in a QM/MM simulation is to enclose the MM part, which contains mainly solvent molecules, 

into a polarizable continuum solvent medium, such as the Onsager continuum [172]. A major 

development carried out in our group has been the QIB program (QM/MM Input Builder). QIB 

interfaces popular MM packages for bio-simulations (AMBER [171], CHARMM [173], TINKER-HP [174], 

GROMACS [175]…) to deMon2k [176]. It is now straightforward to prepare input files for RT-TD-ADFT, 

BOMD, or Ehrenfest MD with QM/MM on complex biological structures (DNA/protein complexes, 

proteins embedded in a membrane, …). 

Figure 10 illustrates some results obtained about the physical stage of irradiation of solvated 

oligonucleotides with fast ions [66].  We identified a mechanism that we named “ebb-and-flow 

ionization” by which the incoming projectile polarizes the electron cloud prior to the collision, inducing 

an accumulation of electron density on the collided molecules. This effect is known experimentally as 

the Barkas effect [177]. Among other results, we identified that secondary electrons tend to attach to 

nucleobases and on the ribose, but also in the first solvation shell. Variations of the irradiation 

conditions, mass or kinetic energy of the projectiles, significantly affect the ionization probabilities 

(Figure 10, bottom). More insights can be found in the original publication.  
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Figure 10: RT-TD-ADFT/MM simulations have given access to key insights into solvated DNA irradiation by swift ions. Top: 
simulated system, the entire DNA, and the first solvation shell are described by DFT. Bottom: the amount of electron depletion 
on 7 molecular moieties encountered by the projectiles on their path (3 water molecules in blue, thymine in red, cytosine in 
orange, and two guanine-cytosine pairs in green and violet). Different projectile properties are compared. Reproduced with 
permission from [80]. 

6.2 Going beyond the static embedding picture 

A further improvement in the description of the environment in a QM/MM framework can be achieved 

by the use of polarizable force fields [178]. A possible way is to assign to each polarizable site within 

the MM region, typically atoms, an induced dipole that depends on the polarization state of the 

electron cloud in the QM region. In the context of coupling RT-TD-DFT simulations to polarizable MM 

force fields, we showed that a point-charge-dipole model of induction whereby each induced dipole is 

calculated as the product of a static and isotropic atomic polarizability with the electric field on the 

MM atom is sufficient to deal with embedded systems subjected to strong field irradiations [179,180]. 

It is not needed to involve frequency dependence in atomic polarizabilities, nor to consider higher 

order terms depending on the first or second hyperpolarizabilities [179]. In this QM/MMpol scheme, 

the QM region perturbs the polarizable MM environment in real-time, and, as a back reaction, the 

polarizable MM environment can affect the electron dynamics by the inclusion of the potential created 

by induced dipoles into the Kohn-Sham potential. Here again the availability of electron fitted densities 
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helps to drastically reduce the cost of the QM/MM interaction calculations. We have described our 

methodology at length in various publications. We refer the interested reader to previous publications 

for details [61,180]. We instead focus here on two applicative studies.  

In [180], we highlighted various regimes governing the dynamics of electronic polarization within a 

solute’s solvation shells as a function of the distance to the solute (Figure 11). The electron density 

residing on the solute was perturbed by a narrow electric kick (𝐹𝑚𝑎𝑥), the strength of which was varied 

and set here to 0.01 a.u., and the subsequent average induced dipole (Δ𝜇) on water molecules was 

monitored in real-time. The response of the environment to the perturbation was shown to be 

dependent on the distance to the molecule: the further away, the weaker the response. Induced dipole 

moment oscillations are damped over time (Middle panel of Figure 11) as a result of energy dissipation 

with the MMpol region. The induced-dipole autocorrelation function revealed insights into the 

response mechanisms that depend on the electric fields generated by the electron density on the QM 

region and by the fluctuating MM-induced dipoles on the polarizable water molecules (Bottom). We 

refer the interested reader to Ref. [180] for a detailed analysis. In a following article [62], we introduced 

relativistic delays in the propagation of electric fields mediating the QM*MMpol interactions. We 

found these effects small for the kind of perturbation investigated (i.e. narrow electric kicks on the QM 

region).  
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Figure 11: After perturbation of the solute, here a peptide described at the RT-TD-ADFT level, by a narrow electric pulse, the 
solvation shells, described by a polarizable force field respond in a distance-dependent manner via complex mechanisms. Top: 
color code defining the solvation layers by distance. Middle: mean variation of water dipole moments by solvation layer with 
respect to the ground state. Bottom: auto-correlation function of curves plotted in the middle panel. Adapted with permission 
from [180].  

We have investigated polarizable embedding effects in the context of large biological systems 

irradiation with fast ions. First, we considered as targets the phosphate backbone of the DNA model 

shown in Figure 10 [181], and a DNA-protein complex [61]. We found for both systems that induction 

within the MM region does not affect energy deposition, nor the ultrafast responses of the electron 

cloud (charge migrations) in the following femtoseconds. This result can be understood by the fact that 
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energy deposition is driven by Coulomb interactions between the projectile and the electron cloud and 

is a very local property. 

The variations of Kohn-Sham energy, relative to the ground state (energy deposition), over time are 

depicted in (Figure 12) in the polarizable and non-polarizable simulations. When the α-particle 

interacts with the electron cloud of the system, after a few attoseconds, it deposits its energy which 

leads to sharp excitation and ionization. The use of a polarizable force field has only a small effect on 

energy deposition, with a tiny rise of about 1 eV compared to our previous work with a much larger 

QM region. The difference is negligible compared to the high deposited energy of 238 eV. Since the 

process of energy transition from the charged particle is very fast, induction on MMpol region is not 

significant.  

 

Figure 12: Energy deposition over 10 fs as a result of the collision of 0.25 MeV He+2 with DNA protein complex in a polarizable 
force field (red solid line) and non-polarizable force field (dash blue line). 

The environment merely has a polarization effect on the ground state density. In particular, for the 

DNA/protein complex, no differences could be seen in post-collision charge fluctuations (Figure 13). 

Note that in our previous simulations, the environment close to the struck molecular moieties was 

included in the QM region, pushing away the polarizable MM region and, hence, decreasing the 

likelihood that induction could have a role on the very site of irradiation. For the present article, we 

thus repeat our simulations on the DNA/protein complex, reducing the size of the QM region from 342 

to 102 atoms. The layer now encompasses three amino acids (ASP-ARG-THR), one nucleotide T, and 

four water molecules. The rest of the system is described with the polarizable Amberff02 force field 

[182]. An α-particle with kinetic energy of 0.25 MeV, is initially placed 40 Å away from the center of 

mass of the QM region. During the simulation, the α-particle travels through the QM region and strikes 

the backbone between the aspartate and arginine residues. 
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Figure 13: Left, charge variation of nucleoprotein complex (left) with a polarizable (solid lines) and non-polarizable (dashed 
lines) force field environment over 10 fs. Right: represents the QM region irradiated by the α-particle (green line); the green 
bead indicates the collision site of the α-particle with the protein backbone. The color codes refer to the fragments: ASP, 
aspartate (red); ARG, arginine (yellow); THR, threonine (purple); T, thymine base (cyan); dT, thymine-sugar moiety (brown); 
and WAT, water molecules (blue). 

We show in Figure 13 the charge variation on the fragments along the simulation taking the electronic 

ground state as a reference. Charge fluctuations start during the approaching of the projectile (that is, 

before the impact). An ebb-and-flow mechanism of ionization is again at play, as seen from the 

decrease/increase charge variation at the moment of collision (0.8 – 1.3 fs). As already reported, this 

initial phase is insensitive on the incorporation of electronic induction on the MM region. On longer 

time, partial holes formed on ASP and ARG migrate to the surrounding media and delocalize over other 

fragments. The introduction of MM induction affects charge flows on ARG and THR a few 

femtoseconds after irradiation (yellow and violet lines). This can be understood as the side chains of 

ARG and THR are more polar and directly exposed to the MM environment.  

 

7 Conclusions and perspectives 

In this article, we have reviewed recent developments made in deMon2k to simulate the early stages 

of biological matter subjected to ionizing radiations. Of course, the road is long before having at hand 

all the tools needed to tackle adequately the great challenges posed by ionizing radiation interacting 

with inhomogeneous matter. The ADFT-based methodologies have already permitted to obtain new 

and encouraging results. deMon2k now offers a range of well-integrated simulation techniques 

including electron dynamics and molecular dynamics simulations in the ground and excited states 

(BOMD and Ehrenfest MD), including nuclear quantum effects with multicomponent DFT, as well as a 

coupling to polarizable force fields for hybrid QM/MM simulations. It runs on HPC architectures using 

either CPU or GPU machines. The code is available for interested users on request to the authors, 

keeping in mind that the modules are progressively integrated into the public version of deMon2k[49]. 
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Pure RT-TD-ADFT simulations of large biomolecules have shed light on the physical stage of ionizing 

radiation, revealing the so-called ebb-and-flow mechanism of ionization by fast ions and other valuable 

insights into the location of secondary electrons. We also deployed these simulation tools in various 

applicative studies to help the interpretation of pulse radiolysis studies. Applications to XUV ionization 

of large biological structures have been carried out and will be reported soon. New developments are 

underway in our laboratories either to further improve the computational performance, improve the 

reliability of TD-ADFT simulations, or to devise new approaches to reach more realistic simulations.  
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