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Introduction

The response of a molecular system subjected to an external perturbation such as an electromagnetic wave of moderate intensity (< 10 15 V/nm) or a high-energy projectile (e.g. alpha or beta particles with energy below a few MeV) starts with the attosecond excitation of the electron cloud, followed by relaxation of the cloud and energy dissipation through interactions with surrounding charged particles (electrons, nuclei) [1]. On the sub-femtosecond time scale the light electrons are the particles that accommodate the fastest relaxation/response mechanisms, just after a few attoseconds. A popular methodology for simulating coupled electron dynamics (ED) is Real-Time Time-Dependent Density-Functional-Theory (RT-TDDFT) [2]. Relaxation and dissipation of the electronic system is captured naturally by the method on the subfemtosecond time-scale provided a nonlocal exchange exchange-correlation potential is employed [3]. In practice, though, many implementations assume time-locality of the XC potential, preventing any account of dissipation within electronic degrees of freedom. Dissipation, on the other hand, is captured by the response of atomic nuclei (ions) but this takes place on longer (femtosecond) time scales.

To deal with very large molecular systems, we [4], and others [5], have recently reported combined implementations of RT-TDDFT within hybrid QM/MM (Quantum Mechanics/Molecular Mechanics) schemes incorporating polarizable Molecular Mechanical Force fields (RT-TDDFT/MMpol). Hybrid QM/MM schemes, as introduced originally by Warshel [6], consist of dividing a large molecular system comprising typically several thousands of atoms into a QM region and an MM region. The QM region requires an accurate quantum mechanical treatment of the electronic structure. Because QM methods are computationally expensive the QM region contains a limited subset of atoms -from a few tens to a few hundreds of atoms. The environment of the QM region is described by a molecular mechanics force field, eventually polarizable, that accounts for the electronic part of electrostatic induction. RT-TDDFT/MMpol approaches open the possibility of simulating molecular systems in contact with polarizable environments. In such frameworks, the electrons belonging to the molecules of primary interest interact with induced dipoles in the environment which further permits energy dissipation on the subfemtosecond time scale [4].

The ultrafast responses following the perturbation of a molecule are mediated by electric fields that propagate at the speed of light in the medium of interest. For 𝑐 = 3. 10 8 𝑚 𝑠 ⁄ ≈ 137 𝑎. 𝑢. (atomic units), the propagation takes place at a speed of 3 Å per attosecond. Consequently, relaxation/dissipation mechanisms that operate on the same space and time scales might be affected by retardation effects. This aspect of electron dynamics simulation in nanometric systems is not well understood at the present time.

In RT-TDDFT simulations, retardation may be captured by relativistic Hamiltonians [7], eventually reduced to the Breit operator [8]. This would account for delayed interactions among the electrons simulated by RT-TDDFT. For molecular systems of moderate size, the retarded Coulomb potential within the electron cloud is expected to be small. As regards the exchange-correlation (XC) potentials, as most implementations, including ours, rely on the adiabatic approximation which neglects memory in the XC potential, no retardation is captured at this level. In this paper, we are interested in the introduction of retarded potentials for two other types of electrostatic interaction. The first one arises when simulating ion-molecule collisions. When the particle approaches the speed of light the potential is no longer spherically symmetric [9]. Examination of the literature reporting RT-TDDFT simulations of ion-molecule collisions shows that such relativistic effects are generally not taken into account [10,11,12]. Inspired by recent simulations of Coulomb excitation within quantum nuclei based on superfluid TD-DFT [13], we introduce Liénard-Wiechert potentials [9,14] in the context of electronic TD-DFT for the simulation of ionmolecule collisions. The second type of interaction arises in the context of RT-TDDFT/MMpol when considering the interaction between the molecular system of interest and its polarizable environment.

Previous computational set-ups ignored retardation when propagating electric fields mediating the interactions between the molecular system and its environment. A main objective of the present work is to evaluate the importance of this kind of retardation.

Section 2 is devoted to the methodology and algorithmic details of our RT-TDDFT/MMpol simulations including retardation. Section 3 is devoted to code validation and to some example applications. The latter involve, on one hand, collisions between a sub-relativistic proton with the guanine DNA base and, on the other hand, relaxation dynamics of the hydration shells of a peptide submitted to laser excitations. In both cases RT-TDDFT simulations with and without retardation are reported.

Methodology

Real-Time Time-Dependent Density Functional Theory

Our starting point for simulating electron dynamics is the Liouville Von-Neumann equation:

𝑖 𝜕𝜌(r, 𝑡) 𝜕𝑡 = [𝐻(𝑟, 𝑡), 𝜌(r, 𝑡)] (1) 
in which 𝜌 is the electron density. We work within the Kohn-Sham framework in which we refer to a fictitious gas of non-interacting electrons having the same density as the real system of interest [15]. 𝐻 is, therefore the Kohn-Sham Hamiltonian. The total density is built from a set of Kohn-Sham orbitals 𝜓 𝑖 𝜌(𝑟, 𝑡) = ∑ 𝜓 𝑖 * (𝑟, 𝑡)𝜓 𝑖 (𝑟, 𝑡)

𝑖

. The 𝜓 𝑖 obey coupled time-dependent Schrödinger equations:

𝑖 𝜕𝜓 𝑖 (𝑡) 𝜕𝑡 = 𝐻[𝜌(𝑡)]𝜓 𝑖 (𝑡) (2) 
Throughout the paper, indices i and j will refer to electrons, indices A and B to nuclei in the QM region and indices K and L to MM atoms. 𝐻 encompasses the kinetic energy operators ( 

In the Born-Oppenheimer approximation the external potential is first created by the nuclei of the molecule of interest (𝑣 𝑄𝑀-𝑍 ). In the context of QM/MM approaches the external potential is supplemented by the potential created by the surrounding MM atoms (𝑣 𝑄𝑀/𝑀𝑀 ). If the MM force field is polarizable 𝑣 𝑄𝑀/𝑀𝑀 includes contributions from both permanent charges and from induction terms. We will come back to the expression of 𝑣 𝑄𝑀/𝑀𝑀 more precisely in section 2.2. Finally, depending on the physical process one wants to simulate, the external potential can be further supplemented by terms describing the potential arising from an external perturbation (𝑣 𝑝𝑒𝑟𝑡 ). This perturbation may be the electric field component of an electromagnetic wave, the electric potential of a high-energy charged particle, or a magnetic field, to name but a few non-exhaustive possibilities. Thus, the external potential 𝑣 𝑒𝑥𝑡 can be defined as:

𝑣 𝑒𝑥𝑡 = 𝑣 𝑄𝑀-𝑍 + 𝑣 𝑄𝑀/𝑀𝑀 + 𝑣 𝑝𝑒𝑟𝑡 (4) 
The Kohn-Sham potential is a functional of the electron density via the Coulomb and XC potential. A formal solution to Eq. 1 for the evolution of the electron density from 𝑡 0 to 𝑡 is given by: 𝜌(𝑡) = 𝑈(𝑡, 𝑡 0 )𝜌(𝑡 0 )𝑈 † (𝑡, 𝑡 0 )

where U is the evolution operator 

Various propagators have been proposed in the literature and we refer interested readers to reviews on propagators for RT-TDDFT simulations [11,16]. For simplicity we consider in this work only propagators based on the Magnus expansion [17]:

𝒯𝑒𝑥𝑝 {-𝑖 ∫ 𝐻(𝜏)𝑑𝜏 𝑡+∆𝑡 𝑡 } = 𝑒 𝑊 = 𝑒 Ω 1 +Ω 2 +⋯ (8)
where {Ω 𝑖 } is a series of nested commutators. We shall stop at second order and retain only Ω 1 . This term can be approximated by numerical quadrature to give:

Ω 1 (𝑡 + Δ𝑡, 𝑡) = -𝑖 ∫ 𝐻(𝜏)𝑑𝜏 𝑡+Δ𝑡 𝑡 (9a) Ω 1 (𝑡 + Δ𝑡, 𝑡) ≃ -𝑖𝐻 (𝑡 + Δ𝑡 2 ) * Δ𝑡 (9b) 
Introducing eq. 9b into eq. 5 leads to the second-order Magnus propagator (SOMP) expression:

𝜌(𝑡 𝑛 + Δ𝑡) = 𝑒 -𝑖𝐻(𝑡+ Δ𝑡 2 ) * Δ𝑡 𝜌(𝑡 𝑛 )𝑒 -𝐻 * (𝑡+ Δ𝑡 2 ) * Δ𝑡 (10) 
These equations are the basic ingredients of the numerical approach used in this work to simulate the electron density of a molecular system submitted to a perturbation. Figure 1 depicts a graphical representation of the algorithm we have implemented in the deMon2k [4,[START_REF] Köster | deMon2k Version[END_REF] , one loops back to step 2 and proceeds to another iteration. The process is repeated until convergence of the density or of the potential.

In deMon2k we define a convergence threshold based on the variation of the Coulomb and XC contributions to the potential similar to the criteria employed in the self-consistent-field approach to obtain stationary densities [START_REF] Köster | [END_REF]. At convergence the potentials at times 𝑡 𝑛 and 𝑡 𝑛 + Δ𝑡 are saved in preparation for the subsequent propagation step. The electron density at 𝑡 𝑛 + Δ𝑡 is analyzed to provide insight into the electron dynamics. The tools we have implemented so far are the extraction of atomic (intrinsic) and molecular multipoles (charges, dipoles and quadrupole moments), the integration of the electron kinetic energy density over atoms, the projection of the density on the manifold of KS MO occupied at the beginning of the calculations and finally the plot of various molecular fields like the electron density or the Electron Localization Function (ELF) [12]. 

Polarizable QM/MM energy

In this section we provide more details for the expressions of the energy and potential when considering a molecular system subjected to an external perturbation. We shall emphasize the specific case of coupling of RT-TDDFT with polarizable QM/MMpol. The coupling scheme has been described at length in a previous paper [4]. We review here only the main working equations so as to be able to introduce retardation effects in section 2.3. In our case induction on MM sites is obtained by the introduction of induced dipoles (𝝁 𝑖 , as usual vectors are written in bold) on every polarizable MM site [6]. We start by writing down the total polarizable QM/MMpol energy. The underlined terms are those for which retardation effects have been introduced. This will be the topic of section 2.3.

𝐸 𝑡𝑜𝑡 = 𝐸 𝑄𝑀 + 𝐸 𝑄𝑀/𝑀𝑀 + 𝐸 𝑀𝑀 + 𝐸 𝑝𝑒𝑟𝑡 (11) 
𝐸 𝑄𝑀 = 𝐸 𝑐𝑜𝑟𝑒 [𝜌(𝑟, 𝑡)] + ∫ 𝜌(𝑟, 𝑡)𝜌(𝑟 ′ , 𝑡) |𝑟 -𝑟 ′ | 𝑑𝑟𝑑𝑟 ′ + 𝐸 𝑋𝐶 [𝜌(𝑟, {𝑡})] + 𝐸 𝑍𝑍′ (12) 
𝐸 𝑄𝑀/𝑀𝑀 = ∑ ∫ 𝜌(𝒓, 𝒕) |𝒓 𝐾 -𝒓| 𝑞 𝐾 𝑑𝒓 - 1 2 ∑ ∫ 𝜌(𝒓, 𝒕) |𝒓 𝐾 -𝒓| 3 𝝁 𝐾 (𝑡 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) • (𝒓 𝐾 -𝒓) 𝑑𝒓 𝐾∈𝑀𝑀 𝐾∈𝑀𝑀 + ∑ ∑ 𝑍 𝐴 𝑞 𝐾 |𝒓 𝐾 -𝒓 𝐴 | 𝐴∈𝑄𝑀 𝐾∈𝑀𝑀 -∑ 1 2 𝝁 𝐾 (𝑡 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) • 𝑭 𝐾 𝑍𝑄𝑀 𝐾∈𝑀𝑀 ( 13 
)
𝐸 𝑀𝑀 = - 1 2 ∑ 𝝁 𝐾 (𝑡 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) • 𝑭 𝐾 (0) 𝐾∈𝑀𝑀 + ∑ ∑ 𝑞 𝐾 𝑞 𝐿 |𝒓 𝐾 -𝒓 𝐿 | 𝐿∈𝑀𝑀 𝐿≠𝐾 𝐾∈𝑀𝑀 + 𝐸 𝑀𝑀 𝐿𝐽 + 𝐸 𝑀𝑀 𝑏𝑜𝑛𝑑𝑒𝑑 ( 14 
)
𝐸 𝑝𝑒𝑟𝑡 = -𝝁(𝒕) • 𝑭(𝒕) + ∫𝜌(𝒓, 𝑡)𝜙 𝑝𝑟𝑜𝑗 (𝒓)𝒅𝒓 ( 15 
)
𝐸 𝑄𝑀 is the energy of the quantum region. It includes the core energy (electron kinetic energy and electronnuclei attraction energy), electron-electron repulsion energy and XC energy (𝐸 𝑋𝐶 ). It also includes the classical repulsion energy among nuclei from the quantum region. (𝐸 𝑍𝑍′ ). 𝐸 𝑄𝑀/𝑀𝑀 is the interaction energy between QM and MM regions. 𝐸 𝑄𝑀/𝑀𝑀 includes the interaction energy between the electron density and MM charges (𝑞 𝐾 ), the interaction of electrons with the MM induced dipoles (𝝁 𝐾 ), the classical interaction of quantum nuclei (of charges 𝑍 𝐴 ) with MM charges (𝑞 𝐾 ) and the classical interaction of MM induced dipoles and the nuclei in the quantum region. 𝐸 𝑀𝑀 is the energy of the MM region. It includes, in order, the interaction energy of MM charges with MM induced dipoles (first term) and with MM charges (second term), the Lennard-Jones energy (𝐸 𝑀𝑀 𝐿𝐽 ) and finally the bonded energy (𝐸 𝑀𝑀 𝑏𝑜𝑛𝑑𝑒𝑑 ). The last two terms are Force Field energies describing van der Waals interactions and deformation energies of the MM fragments, respectively. In the case of electron dynamics at constant nuclear positions both will remain strictly constant and are therefore not of special interest in the present work. 𝐸 𝑝𝑒𝑟𝑡 is the energy associated with the external perturbation. The possibilities offered by deMon2k are either to simulate interaction with the electric component of an electromagnetic wave (𝑭) or with the interaction with a moving charged particle. In the former case we assume the dipole approximation and express the interaction as -𝝁(𝒕) • 𝑭(𝑡), where 𝝁 is the molecular dipole (𝝁(𝑡) = ∑ 𝑍 𝐴 𝑹 𝐴 𝐴 -∫ 𝜌(𝒓, 𝒕)𝒓. 𝑑𝒓). The latter terms come into play if one wishes to simulate inelastic collisions of molecules with high-energy charged particles (HECP), for example protons or alpha particles. In such cases the interaction energy is calculated from the potential created by the projectile (𝜙 𝑝𝑟𝑜𝑗 ).

We now move to the methodology to determine induced dipoles on MM atoms. Each 𝝁 𝐾 is determined from the polarizability of the atom (𝛼 𝐾 ), which is a force field parameter, and from the electric field on MM atom K (𝑭 𝐾 ). 𝑭 𝐾 includes the electric field created by other MM atoms (from other permanent charges 𝑭 𝐾 (0) and from induced dipoles 𝑭 𝐾 𝑖𝑛𝑑 ), by the electric field created by the QM region (𝑭 𝐾 𝑍𝑄𝑀 + 𝑭 𝐾 𝜌 ), and by the perturbation (electric field or HECP). They are underlined in eq. 16.

𝝁 𝐾 = 𝛼 𝐾 𝑭 𝐾 = 𝛼 𝐾 (𝑭 𝐾 (0) + 𝑭 𝐾 𝑍𝑄𝑀 + 𝑭 𝐾 𝜌 + 𝑭 𝐾 𝑖𝑛𝑑 + 𝑭 𝐾 𝑝𝑒𝑟𝑡 ) (16) 
The coupling between the time-dependent induced dipoles (𝝁 𝐾 ) in the MM region and the electron density (𝜌) on the QM region introduces time dependence in 𝐸 𝑄𝑀 , 𝐸 𝑄𝑀/𝑀𝑀 , and 𝐸 𝑝𝑒𝑟𝑡 . A fully dynamical simulation based on the potential derived from 𝐸 𝑡𝑜𝑡 is not straightforward. We devised in Ref. [4] a stationary/non-stationary scheme by which the stationary MM dipoles are sought by an iterative procedure at every RT-TDDFT step. This means we assumed the molecular dipoles of the environment have time to fully relax between two electronic density propagation steps. We validated this approach for computing absorption spectra of molecules at the QM/MM level or for simulating the dynamical response of the environment after perturbation of the QM region [4]. However, the stationary/non-stationary scheme might introduce artefacts when analyzing subtle retardation effects. Actually, if one decreases Δ𝑡 to sufficiently small values (e.g. 0.2 as) the stationary/non-stationary scheme ceases in practice to be an approximation and one restores in this way a fully dynamical picture. This is the choice we make in this work devoted to the analysis of retardation effects.

The propagation algorithm of RT-TDDFT in the framework of QM/MMpol follows the algorithm employed in the gas phase as described in Figure 1. The difference is that each time the KS potential at time 𝑡 𝑛 + ∆𝑡 is built from 𝜌(𝑡 𝑛 + ∆𝑡) in step 3, it involves first the determination of MM induced dipoles. As is explicit from eq. 16, induced dipoles depend on the electric field (𝑭 𝐾 𝜌 ) produced by 𝜌. Once determined, the potentials created by the induced dipoles are fed into the KS potential. We now arrive at the stage where explicit mathematical expressions for the time-dependent fields involving retardation effects are needed.

Retardation in fields and potentials

We start our discussion with the terms defining the electric fields acting on each polarizable site. Induced dipoles are determined by 𝑭 𝐾 , the analytical expressions given in eq. 17 to 22. In these equations 𝑍 𝐴 is the charge of nucleus A in the QM region. 𝒓 𝐾𝐴 and 𝒓 𝐾𝐿 , are the distance vectors between MM atom K and QM nucleus A and between MM atom K and MM atom L respectively. 𝑻 𝐾𝐿 is the polarization tensor between atoms K and L. 𝑰 is the identity matrix. Other terms will be introduced below as needed. We first make the distinction between the field created by the atomic nucleus (𝑭 [20] The number of records, M, is determined from the speed of light and from a cutoff which is used to screen the field created by the induced dipoles. 𝑀 = 𝐶(𝑅 𝑐𝑢𝑡 𝑛𝑐 ∆𝑡 ⁄ ) where 𝐶(𝑋) is the least integer greater than or equal to X. 𝑅 𝑐𝑢𝑡 is usually set to around 50 Å.

Similar considerations apply for the electric field produced by the electron cloud (𝑭 𝐾 𝜌 ). In such a case it is the history of the electron density that must be stored. Some difficulties arise though. First, the memory required for the storage of large and numerous density matrices is demanding and would alter computational performance. To circumvent this difficulty, we don't use the Kohn-Sham density to evaluate 𝑭 𝐾 𝜌 but instead an auxiliary density function 𝜌 ̃. Auxiliary density functions are extensively used in deMon2k

to reduce computational cost, especially the Coulomb and XC terms [START_REF] Calaminici | Handbook of Computational Chemistry[END_REF]. 𝜌 ̃ is expressed as a linear combination of auxiliary functions 𝑓: 𝜌 ̃(𝒓, 𝑡 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) = ∑ 𝑥 𝑓 (𝒓, 𝑡 -𝑡 𝑑𝑒𝑙𝑎𝑦 )𝑓(𝒓)

𝑓

. The time-dependent auxiliary coefficients 𝑥 𝑓 are determined from the KS density by a variational fitting procedure [START_REF] Dunlap | [END_REF]. The number of auxiliary functions is usually three to four times that of atomic orbitals, but storing the history of the 𝑥 𝑓 coefficients which define 𝜌 ̃ is much less demanding than storing the history of density matrices.

Furthermore, we showed that 𝜌 ̃ could be used safely in place of 𝜌 for evaluating the electric field created by the QM region in stationary or time-dependent DFT/MMpol calculations (that replacing 𝑭 𝐾 𝜌 by 𝑭 𝐾 𝜌 ̃ ), or to evaluate atomic multipoles. A second difficulty is the practical definition of the distance to be used between electrons and atom K since electrons are delocalized. To solve this problem, we take as distance 𝑑 𝐾𝐴 that between MM atom K and the QM atom A holding the auxiliary function 𝑓(𝒓).

The above considerations introduce retardation effects in the determination of MM induced dipoles. We now turn to the Kohn-Sham potential. Two terms need to be modified. The first one is the potential created by the induced dipoles. The same strategy as before is used to determine the effective 𝝁 𝐾 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 )

using the history of induced dipoles and cubic spline interpolations [START_REF] Press | Numerical Recipes in Fortran 77 and 90[END_REF].

𝑣 𝑖𝑛𝑑≡ ∑ 𝜕 (∫ 1 2 𝜌(𝒓)𝝁 𝐾 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) |𝒓 𝐾 -𝒓| 3 . (𝒓 𝐾 -𝒓) 𝑑𝑟) 𝜕𝜌(𝒓) 𝐾∈𝑀𝑀 (23) 
The introduction of retardation in 𝑣 𝑖𝑛𝑑 impacts the ED within the QM region as it enters the Kohn-Sham potential. There is a supplementary term in eq. 11-15 for which retardation has to be introduced. It is the term ∑ 1 2 𝝁 𝐾 (𝑡). 𝑭 𝐾 𝑍𝑄𝑀 𝐾∈𝑀𝑀 which is the interaction energy between the MM induced dipoles and the quantum nuclei. This is a purely classical term that doesn't impact nuclear dynamics.

For the case of a collision with a charged particle moving at constant speed, more subtle effects need to be taken into account depending on the speed of the moving particle (𝜙 𝑝𝑟𝑜𝑗 ). The charge of the particle is constant but its position is changing. For particles travelling at speeds much smaller than the speed of light no retardation is necessary. At higher speed, especially when approaching 𝑐, classical electrostatic theory tells us that the electric field generated by the particle and felt by the MM atoms is no longer spherical [9].

The Lorentz transformation defines the potential created by a moving particle at constant speed. It is given by the Liénard-Wiechert potential (LWP) [14].

𝜙 𝑝𝑟𝑜𝑗 (𝒓) = 𝑞 𝑝𝑟𝑜𝑗 𝑹 [1 - 𝑣 𝑝𝑟𝑜𝑗 2 (sin Θ) 2 𝑐 2 ] 1 2 ⁄ = 𝛾. 𝑞 𝑝𝑟𝑜𝑗 𝑹 (23) 
where 𝑞 𝑝𝑟𝑜𝑗 and 𝑣 𝑝𝑟𝑜𝑗 , are the charge and velocity of the projectile, 𝜃 is the angle between the propagation direction and the distance vector between an electron and the particle (𝑅 = 𝒓 -𝒓 𝑝𝑟𝑜𝑗 ) at the

moment of observation. 𝛾 = (1 - 𝑐 2 ⁄ ) -1 2
⁄ is the angle-dependent Lorentz factor. For particles travelling at speeds much lower than the speed of light (𝑣 𝑝𝑟𝑜𝑗 2 ≪ 𝑐 2 ) 𝛾 ≈ 1 and Eq. 23 reduces to a standard Coulomb potential. On the other hand, when 𝑣 𝑝𝑟𝑜𝑗 2 → 𝑐 2 , then 𝛾 → 1 if 𝜃 → 0 (i.e. for electrons positioned on the particle trajectory) and 𝛾 → +∞ if 𝜃 → 𝜋 2 ⁄ (i.e. for electrons positioned perpendicular to the particle trajectory). To give some ideas, 0.1, 1, 10, 100 or 400 MeV protons travel at speeds 0.015𝑐, 0.046𝑐, 0.147𝑐, 0.463𝑐, 0.927𝑐 respectively.

Results and Discussion

In section 3 we first validate the implementation of retardation in RT-TDDFT/MMpol simulations (section 3.1). We then investigate in section 3.2 irradiation of a nucleobase by a fast proton in the gas phase. We finally investigate in section 3.3 the influence of retardation on the solvent response after perturbation of a solute subjected to an electric field pulse. All calculations have been carried out with deMon2k. We use the Perdew-Burke-Ernzerhof [23] functional and the DZVP-GGA atomic basis set combined to the GEN-A2* auxiliary basis set [24]. A grid of high accuracy is used to integrate the XC contributions (10 -7 or 5.10 -8

Ha) [25].

Simple models

As a first test we consider a dimer of water molecules A and B at the QM/MMpol level. Molecule A is described by DFT and molecule B by the polarizable POL3 model [26]. In the latter the oxygen and hydrogen atoms hold charges -0.730 and 0.365 and atomic polarizabilities of 0.528 and 0.170 Å 3 respectively. The ground state density is obtained in a preliminary Self-Consistent-Field (SCF) calculation. A Gaussian shaped electric field is applied during the ED simulation. It is centered at 𝑡 0 + 2 as where 𝑡 0 is the initial time. The Gaussian pulse has a standard deviation of 0.1 as and a maximum strength of 0.9 e/bohr 2 . It is oriented along the hydrogen bond direction between the two molecules. Figure 3 

Irradiation of a guanine nucleobase by a fast proton

In this sub-section we investigate the effect of retardation arising from fast moving charged particles colliding with resting molecules. We consider collisions between a proton and a guanine DNA nucleobase.

The guanine molecule was previously geometrically optimized. At the beginning of the collision simulation the proton was positioned 25 Å away from the molecule and is assigned a specific kinetic energy. We consider the following energies: 0.1, 1, 10, 100 and 400 MeV which correspond to speeds of 0.015𝑐, 0.046𝑐, 0.147𝑐, 0.463𝑐 and 0.927𝑐. Simulations have been carried out employing either the Liénard-Wiechert potential (LWP, eq. 23) or a standard spherically symmetric Coulomb potential. In this energy range collision of protons with molecules leads to excitation and ionization of the targeted molecule via inelastic collisions. We shall recall that above a few tens of MeV other channels such as electron-positron pair formation are opened [START_REF] Hatano | Charged Particle and Photon Interactions with Matter[END_REF]. Such processes are not captured by our RT-TDDFT simulations. In our implementation of RT-TDDFT in deMon2k specific computational parameters are needed to describe emission of secondary electrons. First, we use extremely extended atomic basis sets on all hydrogen atoms including several diffuse orbitals. These were taken from [START_REF] Krause | [END_REF]. Second, we add an imaginary absorbing potential (𝐼𝐴𝑃) in the Kohn-Sham potential to remove emitted electrons when reaching a threshold distance [29]. The IAP function is written as a superposition of atom-centered spherical

𝐼𝐴𝑃 𝑎 𝐼𝐴𝑃(𝑅) = min 𝑎 𝐼𝐴𝑃 𝑎 (𝑅) (24) 
𝐼𝐴𝑃 𝑎 (𝑅)

= { 0 𝑉 𝑚𝑎𝑥 sin 2 ( 𝜋 2𝑊 (𝑅 -𝑅°)) 𝑉 𝑚𝑎𝑥 𝑓𝑜𝑟 𝑅 < 𝑅°𝑓 𝑜𝑟 𝑅°+ 𝑊 < 𝑅 < 𝑅°𝑅 > 𝑅°+ 𝑊 (25) 
where 𝑉 𝑚𝑎𝑥 is the maximum value of the absorbing potential, 𝑊 is the width of increase of the atomic IAP and 𝑅° is the distance threshold at which the atomic IAP starts. 𝑉 𝑚𝑎𝑥 , 𝑅° and 𝑊 were set to 10 Ha, 10 Å and 15 Å respectively. These parameters ensure that in the absence of a projectile the total energy of the molecule is conserved within 10 -8 Ha during RT-TDDFT simulations launched from stationary electron densities. The number of electrons is preserved up to 10 -5 . Therefore, IAP doesn't affect the ground state density. Matrix elements of the IAP are calculated at the beginning of the RT-TDDFT simulation by numerical integration with Lebedev grids with 200 radial shells and 1202 Lebedev grid points per shell. For these simulations we are using the Correct Asymptotic Potential (CAP) exchange functional [30] coupled to the PBE correlation functional.

We have considered two collisional trajectories. In the first one the proton travels along a line perpendicular to the average plane of the guanine aromatic system (Figure 5, Right). The impact point is at the center of mass of the molecule. In the second one the proton travels along a line collinear to the aromatic system. A maximum of ionization is generally found for a few tenths of eV which corresponds to a resonance between the respective motion of the electrons and the projectile [START_REF] Mozumder | Charged Particle and Photon Interactions with Matter[END_REF]. This is effectively what is observed when using standard Coulomb potentials (dashed lines). After 2 fs, ionization with 0.1 MeV is far more important than for a 100 MeV. The introduction of the LW potential has a clear impact on the ionization mechanisms at all incident energies. First, we find the ionization with a 400 MeV proton to be more important than with 100 MeV. This is due to the Lorentz term entering the LWP that strongly enhances the effective charge of the projectile. More importantly we see that the initial ionization phases are more abrupt when introducing LW potentials than when using a spherical Coulomb potential, even for 0.1 MeV. A plateau is achieved more rapidly. As expected from the mathematical expression of the LW potential the differences in ionization probability after 2 fs between the "LWP ED simulations" and the non-relativistic ones increase when the incident energies increase. For 0.1 MeV (violet curves)

convergence is observed for collinear impacting trajectory and is expected to take place on longer times for the perpendicular collision. To summarize the mechanism of ionization is clearly affected by the introduction of relativistic corrections in the ion-electron interaction energies. The modulation of the time scales for ionization occurs on hundreds of attoseconds that is on time scales of other relaxation/dissipation processes, eventually going over the shortest times of nuclear vibrations on the femtosecond timescale. 

Response of the polarizable environment of a pentapeptide following perturbation by an electric field

In this final section we investigate the dynamical response of the environment of a molecule subjected to an electric field perturbation. We already reported this type of analyses in Ref. [4] but neglecting retardation effects. The object of the present study is to redo this simulation but including retardation. To this end we consider a short peptide comprised of five amino acid residues (methionine-phenylalanineglycine-glycine -tyrosine) solvated in water. The system is treated with DFT/MMpol. The electrons of the peptide are described by DFT while the water environment is described by the POL3 model of water following the QM/MMpol methodology described in Section 2. The initial electronic state of the RT-TDDFT/MMpol simulations is the ground electronic state obtained by solving an SCF procedure. An electric field pulse is applied to the peptide at the beginning of the simulation and we investigate the response of the peptide and its solvation layers. More specifically, the perturbing electric pulse is Gaussian shaped,

𝐹 𝑚𝑎𝑥 . exp[(-(𝑡 -𝑡 0 ) 2 )/2𝑢 𝐹 2 ]
𝒅, with a maximum centered at 20 as (𝑡 0 ) and a standard deviation of 3 as (𝑢 𝐹 ). 𝒅 is the normalized direction vector of the field. It was set to (1,1,1) here. We vary the maximum electric field strength (𝐹 𝑚𝑎𝑥 ) to be 0.1, 0.01 or 0.001 a.u.. When increasing 𝐹 𝑚𝑎𝑥 the response of the peptide is enhanced which is manifest in a higher induced dipole on the peptide. The time step for the simulation has been set to 0.2 as and a diagonalization technique has been used to evaluate the exponential entering the SOMP equation (Eq. 10). At every time step the induced dipoles on each POL3 water molecule are updated by an iterative procedure until the Root-Mean-Square Deviation between two successive cycles is below 10 -9 D. In practice, because of the short propagation time step used here, only one iteration is needed. To analyze the response dynamics of the environment we have grouped water molecules based on the distance to the peptide with the following color code: 0 to 3 Å (black), 3 to 6 Å (red), 6 to 9 Å (green), 9 to 12 Å (blue), 12 to 15 Å (orange) and finally beyond 15 Å (brown). We depict on Figure 6, Left, the variations of the norms of the induced dipoles, averaged by water layers, with respect to the ground state (∆𝜇(𝑡) = 𝜇(𝑡) -𝜇(0)). On the right panels we represent the normalized autocorrelation functions of ∆𝜇, again averaged by solvation layers.

We analyzed in detail the molecular mechanisms of the relaxation in Ref. [4]. These mechanisms are complicated due to the fact that variations of induced dipoles on MM sites K depend on the electric fields created by the electron cloud (𝑭 𝐾 𝜌 ), by the other MM induced dipoles (𝑭 𝐾 𝑖𝑛𝑑 ) and by their respective strengths. The simplest case to start with is the one initiated by the strongest external perturbation (Figure 6, bottom). In this case the induced dipole created on the peptide is so large that 𝑭 𝐾 𝜌 dominates over 𝑭 𝐾 𝑖𝑛𝑑 on all MM atoms K within 15 Å. This is seen on the ACF (Figure 6, bottom, right) for all solvation layers (< 15 Å) that all follow the same trends. The first solvation layer is clearly the most affected. A maximum polarization response is achieved around 80 as after the pulse (which correspond to the ACF dropping to zero). The simulations have been carried out for 𝑐 = 137 𝑎. 𝑢. and 𝑐 = +∞ (which is equivalent to neglecting retardation). The curves reported in Figure 6 are almost exactly superimposable indicating no influence of retardation. To account for this result, let us first consider the innermost solvation layer (0 to 3 Å). The water molecules in this layer feel the variations of electric field originating from the peptide with delays of just a few attoseconds since 𝑐 ≈ 3 Å/as. Effectively, as seen in the insets of Figure 6 which depict zooms on the 0-50 as time window, the plain curves (ED simulations with 𝑐 = 137 𝑎. 𝑢.) are delayed by a few attoseconds over the dashed curves (ED simulations with 𝑐 = +∞). This delay is much less than the overall response mechanism that takes several tens of attoseconds. This means that the speed at which 𝑭 𝐾 𝜌 is fluctuating is not fast enough compared to the time at which it propagates to induce clear retardation effects on the MM dipoles. The response dynamics remains imposed by 𝑭 𝐾 𝜌 . One might expect that retardation would be more pronounced for outer solvation layers because the distance to cover for 𝑭 𝐾 𝜌 to reach remote K MM atoms is larger. However, the results shown on Figure 6 don't confirm this expectation. In addition, because the electric field created by a dipole decays as 𝑟 -3 (Eq. 21) retardation effects are damped rapidly with distance.

When considering simulations with weaker initial perturbing electric fields, conclusions are essentially the same. No retardation effects are highlighted. Now 𝑭 𝐾 𝜌 is weaker because the initial perturbation of the electron density is smaller. The reasons outlined in the previous case to account for the absence of visible retardation effects in the solvation layers still hold. Regarding 𝑭 𝐾 𝑖𝑛𝑑 , that now competes with 𝑭 𝐾 𝜌 to determine the induced dipole on atom K, a similar reasoning applies. Indeed, the dipoles that contribute the most to 𝑭 𝐾 𝑖𝑛𝑑 are those of the closest MM atoms L, say at a few Å. However, to observe retardation effects the fluctuations of electric fields created by dipoles 𝝁 𝐿 would have to be very pronounced and would have to take place on the attosecond timescales. In fact, as seen from the ACF depicted on Figure 6 the relaxation dynamics of induced dipoles requires tens of attoseconds. 

Conclusions

We have proposed a methodology to introduce retarded potentials in ED simulations based on Real-Time TDDFT. We have modified two types of potentials.

The first type of retardation effects we investigated are involved in collision of molecules with fast charged particles. While such effects are generally not taken into account in studies reporting first principles simulations of these processes we found them to be far from negligible. Even though for the lowest proton energies (< 1 MeV) the overall ionization probability was, as expected, similar with LW or standard Coulomb potential we noticed an impact on the mechanism of ionization. The time-scale required to achieve a steady ionization level was shrunk upon the introduction of relativistic corrections at all incident energies. For larger molecular systems other channels may enter in competition with ionization (e.g. ultrafast charge migrations, ultrafast proton transfers…) and therefore the introduction of LWP in the propagation equation could alter the branching ratio among the channels. The mathematical simplicity of the Liénard-Wiechert potentials recommends its use in future simulations of elastic and inelastic collisions between matter and fast charged particles.

Second, for molecules in contact with polarizable environments, we have shown that retardation in the mutual electrostatic interactions between the molecule and its environment can be safely neglected. This is due to the fact that electric fields generated by the molecule or its environment do not fluctuate sufficiently rapidly to create noticeable retardation effects. Our simulations in Section 3.3 consisted in optical excitations of the central molecule by a laser field. The induced dipole on the molecule was the main source of perturbation of its environment. Because the field created by a dipole decays rapidly with the distance (~1/r 3 ), any retardation in the potential is rapidly damped. In the eventuality of ionization of the central molecule one might eventually expect different conclusions since the overall charge variation might produce a rapidly fluctuating electric field. However as illustrated in Section 3.2 in the case of collisions with charged particles or in Ref [START_REF] Krause | [END_REF]29] in the case of strong laser fields, significant ionization of a molecule takes tens of attoseconds. Even in this case it is not likely to observe significant retardation effects in the overall relaxation/response of the environment. Our conclusions which are grounded on the realization of hybrid RT-TDDFT/MMpol simulations also hold for other hybrid schemes like those combining RT-TDDFT with implicit polarizable continuum models [START_REF] Nguyen | [END_REF].
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 1 Figure 1: Iterative Second order Magnus Propagation (SOMP) scheme used in this work to simulate electron dynamics in deMon2k.

  depicts the molecular dipole moment of the QM (Top) and MMpol (Bottom) water molecules for three ED simulations differing by the refractive indexes defined to determine the retarded times, namely 10.0 (black, considered as equivalent to infinite speed of light), 1.0 (red) and 0.5 (green). When ignoring retardation (black curves), the dipole moment on the MM molecule instantaneously follows the perturbation on the QM region caused by the external electric pulse. Note however that while the dipole of the QM water varies by 0.07 D that of the MM water varies ten times less (0.007 D). This is a consequence of the rapidly decaying electric potential created by the electron density (eq.[START_REF] Dunlap | [END_REF]. The MMpol molecule is slightly polarized. With n=1 and 0.5 the MM dipoles respond with delays of around 1.5 and 3 as respectively, as expected from the distance separating the molecules (ca. 1.8 Å for the H…O distance). Then the induction dynamics is clearly different for the three cases. The tight correlation between the QM and MM dipoles observed for n=10.0 is weakened. We also note that the back reaction of the MM dipole on the electron cloud is negligible as the dipole moments of the QM water follows the same trend for the simulation with different refractive indexes. The use of cubic splines is finally validated taking as example the x component of the dipole moment of the MM oxygen atom (Figure4). The interpolated values (red spots) are nicely positioned on the expected black curve of the dipole moment.
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 23 Figure 2: Water dimer used to validate the implementation of retardation in hybrid RT-TDDFT/MMpol simulations

Figure 4 :

 4 Figure 4: Interpolation of 𝜇 𝑂 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) delayed dipole moments using cubic splines. For illustration purpose we show the x component of the time moment on the oxygen atom. The open circles are the dipole component at every propagation time step ( 𝜇 𝑂 (𝑡 𝑛 )). The black line is drawn to guide the eyes. The plain red points are some examples of interpolated values.

Figure 5 :

 5 Figure 5: Irradiation of a guanine nucleobase by a fast proton with two different impacting trajectories as represented on the right. Color code: 0.1 MeV in violet, 1 MeV in blue, 10 MeV in green, 100 MeV in red and 400 MeV in black. The plain and dashed curves correspond to simulations with a Liénard-Wiechert potential or a standard spherically symmetric Coulomb potential respectively. Note that because of the different velocities of the proton, impact with the guanine takes place at different times (400, 155, 55, 14 as). Time zero corresponds to the geometry where is the projectile is located 25 Å away from the molecule.

Figure 6 :

 6 Figure 6: Left: variations of the average induced dipole moment by hydration layers ⟨Δμ(t)⟩ = ⟨μ(t) -μ(0)⟩ (Inset: zoom on 0-50 as). Note the change of scales for each graph. Right: normalized autocorrelation function of the water molecule induced dipole moments averaged by hydration. The upper, middle and lower graphs correspond to initial perturbing electric field of strength 0.001, 0.01 and 0.1 Ha/e.bohr. respectively (atomic units). Color code: 0 to 3 Å (black), 3 to 6 Å (red), 6 to 9 Å (green), 9 to 12 Å (blue), 12 to 15 Å (orange) and finally beyond 15 Å (brown). The dashed line corresponds to RT-TDDFT/MMpol at infinite speed of light (no retardation).

  The knowledge of 𝜌 𝑖 (𝑡 𝑛 + Δ𝑡) allows the construction of the KS potential at 𝑡 𝑛 + Δ𝑡, 𝐻 𝑖 (𝑡 𝑛 + ∆𝑡).

				software. The key point of
	the SOMP which propagates the electron density from time 𝑡 𝑛 to 𝑡 𝑛 + Δ𝑡, is to know the Kohn-Sham
	potential at time 𝑡 𝑛 + Δ𝑡 2 ⁄ . An iterative procedure is used to accomplish this. The algorithm works as
	follows:		
	1. In the first step one builds a guess for 𝐻 𝑖 (𝑡 𝑛 +	∆𝑡 2	) (for the i-th iteration step) by extrapolation
	from 𝐻(𝑡 𝑛 ) and 𝐻(𝑡 𝑛-1 ).		
	2. One operates an SOMP step on 𝜌(𝑡 𝑛 ) to obtain 𝜌 𝑖 (𝑡 𝑛 + Δ𝑡) using 𝐻 𝑖 (𝑡 𝑛 +	∆𝑡 2	).
	3. 4. A new KS potential at 𝑡 𝑛 +	∆𝑡 2 is constructed by interpolation from the potentials at 𝑡 𝑛 and 𝑡 𝑛 +
	Δ𝑡. With this improved potential at 𝑡 𝑛 +	∆𝑡 2

  Introducing the delay is straightforward if one knows the history of induced dipoles. Being three-dimensional vectors they can be stored easily in RAM (Random Access Memory) or on machine hard disks. When 𝑭 𝐾 𝑖𝑛𝑑 on atom K is needed, a loop over all other MM atoms (L) is carried out. For each atom L, 𝑑 𝐾𝐿 is calculated, which defines 𝑡 𝑑𝑒𝑙𝑎𝑦 , hence 𝜇 𝐿 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) using the history of the 𝜇 𝐿 induced dipole. Because, in general, 𝑡 𝑑𝑒𝑙𝑎𝑦 doesn't correspond to an integer multiple of ∆𝑡, we use cubic splines to interpolate 𝜇 𝐿 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ).

	𝝁 𝐾 = 𝛼 𝐾 𝑭 𝐾			(17)
	𝑭 𝐾 𝑍𝑄𝑀 = ∑ 𝐴∈𝑄𝑀	𝑍 𝐴 𝑟 𝐾𝐴 3 𝒓 𝐾𝐴	(18)
	𝑭 𝐾 (0) = ∑ 𝐿≠𝐾 𝐿∈𝑀𝑀	𝑞 𝐿 𝑟 𝐾𝐿 3 𝒓 𝐾𝐿	(19)
	𝑭 𝐾 𝑖𝑛𝑑 = -∑ 𝑻 𝐾𝐿 𝜇 𝐿 (𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) 𝐿≠𝐾 𝐿∈𝑀𝑀	(20)
	𝑻 𝐾𝐿 =	1 𝑟 𝐾𝐿 3 𝑰 -	𝑥 2 𝑥𝑦 𝑥𝑧 𝑧𝑥 𝑧𝑦 𝑧 2 𝑦𝑥 𝑦 2 𝑦𝑧 5 [ 3 𝑟 𝐾𝐿	]	(21)
	𝑭 𝐾 𝜌 = -∫	𝜌(𝒓, 𝑡 𝑛+1 -𝑡 𝑑𝑒𝑙𝑎𝑦 ) 𝑟 𝐾 3	𝒓 𝐾 𝑑𝒓	(22)
						𝐾 𝑍𝑄𝑀 ) or by permanent charges on
	MM atoms (𝑭 𝐾 (0) ) and the other sources of electric fields (𝑭 𝐾 𝜌 , 𝑭 𝐾 𝑖𝑛𝑑 and 𝑭 𝐾 𝑝𝑒𝑟𝑡 ). Indeed, variations of
	𝑭 𝐾 𝑍𝑄𝑀 and 𝑭 𝐾 (0) would arise with nuclear motions. On the attosecond time scale such motions are extremely
	slow and the resulting variations of 𝑭 𝐾 𝑍𝑄𝑀 and 𝑭 𝐾 (0) can be neglected safely. In practice this is actually
	guaranteed because we report here electron dynamics simulations at fixed nuclear positions. The three
	other fields, on the contrary, vary significantly on the attosecond timescale because they either depend
	on electronic motion (𝑭 𝐾 𝜌 , 𝑭 𝐾 𝑖𝑛𝑑 ) or on particles moving at very high speed (𝑭 𝐾

𝑝𝑒𝑟𝑡 ). 𝑭 𝐾 encompasses contributions from the electron cloud (𝑭 𝐾 𝜌 ), from induced dipoles of other MM atoms (𝑭 𝐾 𝑖𝑛𝑑 ) and from an applied field and/or a high-energy projectile (𝑭 𝐾 𝑝𝑟𝑜𝑗 ). When building the KS potential at time 𝑡 𝑛 + Δ𝑡 during the iterative process one needs to account for the fact that the field created by other induced dipoles takes time to reach atom K. The originality of the present work is to introduce retardation in 𝑭 𝐾 𝑖𝑛𝑑 , 𝑭 𝐾 𝜌 and 𝑭 𝐾 𝑝𝑟𝑜𝑗 . Let's first consider 𝑭 𝐾 𝑖𝑛𝑑 and imagine we can ride on atom K. The electric field created by other induced dipoles on MM atoms L should not be that arising from the dipoles 𝜇 𝐿 at 𝑡 𝑛 + Δ𝑡 but, rather, at a time earlier in the past. The further MM atoms L, the longer the delay for the electric field from this atom to reach MM atom K. The delay is determined by the distance between atoms (𝑑 𝐾𝐿 ) and by the speed of light in the medium of interest, i.e. 𝑡 𝑑𝑒𝑙𝑎𝑦 = 𝑑 𝐾𝐿 𝑛𝑐 ⁄ with 𝑛 the refractive index of the medium and 𝑐 the speed of light in vacuum. As a rule of thumb for 𝑛 = 1, 𝑐 ≈ 137 𝑎. 𝑢., approximately 3 Å/as. In previous implementations of RT-TDDFT QM/MMpol methods, no delay was taken into account which is equivalent to assuming infinite c.
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