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Abstract. Nanoparticle Tracking Analysis (NTA) provides a simple method to
determine individual nanoparticle size. However, because size quantification is based
on the slowly converging statistical law of random event, its intrinsic error is large,
especially in case of limited event number, e.g. for weak scattering nanoparticles.
Here, we introduce an NTA improvement by analyzing each individual NP trajectory
while taking into account the other trajectories with a weighting coefficient. This
weighting coefficient is directly derived from the optical signature of each particle
measured by quantitative phase microscopy. The simulations and experimental results
demonstrate the improvement of NTA accuracy, not only for mono-disperse but also
for poly-disperse particle solutions.
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1. Introduction

The Brownian motion of a nanoparticle (NP) suspended in solution obeys a statistical
law in which the mean square displacement (MSD) depends on the NP size [1].
Nanoparticle Tracking Analysis (NTA) is therefore a common approach for size
quantification, not only for individual inert NPs but also for nano-size biological objects
[2, 3, 4]. For a NP diffusing in a solution of dynamic viscosity η, its diameter d can be
derived from its 3D MSD following:

MSD = 1
N − 1

N−1∑
i=1

(ri+1 − ri)2 = 6 kB T

3π η d ∆t

⇒ d = 2 kB T

π η ·MSD ∆t (1)

, where N number of tracked points, ri particle position at instant i, kB Boltzmann
constant, T absolute temperature, ∆t time lag (duration between two consecutive
points). Theoretically, the MSD is proportional to time lags ∆t. Currently, the most
accurate method for size estimation relies on a linear fit of first few points of MSD
curve as a function of time lags [5, 6].

However, this NTA approach possesses a large intrinsic error margin which depends
primarily on the length of tracking trajectory (convergence in 1/

√
N) and the

localization error [5, 6, 7]. In the case of small nanoparticles, their weak signals lead to
an important size quantification inaccuracy, due to both low localization precision and
limitation of tracking length. As an example, the relative size error (considering only
the limited track length) is of about 70% if the nanoparticle can be followed in 10
consecutive frames and falls to 20% for 100 frames [6]. As an attempt to improve NTA
accuracy, various methods are proposed, either increasing the tracking length (e.g.,
using a holographic approach in which a nanoparticle can be tracked although
positioned far from the imaging plane [8, 9, 10]), or using the localization error as a
weighting factor for size estimation [6]. Besides, if particle population statistics are
sufficient, multiple post-processing algorithms have been proposed in order to estimate
the mean size of solution from the size distribution by using a covariance-based
estimator [11, 12, 13], or maximum likelihood approach [14, 15, 16, 17].

In this paper, we introduce our individual NTA improvement approach based on the
exploitation of the optical signature of each particle and trajectories in an acquisition.
Instead of a simple linear fit of all MSD curves (allowing to derive the average size of
all the particles but not individual particle [6]), we suggest using weighted linear fit, in
which each single particle’s MSD curve will not have the same impact for the final size
determination of the considered particle. The weighting coefficient represents the
optical similarity between particles. It should be in between 0 (extreme case where two
particles are considered as totally different) and 1 (in the case of two identical
particles).
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In order to calculate the similarity between particles, quantitative phase microscopy via
wavefront imaging is used to obtain two images (intensity and phase) for each particle.
These images characterize respectively the absorption/attenuation and the refractive
index of the NP with a signal also linked to the particle volume. It is therefore a good
criterion for the similarity between particles because it is able to discriminate particles
both by their size and nature. To jointly take into account all the optical signatures
into the calculation, these two images, intensity (I) and phase (ϕ), are merged into a
unique observable, called Rytov field :

ERy = i λ nm

π

[
ln(I)

2 + i ϕ

]
, (2)

where λ illumination wavelength, nm refractive index of the medium. The Rytov field
is a complex quantity: its real part (imaginary part, respectively) represents the
refraction (absorption/attenuation, respectively) properties of the particle. Moreover,
the Rytov amplitude image, ARy = |ERy|, exhibits a signal on a zero background for
any type of particle, and looks very similar to a fluorescent NP image. This simplifies
the tracking since an universal tracking algorithm can be applied without a priori
knowledge of the particle optical response [18]. In addition, Rytov amplitude indicates
the interaction between light and NP and is proportional to the number of detected
photons. For our application, Rytov field is therefore much more convenient than
classic scalar electromagnetic field. It is important to mention that if a priori
knowledge about the particle refractive index (and thus about the particle nature) can
be used, information about each particle’s size can be obtained. In this paper, we
propose a general method independent from any knowledge an the particle nature.

We interpret the similarity between two particles from the difference between their Rytov
field images. Because of the imaging and sampling condition, Rytov field image of a
particle is considered as a sum of particle’s actual signal Es

Ry and a noisy background of
variance ε. The signal-to-noise ratio (SNR) is defined as |Es

Ry|/
√
ε and is proportional

to square root of the number of detected photon. The variance of the difference between
the Rytov field of ith particle (ERy,i) and the Rytov field of jth particle (ERy,j) is the
actual signal variance plus twice the acquisition error (supposing the two particle images
have the same noise statistics). We define the similarity Ci,j by the following formula:

Ci,j = 2ε
σ2(ERy,i − ERy,j)

= 2ε
σ2(∆Es

Ry) + 2ε , (3)

where σ2(ERy,i−ERy,j) the variance of the difference between two Rytov field, ∆Es
Ry the

actual signal difference between two Rytov field in absence of noise. In case of identical
particles, the true signal difference is 0 leading to a similarity of 1. When two particles
are different, the similarity Ci,j is less than 1. The weighting coefficient is defined as an
exponentiation of the similarity Ci,j by a positive exponent nw:



Optical signal-based improvement of individual nanoparticle tracking analysis 4

Wi,j = Cnw
i,j =

(
2 ε

σ2(ERy,i − ERy,j)

)nw

. (4)

Since the base Ci,j is smaller than 1, using an exponentiation by nw kept the final
value between 0 and 1 (1 when two particles are identical, and tends to 0 when the
Rytov field difference is important). This exponent nw is introduced to modulate the
averaging process: the arithmetic average is achieved at nw = 0 (all the trajectories are
analyzed equally in order to retrieve the average size of particles in solution), while
nw → ∞ corresponds to the classic NTA process in which each particle size is
calculated only from its trajectory.

Figure 1 summarizes the principle of our algorithm.
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Figure 1: Principle of method. Size quantification of ith nanoparticle from all MSD
curves.

2. Results - Discussion

2.1. Validation by simulation studies

In order to study the effect of our weighted MSD fit, we carried out simulation studies
(LabView, National Instruments). Particles with sizes satisfying a normal distribution
with known mean size and standard deviation (S.D.) are considered and their
200-point Brownian trajectories are generated for each particle. Intensity and phase
images of each particle at each position are simulated, using Product-Of-Convolution
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[19, 20]. Camera’s shot noise can be added in order to replicate the images in different
experimental conditions.

From these 200 noise-realistic images, super-localization is applied on the Rytov
amplitude to recenter the images although the particle is moving (carried out with
realistic simulated localization error of 30-nm along the lateral direction and 100-nm
along axial direction). Different averaged sub-images are then produced from the pool
of numerically centered images. First, the all 200 sub-images are average to produce
an dynamic averaged Rytov field ERy,i. Then, the image dataset is split in 2 × 100
images to produced, via averaging, two images of the same particle ERy,i,1 and ERy,i,1

which differ only by their noise. By computing σ2(ERy,i,1 − ERy,i,2) = 2 εi, one can
extract the actual noise amplitude of the particle image ERy,i. Noteworthy, this
method can be applied on actual acquisition and not only simulated particles to
measure the intrinsic noise level [18].

The study is first carried out for 100-nm polystyrene (PS) NP. Figure 2 depicts the
variation of similarity between a simulated 100-nm PS NP and with different particles,
while varying NP size, or NP complex refractive index ñ = n + i · k. The similarity
reaches 1 when the particle is compared to another particle having same characteristics,
and starts vanishing quickly with the difference in size (and/or refractive index, and/or
absorption coefficient). The similarity coefficient can surpass 1 in this simulation for
2 exactly (or quasi) similar particles due to the acquisition noise. If the similarity is
higher than 1, its value is set at 1.
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Figure 2: Simulation of the similarity between particles. Similarity between
simulated 100-nm PS NP: (a) versus different size PS NP, (b, c) versus 100-nm NP of
different refractive index (n) and absorption coefficient (k). ∆n and ∆k compared to
the complex refractive index of PS.

A second study has been performed for a virtual PS batch of 200 NPs so that their
real size are normal distributed with a mean size of 100-nm and a S.D. of 15-nm.
Images of each particle are generated without the shot noise (SNR estimated at 55,
due to the interference fringes). Figure 3a illustrates all the 200 MSD curves (gray
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line), versus the weighted fit MSD curve of the first particle (orange line). The gray
scale of each MSD curve is color-coded from the similarity between each particle and
the first particle (lighter the line color, lower the similarity).

Then, we vary the exponent nw to discuss the effect of the weighted MSD fit process
for size retrieval. Let us consider dNP as the actual particle size, ∆d the difference
between the measured size via weighted linear fit and actual particle size, and ∆dNT A

the difference between the measured size via classic NTA and actual particle size. The
optimal weighting coefficient is reached when the relative size difference ∆d/dNP is
minimized which corresponds to a maximization of gain= ∆dNT A/∆d. Results are
presented in figure 3b (50 repetitions were carried out, all the repetitions in gray line,
its mean value and S.D. in blue line) and we determined that the best nw exponent
was 1.125. Comparing to the classic NTA (correspond to nw = ∞ in the graph), the
relative size difference is reduce from 12% to 3%, illustrating a gain in NP sizing of
about 4 (see inset graph).

We have also studied the distribution of NP size determined by the weighted fit at
different exponents, compared to the real size and the classic NTA, as illustrated in
Figure 3c. When the averaging process is more important (i.e. smaller nw exponent),
the dispersion of NP size is smaller than the real dispersion and can be considered as
an artifact. In the extreme case where nw = 0, all the trajectories are taken into
account equally to extract the average NP size. In the contrary, when nw tends to
infinite (nw > 5), the averaging process is vanished and we obtain the distribution of
the classic NTA.

The histograms of real size, size measured from classic NTA and with the optimal
weighted fit (here, nw = 1.125) of our simulated 100-nm PS solution are illustrated in
Fig 3d. The measurement mean size and dispersion in standard deviation are
99± 20.0-nm in the case of classic NTA and 99.4± 13.4-nm in the case of our weighted
fit, closer to the size distribution dispersion of 100 ± 15-nm. The weighted fit clearly
improves the NP size determination, as its histogram is almost identical to the real
histogram. Similar results are obtained for absorbing particles, here 100-nm Au NP
(illustrated in Figure 3e), confirming the interest of using weighted NTA approach.

The method is also efficient for poly-disperse solutions. We have considered a mix of
100 particles of PS (mean size of 200-nm, dispersion 25-nm) and 100 particles of gold
(Au) NP (mean size of 100-nm, dispersion 20-nm). These particles have been chosen
since they have mostly the same SNR in Rytov amplitude images [18]. The histograms
of its real size, classic and weighted NTA, shown in Figure 3f, also describe an
objective improvement of size quantification. For each population of particles, the size
dispersion is clearly reduced, from 39.6 to 24.0-nm for PS NP and from 25.7 to
19.5-nm for Au NP while keeping an accurate mean size value (199.3-nm and 99.7-nm
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Figure 3: Simulation of MSD curve’s weighted fit. (a) Example of the MSD
curve’s weighted fit of one particle versus the MSD curves of all the particles. (b)
Relative size difference in function of the exponent nw for 50 repetitions (gray line) and
its statistics (mean value and standard deviation, in blue line and points). Exponent
nw = ∞ (on the top right) represents the classic NTA. Inset graph illustrates the gain
in NP sizing as a function of nw. (c) Distribution of NP sizes of a 100-nm PS solution
calculated by weighted fit at different exponents, compared to classic tracking analysis,
and its real size. (d, e, f) Comparison of the distribution of the real size, the classic
NTA and the weighted NTA for 3 solutions : 100-nm PS NP (d), 100-nm Au NP (e),
and a mix of PS and Au NP (f).

for PS NP and Au NP respectively).
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Figure 4: Analysis of the optimal exponent. (a, b) Relative size difference and the
gain of weighted NTA for different particles. Inset graph shows the optimal exponent for
each particle. (c, d) Relative size difference and the gain of weighted NTA of 100-nm
PS at different SNR. Inset graph depicts a linear dependence of optimal exponent and
SNR−1.

Noteworthy, the optimal exponent is almost independent to the nature of particle
(material, size) thanks to the Rytov field weighting approach, as illustrated in Figures
4a and 4b. While increasing photon shot noise (decreasing the SNR), the similarity
between particles is less significant due to image noise. The averaging process is
expected to be less important, leading to a shift of optimal exponent toward a higher
value (Figure 4c and 4d). The optimal exponent nw is linearly dependant with the
reciprocal of SNR (see inset of Figure 4c) and can thus be directly experimentally
determined from the actual acquired phase and intensity images. Even at low SNR,
the weighted fit remains useful with gain > 1 when compared to classic NTA.

Simulation studies indicate that our approach presents a significant improvement of NP
sizing for both mono- and poly-disperse solution of nanoparticles. In the subsequently
step, experimental studies are performed in order to validate the method.
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2.2. Validation by experimental studies

For experimental studies, intensity and phase images are acquired on a homemade
microscope using a quadriwave lateral shearing interferometer [21, 22, 23]. Since we
access to the full information of the scalar electromagnetic field, a moving particle can
be numerically propagated at its focal plane [18]. A time-lapse averaging process is then
applied after registering and cropping the image around the refocused particle. As long
as the localization error is not larger than half of the point spread function (for this
study this correspond to about 150-nm localization error), the time-lapse averaging is
efficient and our method for size estimation improvement can be applied. Details of the
setup and the process are described in our previous work [18]. We determine the SNR
at ≈ 10 to 20 for 100-nm PS NPs and the optimal exponent is estimated as nw = 1.25.
Since the actual size of each moving particle cannot be known exactly (each NP is
smaller than the point spread function of the microscopy), the comparison between the
size histograms of multiple tracked NPs of classic tracking and weighted tracking is used
as a proof for the improvement of NTA.

(a) (b)

(c) (d)

Figure 5: Experimental demonstration of MSD curve’s weighted fit.
Comparison of size histograms, with and without weighted fit, for (a) mono-disperse
100-nm PS NP, (b) mono-disperse 100-nm Au NP, (c) poly-dispersed solution of 100-nm
Au NP and 200-nm PS NP, and (d) infectious HIV-1 virus solution.
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Figure 5a shows the result of a calibrated PS solution (Duke StandardsTM

3K-100-001). Its properties are provided by the supplier (mean size of 102 ± 3 nm,
S.D. of 7.6 nm, measured by transmission electron microscopy). The mean sizes are
almost similar between classic NTA (104.2-nm) and our weighted approach
(104.8-nm), and are in the confidence range provided by the supplier. Our MSD
curve’s weighted fit provides a better estimation of NP size dispersion in which the
standard deviation is reduced by a factor 2, from 27.6-nm with classic NTA to 12.5-nm
with the weighted approach (optimal exponent nw = 1.25 determined from the images
SNR), closer to the supplier information. The same observation is obtained for the
solution of 100-nm Au NP (Sigma Aldrich), as shown in the Figure 5b. The size
dispersion of Au NP is reduced by 2, and the mean size agrees to the hydrodynamic
size provided by the supplier (118-nm). These results confirm the performance of our
method for dielectric and metallic NPs.

Our method is then investigated for poly-disperse solution containing two classes of
NPs: 200-nm PS and 100-nm Au NP (at 55%:45% molecular percentage, estimated
from the dilution protocol). The two particles, one dielectric and the other metallic,
are chosen so that their Rytov intensity are similar. This means that on raw phase and
intensity images before numerical refocusing there signal are in absolute almost
identical. Figure 5c illustrates the size distribution of the mixture. With classic NTA
it is challenging to separate the two classes and to properly distinguish that it was a
mix and not a unique solution with very poly-disperse in size objects. The separation
of the two classes is improved by the weighted NTA and we can clearly identify two
populations, one centered at 200-nm and the other at 100-nm.

Our system is stable enough to carry out an experiment inside a biosafety cabinet
of a level-3 confined laboratory (CEMIPAI, University of Montpellier). An example
of the characterization of infectious HIV-1 (NL4-3) is illustrated in Figure 5d. Size
distribution becomes sharper (2.2× gain factor) when weighted fit is applied allowing to
determine the infectious HIV-1 size at 169.9±28.4-nm, comparable to the measurement
by cryo-electron microscopy (145 ± 25-nm) [24]. The difference is attributed to the
outer-shell of glycoprotein gp160Env which participates in the hydrodynamic diameter
measurement (tracking analysis) but not in the electron microscopy measurement.

2.3. Implementation in NP characterization

Analysis of intensity and phase images is not restricted to single particle size
determination only. The quantification of the scalar electromagnetic field can be used to
characterize NPs by their refraction and absorption properties. For example, complex
refractive index of individual NPs can be studied using quantitative phase imaging
[18], or digital holography [25]. Here, we presents an application of improved NTA
in complex refractive index quantification by quantitative phase microscopy. In this
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approach, the complex refractive index ñ is derived as an inverse proportion of the NP
volume V = π/6 · d3 [18]:

ñ = nm −
1

nm V

∫∫
S

[1
2 Re(ERy) + Im(ERy)

]
dS, (5)

where, Re(ERy) and Im(ERy) real and imaginary part of Rytov field, dS infinitesimally
small surface element of the image S, nm refractive index of the surrounding medium.
Therefore, the reduction of NP size error allows to increase the measurement accuracy
since its influence is more important (d3) than the other variables.

0 1 2 3 4 5
n

-2

-1

0

1

2

k

Classical NTA
Weighted NTA

Figure 6: Implementation to the quantification of refractive index. Comparison
of the measurement of complex refractive index of PS NP while using classic NTA and
our improved NTA.

Figure 6 illustrates the results of complex refractive index (n and k are real and
imaginary part) of 200-nm PS NPs, in both cases where NP size is derived from either
classic NTA or our improved NTA. Our approach clearly reduces the measurement
dispersion, from 0.35 to 0.16 for the real part. While using the improved NTA, the
median of real part of refractive index of 200-nm PS NP is 1.64, closes to the literature
(n = 1.61 in [26]). The imaginary part is closes to 0, confirming the fact that PS is a
transparent particle. The result of refractive index quantification justifies the effect of
our improved weighted NTA in NP characterization.

3. Conclusion

In this work, we have presented a method to improve size evaluation from Brownian
motion of single sub-resolved nanoparticles. Our approach is based on the weighted
linear fit of MSD curves of all the tracked particles. Each weighted coefficient is
automatically adjusted from the particle images of phase and intensity (depending
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only on the image SNR). However, even without exact determination of the optimal
coefficient, applying a value between 1 and 1.5 leads to quasi-optimal size
determination improvement. In our experimental condition, we have demonstrated
that the dispersion of NP size can be reduced at least by a factor 2 compared to classic
NTA. These results are illustrated for both mono- and poly-disperse solutions. The
method can also be implemented in other NP characterization method, for example, in
complex refractive index quantification, as demonstrated in this paper. Because the
derivation of the refractive index involves NP size, the reduction of NP size error can
enhance the measurement accuracy.

Our method relies on an efficient similarity metric based on phase/intensity image
comparison. This can fail if the particles are moving in 3D not in 2D due to the
defocus on the phase and intensity images. However, this is not an issue as long as the
full information of the scalar electromagnetic field is measured. Indeed, numerical
propagation during the post-processing can be applied to digitally refocus all single
particle images in the same plane [18]. In this case, it looks like all the particles are
moving in 2D in the microscope imaged plane.

Our approach is demonstrated for spherical particles, but it can also be applied for
non-spherical particles. For nanorods, if we have a priori information about the
particle size aspect ratio, a modified diffusion law can be applied to deduce this size
from the trajectory, even for sub-resolved objects [27, 28]. As long as this aspect ratio
is constant in the analyzed population, it is possible to directly apply our approach.
For non-constant aspect ratio, if we know the particle refractive index, the aspect ratio
could be measured from the information of both trajectory and phase/intensity
measurements. However, in the case of resolved objects (e.g. carbon nanotube,
micro-rods,...), since the orientation can be determined easily, our method will be
possible to be applied, specially the similarity between objects, for object metrology.

Our approach is actually obtained thanks to the acquisition of intensity and phase
images. We do believe that the method can be generalized for other imaging method,
such as fluorescence microscopy [29], interferometric scattering microscopy [30, 31] or
dark field microscopy [32, 33]. However, if only one observation is acquired (e.g.
intensity of scattered light or intensity of fluorescent emitter), the confusion may occur
in the case of poly-disperse solution, where two particles of huge difference in size but
somehow interact with light in the same way. Therefore, the definition of similarity
must be modified to cover the case.
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