
HAL Id: hal-04167112
https://hal.science/hal-04167112v1

Submitted on 20 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Troubleshooting Enhancement with Automated
Slow-Start Detection

Ziad Tlaiss, Isabelle Hamchaoui, Isabel Amigo, Alexandre Ferrieux, Sandrine
Vaton

To cite this version:
Ziad Tlaiss, Isabelle Hamchaoui, Isabel Amigo, Alexandre Ferrieux, Sandrine Vaton. Troubleshoot-
ing Enhancement with Automated Slow-Start Detection. ICIN 2023: 26th Conference on Inno-
vation in Clouds, Internet and Networks and Workshops, Mar 2023, Paris, France. pp.129-136,
�10.1109/ICIN56760.2023.10073485�. �hal-04167112�

https://hal.science/hal-04167112v1
https://hal.archives-ouvertes.fr


Troubleshooting Enhancement with Automated
Slow-Start Detection

Ziad Tlaiss†∗, Isabelle Hamchaoui∗, Isabel Amigo†, Alexandre Ferrieux∗, Sandrine Vaton†
IMT Atlantique, Lab-STICC laboratory (Brest, France) †

Orange Labs Networks (Lannion, France)∗

Emails: †{firstname.lastname}@imt-atlantique.fr, ∗{firstname.lastname}@orange.com

Abstract—Detecting anomalies in networks usually requires
packet level traffic capturing and analysing. Indeed, the ob-
servation of emission patterns sheds some light on the kind
of degradation experienced by a connection. In the case of
reliable transport traffic where congestion control is performed,
such as TCP and QUIC traffic, these patterns are the fruit of
decisions made by the Congestion Control Algorithm (CCA),
according to its own perception of network conditions. The CCA
estimates the bottleneck’s capacity via an exponential probing,
during the so-called ”Slow-Start” (SS) state. The bottleneck
is considered as reached upon reception of congestion signs,
typically lost packets or abnormal packet delays depending on
the version of CCA used. The SS state duration is thus a key
indicator for the diagnosis of faults; this indicator is estimated
empirically by human experts today, which is time-consuming
and a cumbersome task with large error margins.

This paper proposes a method to automatically identify the
Slow-Start state from actively and passively obtained bidirec-
tional packet traces. It relies on an innovative timeless representa-
tion of the observed packets series. We implemented our method
in our active and passive probes and tested it with CUBIC and
BBR under different network conditions. We then picked a few
real-life examples to illustrate the value of our representation for
easy discrimination between typical faults.
Index Terms: troubleshooting, active measurement, passive
measurement, Congestion Control algorithm, Slow-Start

I. INTRODUCTION

Quality of Experience (QoE) remains one of the most
crucial competitive advantages for an Internet Service Provider
as it directly impacts its brand image. However, room for im-
provement remains consistent for network operators as many
networks are still impeded by crippling issues bitterly reported
by customers and commented by media which affect operators
reputation. Improving customers experience is a necessary
yet delicate task, as it relies on continuous and pervasive
monitoring of the network and, as soon as a degradation is
detected, a quick identification and fixing of the root cause is
demanded, that is troubleshooting.

Unfortunately many problems cannot be handled with
mainstream monitoring tools: For example, excessive latency
cannot be detected via flow-level tools such as Netflow [1],
nor by equipment’s counters [2] or traffic sampling methods
[3]. Even if end-to-end active measurements can identify
slow connections, they are of little help for locating latency
bottlenecks on the path. Collecting and analysing exhaustive
packet-level traces captured on network mid-points are still
operators’ best choice for anomaly root cause identification.

For decades, most operators’ end-to-end diagnosis methods
have been based on the observation of transport protocol (e.g.
TCP, Transmission Control Protocol) packet headers. Hence,
with a mere one-point traffic capture, passive probes can easily
catch latencies and packet losses on both upstream (from
sender to probe) and downstream (from probe to destination)
segments, see [4] and [5]. Faulty nodes can further be located
by moving the capture point (beam splitter, port mirroring,
etc.). These captures together with the related analysis are
typically performed by human experts upon network moni-
toring alarms or customers claims. This method remains the
cornerstone of troubleshooting for many operators, however,
it is jeopardized by the explosive growth of QUIC where
transport headers are encrypted, making them unreadable for
a midpoint observer. Although QUIC has an option which
allows to monitor latencies [6], it is likely that it will not
be implemented by client softwares (e.g. browsers, mobile
applications) in the future. QUIC observability via passive
probes will thus probably be lacking for a long time.

It is true that active probes, by generating their own traffic,
are not impeded by encryption and can detect QoS degrada-
tion, however, contrarily to passive probes, their representa-
tiveness can be questioned for two reasons: First, test traffic
is not real clients’ traffic. Second, active probes typically see
only a subset of the network. This last point can be balanced
through a massive probes deployment, but as current trou-
bleshooting is mainly based on human diagnosis, automation
is certainly a key element for dealing with the data deluge
collected via such a dense fleet of active probes. Beyond this
scalability issue, the whole troubleshooting process should be
revisited in the light of active measurement specificity. Indeed,
even if active end-to-end measurements easily report QoS
issues, they give no hints on their location. In this context, ob-
serving the source behaviour appears as a promising strategy:
Source emission patterns derive from decisions of the Con-
gestion Control Algorithm (CCA) embedded in TCP/QUIC
stacks, and reflect network conditions rather accurately. The
CCA is in charge of regulating the source emission to obtain a
good throughput without flooding the network. It calms down
as soon as it detects early signs of congestion, such as packet
loss or delay. Tracking its behaviour thus reveals crucial hints
for fault qualification and location.

Slow-Start (SS) is an important state of CCA as it aims at
giving a first estimation of the path capacity at the beginning of



the connection life, or on resumption after a significant pause.
Should it fail, then the connection will experience poor quality.
Most importantly, the way it fails (with or without loss, etc.)
is an excellent indication of the degradation root cause. In this
work, we introduce an effective method to automatically detect
the exit from SS state - or equivalent naming. For this purpose,
we introduce a novel representation, that is the bytes-in-flight
versus sequence number. We use then this representation in
order to identify the last packet in the SS state of the CCA, by
using a relation between the sequence number values and the
bytes-in-flight values that is true only during SS phase. Due to
the similarity of QUIC and TCP CCAs, this method applies
to both. However, as it requires accessing transport headers
information, it can be applied to QUIC traffic only with active
measurements while it could be used on TCP traffic with both
active and passive measurements. We also introduce how our
SS detection method could be used as a powerful tool to easily
discriminate between network typical fault types.

The remainder of this paper is organized as follows. In Sec-
tion II, we demonstrate the significance of CCA behaviour for
troubleshooting. In Section III, we describe the troubleshoot-
ing process from data collection to data analysis for root cause
identification. Section IV presents our method to detect SS
state exit. An evaluation of our method is presented in section
V. An application of the method to network troubleshooting is
presented in section VI. Section VII surveys the related work.
Finally, a conclusion is given in Section VIII.

II. CONGESTION CONTROL ALGORITHM AND
TROUBLESHOOTING

A. Finite State Machine transitions series

The CCA role is to prevent congestion collapse while taking
into account fairness and improving connection’s performance
[7]. Roughly, the CCA embedded in TCP/QUIC stacks aims
at reaching, in a fair manner, the highest throughput safely
tolerable by the network. Under its control, the emitted traffic
falls back as soon as it detects signs of congestion, that is, lost
packets or growing delays. This behaviour can be observed
with an exhaustive capture of the flow’s packets, but also, via
the sequence of transitions of the CCA Finite State Machine
(FSM). State transitions are typically triggered by degradation
events such as detection of congestion signals. The FSM
transitions series contains factually rich semantic information
providing crucial elements for troubleshooting.

B. Invariants in CCA behaviour

Amongst the CCAs, the most commonly encountered are
Cubic and BBR (Bottleneck Bandwidth and Round-trip prop-
agation time)[8]. According to [9], they alone contribute to
the vast majority of today’s traffic, in particular, BBR traffic
probably represents more than half of all internet traffic. Other
CCAs can be observed, but in significantly lower proportion.
However, the CCA landscape remains diverse as many flavours
coexist for a given CCA, depending of the underlying imple-
mentation (e.g. Linux version on server side).

Figure 1: BIF over time evolution for a CUBIC capture
showing SS & CA states, we can notice the exponential growth
of the SS phase versus the linear growth during the CA phase

Figure 2: BIF over time evolution for a BBR capture showing
SS state, we can notice the exponential growth of the SS phase
versus the linear growth after

Even if these CCAs differ in major ways, they share a
few common mechanisms, particularly at the beginning of the
connection life. Should it be called ”Slow Start” or whatever
equivalent (e.g. Hystart or Hystart++, see [10]), the CCA
behaviour in the first state is the same: an exponential rate
growth until reaching the bottleneck capacity. An example of
this exponential growth is shown in Figure 1 and Figure 2 for
a CUBIC and BBR capture.

C. The (not so) Slow Start

Generally speaking, the CCA controls the amount of data
being injected into the network. For this purpose, the sender
typically maintains a variable called Congestion Window
(cwnd) that determines the amount of data that can be transmit-
ted before receiving an acknowledgement from the destination
[11]. This cwnd is a variable internal to the sender stack and
then is unknown from any mid-point observer, or from the
destination. However, it can be inferred from observation of
the Bytes-in-Flight (BIF), i.e. the number of bytes sent but



not yet acknowledged, as the BIF is, by definition, strictly
bounded by the cwnd value at any given time.

During the SS, the CCA exponentially increases its Con-
gestion Window (or similarly, its rate) to quickly reach the
bottleneck capacity. The very first packets are emitted with
respect to a so-called Initial Congestion Window, typically 10
packets [12]. Then, the sender keeps doubling the congestion
window value every round trip time until a congestion signal
is detected or a threshold (ssthresh) is reached [13]. This
congestion signal is typically a loss for Cubic or an excessive
delay for BBR [14]. Figure 1 shows the cwnd exponential
growth during the SS state ending at around 1.4 sec before
entering the Congestion Avoidance (CA) state.

D. Slow-Start exit time

When analysing a packet trace, the SS exit time is a key
element for troubleshooting experts. If many state transitions
suggest specific root causes, SS exit time has a particular
significance. Indeed, in SS, the source estimates the value of
the path’s capacity by exponentially increasing its rate (binary
search) until a congestion signal is received, then it exits the
SS state to enter a new phase with a much lower rate growth.

Should the SS overestimate the bottleneck, then the source
will exceed the bottleneck capacity and thus experience mul-
tiple packet losses, from which recovery is painful. On the
contrary, if it underestimates the bottleneck capacity and trig-
gers an early SS exit, the source will under-use the available
bandwidth and possibly experience a poor throughput. While
bottleneck overestimation is quite unusual, underestimation is
a very common cause for low performance. It simply reveals
that the SS has mistakenly detected a congestion signal. This is
typically the case in presence of transmission loss, or excessive
jitter related to radio mobile access - even underloaded. In both
cases, limiting the rate will lead to a pitiful customer experi-
ence, without any benefit regarding a non-existent congestion.
For example, as shown in Figure 1, the CCA exits SS after
around 1.4 sec with a cwnd value around 0.2 MB, however,
we can notice that the true bottleneck capacity is around 0.7
MB as the cwnd value keeps slowly increasing until reaching
it. As the trigger signal is not obvious, this early exit should
be investigated.

III. TROUBLESHOOTING: FROM DATA EXTRACTION TO
DATA ANALYSIS

In this section we present the metrics used for network trou-
bleshooting, together with associated basic data processing.

A. Data collection

Capturing Packet traces can be made via many tools, such
as Wireshark [15] and tcpdump [16]. These tools capture
transport layer packet headers together with their arrival times.

B. Data processing

These captures should be processed, so as to derive signif-
icant timestamped indicators; The most significant ones are:

• Sequence number: it identifies the first data byte in a
segment [17]. In the rest of this article, we denote by

Figure 3: BIF and RTT calculation method

SEQ the last byte of the transmitted segment, that is,
sequence number+ length , which is better matched to
acknowledgements.

• Acknowledgment (ACK): it represents the sequence num-
ber of the last byte received.

• Receiving window (RWIN) : it identifies the number of
bytes that the receiver can accept.

• Bytes in flight (BIF): it represents the number of bytes
sent by the source but not yet acknowledged. BIF is not
included in packets header but can be deduced from SEQ
and ACK values as shown in Figure 3.

• Round-Trip-Time (RTT): it represents the delay between
the emission of a packet and the reception of the corre-
sponding acknowledgment. It can be calculated using the
SEQ and ACK arrival times as shown in Figure 3.

C. Data analysis

This final step typically consists in visually analyzing the
temporal evolution of these indicators, e.g. with a tool as
tcptrace [18]. For each trace, a human expert should visually
detect the state transitions and QoS degradations affecting the
connection.

To automate the analysis, we designed a method and de-
veloped a tool to automatically detect the SS exit time on
collected traces. Combined with other indicators (presence of
loss, etc.), this is a significant step toward full automation.

IV. AUTOMATIC SLOW START EXIT DETECTION

In this section we introduce a new representation together
with a method to automatically detect SS exit.1

A. Visual CCA states identification

As explained in section II, the FSM state series, and partic-
ularly the SS exit time gives crucial insight about degradation
root causes. To get hold of these state series, the first idea
that comes to mind is direct introspection in the sender stack.
Unfortunately, this introspection requires cooperation from the
sender’s server, which is rather impractical, as many servers
belong to third-party internet content providers, often reluctant

1Tool available online at https://193.252.113.227/cgi-bin/ats.cgi



Figure 4: BIF against time during SS state, focus on the
exponential growth

Figure 5: SEQ against time during SS state - packet burst
doubled after each RTT

to open their infrastructures. As a consequence, sticking to
measurements from active and passive probes is still operators’
best choice to build these state series. Recall that passive
probes can only handle TCP traffic, as active probes may
monitor both TCP or QUIC flows.

In this context, troubleshooting experts are used to perform-
ing visual analysis of the BIF against time to detect the end of
the exponential growth, namely the SS exit time. This method
is highly time consuming and inaccurate. We can see in Figure
4 an exponential increase of the BIF against time until t = 1.2
sec, a telltale sign of the SS phase. Root cause analysis is
then completed thanks to the SEQ against time graph (Figure
5) showing bursts of packets retransmission at this very same
time, a typical effect of congestion loss [19]. The SS exit is
then a legitimate reaction of the CCA to reaching the actual
bottleneck.

B. Challenges towards automation

1) Noise: While manual analysis can easily handle noise
and irregularities in the data, this is non trivial for an au-
tomated procedure. For example, some smoothing may be
necessary in order to recognize the exponential growth in
Figures 4 and 5. More generally, the graphs might need to

Figure 6: BIF against time - non stationarity and noise on BIF
values

be segmented into a number of homogeneous regimes before
any kind of pattern recognition can be applied.

2) Non-stationarity: The aforementioned time series are
typically non-stationary, and not even piecewise stationary.
This makes it impossible to define homogeneous areas, which
invalidates most usual mathematical methods. An example
about this non-stationarity can be observed in Figure 6 and
Figure 7. Figure 6 shows the evolution of BIF over time,
while Figure 7 represents the arrival times of the captured
packets. The latter focuses on the so-called ”on/off pattern”
of packets arrival times which reflects the basic congestion
window mechanism, waiting for ACKs before sending a new
burst of packets. However, while this on/off pattern can be
detected at the beginning of the connection (from 0 sec to 0.8
sec), it blurs over time, due to TCP’s (intentional) tendency
towards ”ACK clocking” [11].

All previously mentioned challenges invalidate most meth-
ods like using regression and Markov Modulated Poisson
Process (MMPP) that we have considered and tried when
working on the automated detection of the SS state. A more
promising approach yielding better initial results was ”expo-
nential regression”, i.e. fitting the BIF-against-time with an
exponential. However, it turns out that in case of very early
SS exits (within 2 or 3 RTT), the exponential part is dwarfed
by the subsequent evolution, making it impossible to detect
the exponential part reliably. This is unfortunate, as we use
the SS state detection to troubleshoot networks, where the
most frequent cases of bad performance are correlated with
a premature exit from SS. As it turns out, this fundamental
problem is resolved using the new representation that we
introduce in the next section.

C. Timeless packet series representation

In the light of our troubleshooting experience, it turns out
that the main hurdle to automation lies in the on/off patterns
of the source emissions. A natural way to get rid of them
without any loss of information is to switch to a timeless
representation. To this effect, we chose to represent BIF as
a function of SEQ as shown in Figure 8. In essence, we



Figure 7: Packets arrival times - blurring of on/off pattern over
time

Figure 8: BIF against SEQ: new representation to detect the
SS state exit time

replace the time axis with the sequence number progression:
this naturally wipes out all burst, silence, or RTT variation
effects, while preserving the important correlations between
significant indicators, thus focusing on the CCA dynamics.
To the best of our knowledge, such a representation was not
described before in the state of the art.

D. Slow Start exit time: ”slope 1/2” method

A few basic properties of the BIF vs SEQ representation
can easily be derived analytically. To begin with, the shape of
the graph is readily predictable during 2 phases:
(a) During burst emissions: in the absence of any acknowl-

edgement, during this phase each sent packet increments
both SEQ and BIF by an equal value, which is the
segment’s length.

(b) During the reception of burst acknowledgements: assum-
ing all packets previously sent were received, the BIF
quickly drops back to zero.

As a result of these 2 phases, every round-trip time, the graph
is expected to display a triangular shape made of a slope 1
due to phase (a), followed by the vertical drop described in
(b), as depicted in Figure 9. Furthermore, in an ideal SS state,
the vertical extent of this triangular shape, which represents
the cwnd, is expected to double every round-trip-time. Thus,
the graph should display a fractal series of triangles, each one
being twice the size of the one before. The position of the
highest-SEQ point and highest-BIF point in the graph, after n
round-trip-times, is thus expected to be:

SEQ =

n−1∑
i=0

a× 2i = a× (2n − 1)

Figure 9: Theoretical Representation of the BIF vs SEQ
evolution

BIF = a× 2n−1

The slope of the line from origin to this point is thus

BIF/SEQ =
2n−1

2n − 1

And hence its limit

lim
n→+∞

BIF/SEQ = 1/2

It can further be seen that this asymptote y = x/2 is in fact
”approached from above”, as the top of each triangle satisfies.

BIF/SEQ =
2n−1

2n − 1
> 1/2

However, as soon as the SS state is exited, the exponential
growth of the BIF stops, and no further point can stand above
the y = x/2 line. This yields a very simple and practical
criterion: the SS exit occurs immediately after the last point
satisfying

BIF ≥ SEQ

2

It should be stressed that the power of this method lies in
its simplicity: no regression neither filtering are needed, a
simple linear inequality suffices, once we are in the appropriate
representation space.

E. Slope 1
2 method details

While the critical state transition event is well characterized
by the above criterion, some attention is due to properly
interpret the earlier features of the representation. During the
SS phase, as mentioned before, local slopes are typically 1,
with a series of abrupt drops. As a result, the graph keeps
crossing the asymptote, thus, a local decision is not appropri-
ate, as it would readily generate false positives. Fortunately,
the global criterion of the ”last point above the asymptote”
is more robust. This is fundamentally linked to the fact that
after exiting SS, the CCA essentially takes very careful steps
to refrain from going too fast, and by definition will never
”catch up” to the exponential regime. The asymptote is never



Figure 10: Automatically detecting SS state exit time with
slope 1/2 method

to be crossed again. Figure 10 is an example of our slope
1/2 method application. We can see the BIF vs SEQ curve
slightly exceeding the y = 1

2x line until it abruptly drifts
below, marking the instant when the CCA has exited the SS
state.

V. EVALUATION OF THE SLOPE 1/2 METHOD

In this section we assess the accuracy of our method by
comparing the SS exit time we obtain, against a ”ground truth”
which we define as the CCA state transition time recorded
in the server stack logs. For this purpose, the assessment
is performed on one of our servers, accessed by several
active probes, through the public internet. We instrumented
the Cubic and BBR TCP stacks on this server to generate
CCA logs; then we performed active measurements with our
probes by executing many downloads from our server using
BBR and CUBIC CCA, and from these logs, we extracted the
”ground truth” SS exit times. We note that in the Linux BBR
implementation that we instrumented, the SS (binary search
period) is very difficult to identify, especially in presence
of massive loss, as it is not a discrete state but a region in
parameter space.

For the sake of representativity, we locate our probes
amongst 4 Orange affiliates. Depending on the country, the
average RTT ranges from 20ms to 200ms with varied loss
levels. Moreover, in each of these countries, our downloads
were performed with various congestion levels (peak and
off-peak hours). Last, we compute the difference between
the slope 1/2 exit time and this ”ground truth”. This time
difference is represented in Figures 11 and 12, in RTT units.

Figure 11 shows the distribution of error in prediction for
the CUBIC stack on 219 downloads. We can notice that this
error is less than 1 RTT in more than 95% of cases. It is indeed
the best accuracy that can be expected, since the typical time
granularity of CCA decisions is precisely the RTT.

The same representation for BBR is shown in Figure 12 for
241 downloads. We can notice that 55 % of cases are bounded
between -1 and 1 RTT. We attribute this larger deviation in
prediction error more to the approximate ground truth (because

Figure 11: Cumulative distribution function of the difference
in RTT units between the SS exit times from the slope 1/2
method and the one logged by the CUBIC server

Figure 12: Cumulative distribution function of the difference
in RTT units between the SS exit times from the slope 1/2
method and the one logged by the BBR server

of the aforementioned difficulties in the BBR implementation)
than to real mis-predictions of our slope 1/2 method. We are
currently investigating a better calculation for ground truth.

VI. APPLICATION TO NETWORK TROUBLESHOOTING

The slope 1/2 method, together with our new BIF/SEQ
representation, proves to be a powerful tool in network trou-
bleshooting. Indeed, with this representation, typical patterns
appear, each of them pointing to a type of degradation. What is
more, these graphical patterns could rather easily be identified
using trivial criteria, thus leading to easy classification. We
describe hereafter some typical faults together with their
graphical representation.



Figure 13: Constant BIF after SS exit: Good QoS

Figure 14: BIF plunge after SS exit: Loss

Figure 15: Slow Bif growth after SS exit: Jitter issue

A. Pattern 1: Constant BIF after SS exit

In this ideal case, the binary search performed during the SS
successfully discovers the path bottleneck. Then the BIF =
f(SEQ) curve stays constant, as shown in figure 13. This
denotes a good and stable QoS.

B. Pattern 2: BIF dive after SS exit

Figure 14 exhibits a sudden drop in BIF value after what
we identify as the SS exit time; then, the BIF value further
stays significantly lower than its peak at SS exit. This pattern
is typically associated with QoS degradation due to loss. These
losses may originate from cross-traffic competition (i.e. traffic
emitted by other sources) or transmission errors.

C. Pattern 3: BIF growth after SS exit

Beyond losses, packet delay variation (also know as jitter)
is another typical root cause for early SS exits [10], as they
may occur while the bottleneck capacity has not been reached
yet. Figure 15 illustrates this case. In contrast with pattern 1,
the BIF here continues to grow after SS exit, but at a much
slower pace. This allows for an easy discrimination between
these two patterns. Pattern 3 also clearly differs from pattern
2, as it exhibits no reduction in BIF, that is, no packet loss.

This behaviour is typical of mobile access networks affected
with large jitter values.

VII. RELATED WORK

We identified two areas of work related to our study.
1) Identification of CCA states to infer TCP behavior:

Hagos et al. [20] use machine learning approaches to recognize
loss-based TCP CCAs and infer the congestion window within
a passively collected traffic at mid-point. Although estimating
the cwnd can be useful for network operators to troubleshoot
their network, it does not cover non-loss-based CCAs such
BBR. Our work differs from theirs as our method focuses on
the application of CCA SS state detection in order to detect
network root causes anomalies, and could be applied for all
types of CCA, loss-based or not.

Jaiswal et al. [21] introduce a passive measurement method-
ology to infer the cwnd and round-trip-time. They build a
replica of the CCA state for each TCP connection at the
midpoint. This replica updates its estimate of the cwnd based
on the observed acknowledgments that could change the CCA
state. They use those estimates to recognize 3 of the TCP
flavors: Reno, NewReno and Tahoe. Even if [21] are interested
in initial cwnd, SS state and congestion avoidance states to
identify the CCA types, they do not try to accurately locate
state transitions.

Kato et al. [22] use unidirectional packet traces to charac-
terise TCP CCAs. They define a new metric that is seen as
being proportional to cwnd size, and apply curve fitting to
recognize the CCA. In the continuity of their work Kato et al.
[23] identify TCP CCAs using a sequence number vs packet
arrival time representation.

Zhang et al. [24] analyse TCP passive packet captures
and investigate CCA mechanisms to understand the origins
of limitation in the transmission rates of flows by grouping
packets into flights using a round-trip-time estimator.

Yang et al. [25] present an active TCP CCA identification
tool that uses a random forest algorithm to classify the CCA
flavors of a Web server.



Mishra et al. [9] developed the Gordon active tool, it
identifies the CCA through its reaction to a tool-induced
disturbance, packet loss.

In summary, [24], [25] and [9] show interest in the detection
of the SS state; however, [24]’s method tracks the SS state in
the first flights based on explicit segmentation, which does
not work consistently in real life, e.g. when ACKs are not
”bursty”. On the other hand, [25] and [9] only take losses into
consideration in the detection of the SS state. In contrast, in
our work, while we do end up using the cause of SS exit to
identify the root cause of an anomaly, we start by locating the
event regardless of the cause.

2) Troubleshooting tools: Guo et al. [26] developed
pingmesh, a tool for large scale data center network latency
measurement and analysis to track network latency issues.
Zhu et al. [27] proposed Everflow, a packet level tracing and
analysis tool. While [26] and [27] are 2 troubleshooting solu-
tions, their scope is limited to a specific set of equipment-level
performance metrics; this makes sense from a ”repairman”’s
point of view, to whom exonerating a specific router from
guilt is critical, but is not sufficient to address an end-to-
end scenario, where the offending connection spans continents
and (possibly non-cooperative) actors. In our work, we aim
to get a broader view of the issue at hand, by providing a
cause-agnostic observable, the SS exit time, as input to further
investigations.

VIII. CONCLUSION

As many network operators use the SS state duration as
a key indicator for the diagnosis of faults, it is crucial to
automate its extraction to save human experts time. In this
work, we have presented a method to automatically detect
the exit from the Slow-Start state, enabled by an innovative
timeless representation of the observed packets series. We
implemented our method in our active and passive probes in
4 countries with varied access networks and traffic conditions,
and tested it with both Cubic and BBR. This evaluation shows
our automatic method to be accurate enough for the purpose.

As a bonus, the representation, together with the SS exit
time, proves to be rather powerful for easy discrimination
between typical faults. In further academic work, we plan to
refine the criteria so as to identify more classes and integrate
the method in an automated classifier. Our purpose is to deploy
this classifier in all our probes and validate the solution at
scale in a field trial. On another aspect, detecting SS state exit
time could be a powerful tool to investigate the fair share of a
connection between multiple TCP variants, and it can be used
to identify TCP flavors.

It should be noted that this method uses information in
packets headers, which is impossible with passive observation
of QUIC traffic. Still, the method remains valid with active
measurements. Moreover, we are currently investigating a
promising generalization of the BIF=f(SEQ) representation to
passive capture of encrypted traffic.

REFERENCES

[1] B. Claise, “Cisco systems netflow services export version 9,” RFC 3954,
2004.

[2] L. J. R. M. Minlan Yu, “Software defined traffic measurement with
opensketch,” n NSDI, 2013.

[3] S. P. P. Phaal and N. McKee, “Inmon corporation’s sflow: A method for
monitoring traffic in switched and routed networks,” RFC 3176, 2013.

[4] K. L. Bryan Veal and D. Lowenthal, “New methods for passive estima-
tion of tcp round-trip times.”

[5] P. BenkoAndrás and V. Veres, “A passive method for estimating end-to-
end tcp packet loss,” Global Telecommunications Conference, 2021.

[6] J. Iyengar and E. M. Thomson, “Quic: A udp-based multiplexed and
secure transport,” RFC9000, May 2021.

[7] S. Floyd, “Congestion control principles,” RFC 2914, Sep. 2000.
[8] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, and V. Jacobson,

“BBR Congestion Control,” Internet Engineering Task Force, Internet-
Draft draft-cardwell-iccrg-bbr-congestion-control-02, Mar. 2022, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-
cardwell-iccrg-bbr-congestion-control/02/

[9] A. J. S. P. R. J. A. Mishra, X. Sun and B. Leong, “The great internet tcp
congestion control census,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 2019.

[10] P. B. Y. H. M. Olson, “Hystart++: Modified slow start for tcp,” 2020.
[11] V. P. M. Allman and E. Blanton, “Tcp congestion control,” RFC 5681,

Sep. 2009.
[12] I. K. Jan Rüth and O. Hohlfeld, “Tcp’s initial window—deployment in

the wild and its impact on performance,” IEEE TRANSACTIONS ON
NETWORK AND SERVICE MANAGEMENT, June 2019.

[13] W. Stevens, “Tcp slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms,” RFC 2001, January 1997.

[14] N. C. Y. C. C. S. G. S. H. Y. V. JACOBSON, “Bbr congestion-based
congestion control,” Communications of the ACM, 2016.

[15] J. S. Chris Sanders. (2014) Applied network security monitoring.
[Online]. Available: https://www.sciencedirect.com/topics/computer-
science/wireshark

[16] E. Casey. (2010) Handbook of digital forensics and investigation.
[Online]. Available: https://www.sciencedirect.com/topics/computer-
science/tcpdump

[17] I. S. I. U. of Southern California, “Transmission control protocol,” RFC
793, Sep 1981.

[18] Kary. Understanding the tcptrace time-sequence graph in wireshark.
[Online]. Available: https://packetbomb.com/understanding-the-tcptrace-
time-sequence-graph-in-wireshark/

[19] Z. Tlaiss, “Anomaly root cause diagnosis from active and passive
measurement analysis,” 33nd International Teletraffic Congress, 2021.

[20] D. H. Hagos, P. E. Engelstad, A. Yazidi, and O. Kure, “General tcp state
inference model from passive measurements using machine learning
techniques,” IEEE Access, vol. 6, pp. 28 372–28 387, 2018.

[21] D. C. K. J. Jaiswel S., Iannaccone G. and Towsley, “Inferring tcp con-
nection characteristics through passive measurements,” Proc. INFOCOM
2004, March 2004.

[22] R. Y. Toshihiko Kato, Leelianou Yongxialee and S. Ohzahata, “A
study on how to characterize tcp congestion control algorithms from
unidirectional packet traces,” ICIMP 2016 : The Eleventh International
Conference on Internet Monitoring and Protection, May 2016.

[23] R. Y. Toshihiko Kato, Xiaofan Yan and S. Ohzahata, “Identification of
tcp congestion control algorithms from unidirectional packet traces,” the
2nd International Conference, Nov. 2018.

[24] V. P. Yin Zhang, Lee Breslau and S. Shenker, “On the characteristics
and origins of internet flow rates,” ACM SIGCOMM Computer Commu-
nication, 2002.

[25] L. X. J. D. P. Yang, W. Luo and Y. Lu, “Tcp congestion avoidance
algorithm identification,” 31st International Conference on Distributed
Computing Systems, 2011.

[26] V. K. Chuanxiong Guo; Lihua Yuan; Dong Xiang; Yingnong Dang;
Ray Huang; Dave Maltz; Zhaoyi Liu; Vin Wang; Bin Pang; Hua Chen;
Zhi-Wei Lin, “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” ACM SIGCOM, 2015.

[27] M. Z. B. Y. Z. H. Z. Yibo Zhu; Nanxi Kang; Jiaxin Cao; Albert
Greenberg; Guohan Lu; Ratul Mahajan; Dave Maltz, Lihua Yuan,
“Packet-level telemetry in large datacenter networks,” ACM SIGCOM,
2015.


