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Abstract 

Cement production is a major contributor to global CO2 emissions. To minimize its environmental impact while 

maintaining the required mechanical properties of cement, there is a pressing need for sustainable production 

processes. This paper explores the use of data augmentation techniques, specifically the copulas method, to improve 

the performance of linear regression models for linking the compressive strength of LC3 with its mix design. While 

data augmentation using copulas can be useful in augmenting tabular data, its effectiveness in improving linear 

regression performance may depend on the statistical characteristics of the original data. The method successfully 

generated additional data that preserved the original statistical properties, but it did not always lead to significant 

improvements in linear regression performance. The research highlights the potential of data-driven models for 

optimizing cement materials properties and emphasizes the importance of considering the statistical characteristics of 

the original data when applying data augmentation techniques. 
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1. Introduction 

Data-driven models based on artificial intelligence (AI) applied in the optimization of cement materials properties is 

an emerging research topic. Considering the number of current published papers about this subject, it confirms that 

the cement community is interested in these novel approaches. Data-driven approach for cement materials constitute 

a new paradigm to link the performance properties to their composition and process parameters. One example of 

cement for with there is an urgent need of data-driven approach is limestone calcined clay cement (LC3) (Scrivener 

et al., 2018). This cement is today considered as the next generation of building binders. When it is compared to the 

classical Portland cement, it shows a reduced carbon footprint of 25 to 35%, with equivalent or higher compressive 

strength (Berriel et al., 2016). The research studies on LC3 performance require some acceleration to reach rapidly 
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carbon neutrality of the cement production.  

To link cement performance with its composition and process parameters, an empirical approach is applied (Canbek 

et al., 2022a; Riera et al., 2016; Saleem et al., 2021; Van Bunderen et al., 2021). This approach involves “idealized” 

models, and does not reflect the “real life” case. Whereas, data-driven approach does not enforce particular 

assumptions and can excel at treating complex and nonlinear links. Except, they require a large dataset for training 

and testing. Canbek et al. (Canbek et al., 2022b) linked the rheology of LC3 cements to the composition through 

support vector machine model showing high accuracy with R2 =0.96, about 108 cement pastes were carried out to 

feed the model. Hafez et al. (Hafez et al., 2022) created a ML regression model to predict the performance of blended 

concretes including LC3. A database of 1650 data points was created to train and test the model. Even so, only few 

datapoints were relevant to mixes with LC3 cement. It is clear that there is a scarcity of research on the use of data-

driven models to study LC3 cements. One reason to explain this lack of studies is the dataset availability. The challenge 

lies in organizing and standardizing large amounts of data. Additionally, the time-consuming and expensive process 

of characterizing a significant amount of samples poses a limitation for implementing ML algorithms (Zhang and 

Ling, 2018). There are several ways to do data augmentation of tabular values such as adding random noise to feature 

values, flipping the values of binary features, sampling random subsets of the data, standardizing the values by 

subtracting the mean and dividing by the standard deviation, transforming the values using a scaling function, creating 

new features by combining existing features or using domain knowledge, applying small transformations to the 

original data, and using Copulas technique, which involves modelling the dependencies between features and 

generating new samples that preserve these dependencies (Meyer et al., 2021; Peters et al., 2014; Silva et al., 2020). 

Tabular data augmentation is a technique that can be used to improve the performance of linear regression models 

(Cao et al., 2021). The basic idea is to generate new, synthetic data samples from the existing dataset by applying 

various transformations to the original data. This can help to increase the size of the dataset and add diversity to the 

data, which can help to improve the generalization performance of the linear regression model.    

The aim of this paper is to assess the effect of incorporating the Copulas method for enhancing tabular data on the 

precision of linear regression models used to link the compressive strength of LC3 with its mix design. We chose to 

use linear regression despite it being less powerful than other algorithms such as support vector machine or artificial 

neural network, in order to demonstrate the improvement that can be achieved with the application of tabular data 

augmentation technique. The research idea of the present work is illustrated in Figure 1. 



 

Figure 1: The research idea of the present work. 

2. Materials and method 

The followed work approach of the present study starts by the construction of a dataset from literature, then data is 

structured and missing values were handled in the preprocessing step. After this, data augmentation was carried out 

by applying the Copulas method. Thereafter, a linear regression ML model was applied to evaluate the efficiency of 

data augmentation and dimension reduction approaches.  

2.1. Data collection and preprocessing 

The size and the quality of the dataset are significant for the accuracy of the ML model (Zhang and Ling, 2018). An 

experimental database of 323 mix design (10692 data values), containing partial replacement of Portland cement with 

calcined clay and limestone, was compiled from previous studies that were reported in literature (Akindahunsi et al., 

2020; Alujas et al., 2015; Antoni et al., 2012; Avet et al., 2016; Dhandapani and Santhanam, 2017; Dixit et al., 2021; 

Fernandez et al., 2011; Krishnan et al., 2018; Lin et al., 2021; Lorentz et al., 2020; Machner et al., 2017; Mishra et al., 

2019; Msinjili et al., 2019). Data splitting is a usually used method for model validation, where the dataset is split into 

two separate parts: the first for training, and the second for testing (Larsen and Goutte, 1999). The data was randomly 

partitioned into training and testing sets: 80% of the data was used for training and the remaining 20% was used for 

testing. Table 1 shows a description and statistical parameters of the data features.  

Table 1: Description and statistical parameters of the original data features. 

Data items Features Symbol Units mean std min max 

Calcined clay Proportion of calcined clay CL% wt.% 23.5 7.9 10 40 

BET surface area CL_Ss m2/g 18.5 7.3 2.5 45.7 

Calcination 

conditions of the clay 

Temperature T_calcin °C 760.7 84.06 600 925 

Duration time_calcin hours 1.27 0.75 0.2 3 

Portland Cement Proportion of OPC OPC% wt.% 68.9 12.13 37.6 90 

Limestone Proportion Limestone CC% wt.% 7.5 7.7 0 31.1 

Chemical 

composition of the 

binder 

Reactivity ratio RM - 2.3 0.5 1.6 3.8 

Silica ratio SM - 2 0.6 1.2 4.3 

Alumina ratio AM - 3.9 2.5 1.6 17.8 



Hydraulic ratio HM - 1.2 0.3 0.7 2.1 

Hardening conditions Water to binder ratio W/B - 0.5 0.09 0.1 0.9 

Hardening temperature T_cure °C 22.6 6.0 5 50 

Hardening relative humidity RH_cure % 92.3 5.3 80 100 

Hardening age age_D days 30.7 41.3 1 270 

Compressive strength Compressive strength R MPa 39.2 16.6 5 75 

 

2.2. Linear regression model 

Simpler models with fewer coefficients are preferable to complex ones. Li et al. (Li et al., 2022) emphasize the 

importance of avoiding the use of opaque and complex machine learning models, such as neural networks, when 

simpler and more interpretable models like linear regression can suffice. Model accuracy is determined by observed 

data, which may not accurately represent the ground truth if the data quality is insufficient. In concrete field, data 

quality is often impacted by cumulative random errors from experiments. Thus, it is recommended to begin with 

simple, interpretable models and gradually increase complexity while cautiously evaluating prediction performance. 

The simplest ML algorithm is the linear regression (LR). This later is a model in which the target value is expected to 

be a linear combination of the features noted 𝑥1 to 𝑥𝑝 (Pedregosa et al., 2011; Ray, 2019). In mathematical notation, 

𝑦̂ is the predicted value (equation (1)): 

 

𝑦̂(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑝𝑥𝑝 (1) 

  

The vector 𝑤 = (𝑤1 , … , 𝑤𝑝) is the model coefficients and 𝑤0 as intercept value of the model. 

Ordinary Least Squares method aims to fit a linear model with coefficients 𝑤 = (𝑤1, … , 𝑤𝑝) to minimize the residual 

sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation. 

Mathematically it solves a problem of the form given by equation (2): 

min
𝑤

‖𝑋𝑤 − 𝑦‖2
2 (2) 

  

It is worth noting that the coefficient estimated for Ordinary Least Squares method relies on the independence of the 

features. 

2.3. Copulas method for data augmentation 

Before the application of Copulas data augmentation, the dataset was split according to hardening age into three parts: 

3, 7 and 28 d. Because it is impractical to increase the sample size for time dependent data. As it was mentioned 

before, data augmentation is carried out using the gaussian copulas method (GCM) (Montanez, 2018). Intuitively, a 

copula is a mathematical function that allows us to describe the joint distribution of multiple random variables by 

analyzing the dependencies between their marginal distributions.  



If the dataset can represent as a standard normal distribution, the corresponding probability density function 𝑓(𝑥) is 

given by: 

 

𝑓(𝑥) =
1

2𝜋
𝑒−𝑥2/2 

(3) 

 

The cumulative distribution function 𝐹(𝑥) which is defined as the integral of the probability density function is written 

as: 

 

 

In probability theory, the probability integral transform relates to the result that data values that are modeled as being 

random variables from any given continuous distribution can be converted to random variables having a standard 

uniform distribution (Dodge et al., 2006). Suppose we have a random variable 𝑋 that comes from a distribution with 

cumulative density function 𝐹(𝑋). Then, we can define a random variable 𝑌 which follows a uniform distribution 

over the interval [0,1]: 

 

𝑌 = 𝐹(𝑋) (5) 

  

In mathematical terms, a copula is a distribution over the unit cube [0,1]d which is constructed from a multivariate 

normal distribution over ℝd by using the probability integral transform. 

3. Results and discussion 

3.1. Data augmentation results using Copulas method 

Table 2 presents a comparison of data statistics before and after augmentation for a 1000 augmentation rate of samples 

after 3 days of curing. It shows the original data statistics, including mean, standard deviation, minimum, and 

maximum values for each variable, and the corresponding statistics for the augmented data. The table shows that the 

means and standard deviations for most variables are consistent between the original and augmented data, with the 

exception of a few variables, such as RH_cure and HM, which have larger standard deviations in the augmented data. 

It's important to note that the effects of data augmentation can vary depending on the specific statistical characteristics 

of each variable (Perez et al., 2023). In the case of RH_cure and HM, the introduction of additional variability through 

data augmentation might reflect the complexity and sensitivity of these variables, leading to relatively larger standard 

deviations in the augmented data. The table suggests that the augmentation process did not significantly alter the 

statistical properties of the original data.  

𝐹(𝑥) = ∫ 𝑓(𝑥)

𝑥

−∞

 
(4) 



Table 2: Comparison of data statistics before and after augmentation for 1000 augmentation rate. 

 Original data 1000 augmented data 
 

Mean Std min max mean Std min max 

R 24.8 5.3 15 35 24.8 5.9 7.2 41.7 

CL% 28.8 4.2 10 30 28.8 4.5 4.1 38.2 

T_calcin 803.6 38.3 750 900 803.9 36.3 730.3 1014.4 

CL_Ss 19.5 8.0 9.6 45.7 19.4 8.8 0 58.7 

time_calcin 0.9 0.3 0.2 1.3 0.9 0.4 0 1.8 

CC% 10.1 6.8 0 15 10.1 7.6 0 27.4 

OPC% 61.1 8.4 55 85 61.1 9.3 40.0 97.1 

W/B 0.5 0.0 0.45 0.5 0.5 0.0 0.4 0.5 

T_cure 23.2 5.8 20 50 23.2 6.4 9.5 59.4 

RH_cure 92.1 4.2 90 100 92.2 4.7 82.7 107.0 

age_D 3.0 0.0 3 3 3.0 0.0 3.0 3.0 

RM 2.0 0.2 1.62 2.62 2.0 0.2 1.6 2.6 

SM 1.8 0.4 1.24 2.39 1.8 0.4 0.6 3.0 

AM 3.5 1.8 1.78 7.86 3.4 1.8 1.8 8.0 

HM 1.0 0.1 0.81 1.59 0.9 0.3 0 11.7 

When using data augmentation for linear regression, it is important to keep in mind that the goal is to generate new 

samples that are representative of the underlying data distribution. Thus, the augmentation techniques should be 

chosen carefully to ensure that they do not introduce any bias or unrealistic samples that can negatively affect the 

model's performance (Meyer et al., 2021). The copula method for data augmentation demonstrates advantages over 

other techniques. While variational approaches have their merits, such as their popularity and flexibility, they can 

involve complex training processes and make strong assumptions (Tagasovska et al., 2019). In contrast, the training 

of copulas is relatively easy and robust, requiring less guesswork in terms of hyperparameters and network architecture 

(Tagasovska et al., 2019). The copula method provide a direct representation of statistical distributions, offering 

interpretability and ease of adjustment. Copulas-based models have proven effective in generating synthetic data, 

including for privacy protection purposes (Patki et al., 2016).  

3.2. Application of linear regression and comparisons 

Figure 2 shows the performance of a regression model trained on datasets with varying degrees of data augmentation 

using copulas. The model's performance is evaluated using the R2 metric, both on the training and testing data. The 

results suggest that moderate levels of data augmentation, up to 500 augmented samples, can improve the model's 

performance on the testing data, with R2 scores ranging from 0.4 to 0.47. However, further increasing the number of 

augmented samples does not consistently improve the model's performance and may even lead to overfitting, as 

indicated by decreasing R2 scores on the testing data for some of the larger augmentation rates.  



 

Figure 2: R2 metric according to the Copula augmented data. 

Interestingly, the optimal number of augmented samples that leads to the best model performance varies depending 

on the dataset, with some datasets showing improved performance with lower or higher augmentation rates. The results 

suggest that data augmentation using copulas can be a useful technique to augment tabular data, but it may not always 

lead to significant improvements in linear regression performance. The results suggest that the statistical 

characteristics of the original data play an important role in the effectiveness of data augmentation using copulas in 

improving the results of linear regression. A comparative study between Copula method and Generative Adversarial 

Networks confirmed this finding (Xu and Veeramachaneni, 2018), indicating that copula-based models have 

limitations in terms of the available distribution functions, which restricts the range of representations and 

consequently affects the fidelity of the generated synthetic data. Therefore, the success of data augmentation using 

copulas depends on understanding the statistical properties of the original data and selecting appropriate augmentation 

techniques accordingly.  

4. Conclusion and recommendations 

This paper demonstrates that the use of data augmentation techniques, particularly the Copula method, enhances the 

performance of linear regression models in linking the compressive strength of LC3 with its mix design. 

The research findings highlight the potential of data augmentation using copulas to augment tabular data while 

preserving its statistical properties. However, the impact on improving linear regression performance may vary based 

on the statistical characteristics of the original data. This contribution adds to the growing body of knowledge in data-

driven modelling for studying LC3 cements and suggests further exploration of alternative augmentation methods and 

their application to different cement materials. 
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Figure captions: 

Figure 1: The research idea of the present work. 

Figure 2: R2 metric according to the Copula augmented data. 

Table captions: 

Table 1: Description and statistical parameters of the original data features. 

Table 2: Comparison of data statistics before and after augmentation for 1000 augmentation rate. 

 

 

 

 

 

 

 

 

 

 


