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Overall, our prescient whole-body teleoperation system
relies on the following components (Fig. 2):

• a whole-body controller based on quadratic optimiza-
tion;

• a dataset of whole-body trajectories retargeted from
human motions;

• a set of ProMPs that can predict future trajectories given
observations;

• a computation of the round-trip delay to select the
appropriate commands from the prediction, so that the
robot anticipates both the operator-to-robot and the
robot-to-operator delays;

• a blending to keep the trajectory smooth, at the start of
a trajectory or in case of changes of delays;

• a video streaming system that uses a jitter buffer to cope
with the stochastic part of the backward delay.

APPENDIX I
HUMANOID ROBOT AND WHOLE-BODY CONTROLLER

A. The iCub humanoid robot
iCub [34] is a research-grade open-source humanoid robot

designed by the Italian Institute of Technology (IIT) to exper-
iment with embodied artificial intelligence. It measures 104
cm in height and weighs 22 kg, which roughly corresponds
to the body dimensions of a five-year-old child. iCub has
53 actuated degrees of freedom: 7 in each arm, 9 in each
hand (3 for the thumb, 2 for the index, 2 for the middle
finger, 1 for the coupled ring and little finger, 1 for the
adduction/abduction), 6 in the head (3 for the neck and 3
for the cameras), 3 in the torso/waist, 6 in each leg. In this
work, we do not use the fingers of the hands and we do not
move the eyes, therefore we control 32 degrees of freedom.
The head has stereo cameras in a swivel mounting in the
corresponding location of the human eye sockets. iCub is
also equipped with six 6-axial force/torque (F/T) sensors in
the upper arms, legs and feet, an IMU in the head, and a
distributed tactile skin.

B. Whole-body controller
The whole-body motion of the robot is defined by the fol-

lowing trajectories: center of mass ground projection, waist
height, hands positions, arms postures, neck posture, torso
posture, which are either given by the delayed retargeted
human motion, or generated by the delay compensation

algorithm during the execution of the main task. Each sample
of each of these trajectories represents a control reference ŷ.
Given ŷ, the robot commands q are generated by solving the
redundant inverse kinematics, which can be formulated as a
constrained quadratic programming problem with equality
and inequality constraints [2], [38]:

arg min
q̇

P
i wifi +

P
j wjgj +Cq̇

fi = ||Jiq̇ � ẋi||2
gj = ||q̇j � q̇r

j ||2
subject to Jq̇ = ẋ

Aq̇  b

(S1)

The cost function consists of terms fi with relative weight
wi concerning the pose of a specific body link i, where Ji

is the Jacobian matrix for body link i and ẋi = ˙̂yi are the
reference velocities for body link i. Additionally terms gj

with relative weight wj concern the posture of certain joints
j, where q̇r

j = ˙̂yj are the reference joint velocities for joints
j. Cq̇ is a regularization term used to get a unique solution
and avoid singularities, where C is a linear cost vector.

In our implementation, we considered in the terms fi the
hand positions with wi = 1 and the waist height with wi =
0.65. Instead, the terms gj include the head posture with
wj = 1 and the torso posture with wj = 0.72, the elbow
and wrist postures with wj = 0.11. We computed optimal
priorities with a multi-objective stochastic optimization that
was run in simulation [2]. More details about the whole-body
controller can be found in [2].

The equality constraints correspond to the highest priority
task, which should be solved exactly. In our implementation,
these include the center of mass x position and the feet poses.
The inequality constraints contain the robot joint velocity
bounds and zero moment point bounds, which is constrained
to stay inside the support polygon.

Our controller is based on the OpenSOT framework [40]
and the qpOASES quadratic programming solver [42].

This controller is run at 100 Hz, which is also the
frequency of the motor commands.

C. Motion retargeting
The captured human information cannot be directly used

as a reference for the humanoid, due to differences in
kinematics (e.g. joint limits, body dimensions) and dynamics
(e.g. mass distribution) between the human and the robot.



TABLE S1
PREDICTION ERROR AFTER OBSERVING DIFFERENT PORTIONS OF THE COMMANDED TRAJECTORIES (DATASET MULTIPLE TASKS). WE

EVALUATED THE DIFFERENCE BETWEEN THE ACTUAL TRAJECTORY (COMMANDS RETARGETED FROM THE OPERATOR) AND THE PREDICTED

TRAJECTORY FOR THE 20 TESTING MOTIONS FROM THE BOTTLE REACHING SCENARIO (FIG. S1) AND THE 21 TESTING MOTIONS FROM THE BOX

HANDLING SCENARIO (FIG. S2). TO UNDERSTAND THE INFLUENCE OF THE CONDITIONING OF THE PROMPS, WE COMPUTED THE MEAN ERROR BY

FOLLOWING THE MEAN OF THE PROMP SELECTED BY HAND (‘NO OBS’), AFTER THE INITIAL RECOGNITION (’RECOGNITION’) THAT TAKES ABOUT

1S, AFTER A FOURTH OF THE MOTION (1/4 MOTION) AND AFTER HALF OF THE MOTION (1/2 MOTION). THANKS TO THE CONDITIONING, WHEN MORE

DATA IS USED, THE PREDICTION IS MORE ACCURATE, WHICH MEANS THAT THE PREDICTION IS ADJUSTED TO SUIT THE PARTICULAR MOTIONS OF

THE OPERATOR (THAT IS, THE ROBOT DOES NOT SIMPLY FOLLOW THE MEAN TRAJECTORY ONCE IT HAS RECOGNIZED IT). EXAMPLES OF PREDICTED

TRAJECTORIES ARE DISPLAYED IN FIG. S1 AND FIG. S2.

Box handling Bottle reaching
Trajectory RMS error [rad] RMS error [rad]

no obs recognition 1/4 motion 1/2 motion no obs recognition 1/4 motion 1/2 motion

head yaw 0.112±0.049 0.080±0.028 0.045±0.012 0.012±0.009 0.083±0.038 0.040±0.015 0.023±0.011 0.010±0.008
torso pitch 0.155±0.064 0.120±0.046 0.054±0.030 0.018±0.008 0.103±0.056 0.061±0.022 0.044±0.015 0.019±0.008
torso roll 0.119±0.049 0.103±0.038 0.055±0.028 0.017±0.008 0.082±0.042 0.054±0.016 0.032±0.010 0.016±0.008
torso yaw 0.168±0.053 0.136±0.049 0.079±0.032 0.049±0.019 0.088±0.046 0.065±0.039 0.049±0.023 0.033±0.018

r. should. yaw 0.164±0.059 0.109±0.050 0.053±0.019 0.040±0.011 0.172±0.059 0.114±0.056 0.055±0.024 0.027±0.011
r. elbow 0.169±0.072 0.146±0.038 0.097±0.032 0.033±0.010 0.220±0.083 0.097±0.032 0.065±0.017 0.034±0.011

r. wrist pros. 0.113±0.049 0.092±0.022 0.043±0.012 0.026±0.008 0.124±0.052 0.071±0.022 0.048±0.016 0.021±0.008
RMS error [cm] RMS error [cm]

no obs recognition 1/4 motion 1/2 motion no obs recognition 1/4 motion 1/2 motion

r. hand x 3.76±0.91 2.10±0.48 1.57±0.49 0.78±0.12 3.54.±0.88 1.62±0.65 0.61±0.33 0.48±0.14
r. hand y 3.55±0.93 1.91±0.40 0.97±0.32 0.52±0.10 3.71±0.89 2.02±0.48 0.89±0.19 0.35±0.11
r. hand z 2.98±0.91 2.34±0.83 1.22±0.27 0.66±0.19 2.71±0.80 1.99±0.79 0.77±0.29 0.50±0.13

com x 2.40±0.76 0.98±0.26 0.57±0.21 0.23±0.14 0.78±0.53 0.39±0.22 0.29±0.12 0.12±0.10
com y 1.12±0.55 0.58±0.26 0.29±0.18 0.20±0.13 0.80±0.44 0.52±0.29 0.29±0.12 0.11±0.10
waist z 3.53±1.04 2.74±0.93 1.68±0.57 0.65±0.22 0.95±0.36 0.65±0.22 0.39±0.19 0.28±0.14

Hence, motion retargeting is employed to map the human
information into feasible reference trajectories for the robot.
For transferring the translational movements of the end-
effectors we used a fixed scaling factor (0.4). For transferring
postures, the joint angles of the human joints are manually
identified and mapped to the corresponding joints of the robot
[1]. The instantaneous reference value of the robot is then
computed as:

�qiR = q0R + (qiH � q0H ) (S2)

where q is the vector of current joint positions, �q is the
vector of joint variations with respect to the initial posture,
the indices 0 and i refer to measurements at an initial
time and at time i, and the subindices H and R indicate
measurements on human and robot, respectively. The same
applies to the Cartesian positions of the end-effectors.

For the center of mass, the normalized offset-based recon-
struction is used [1]. We consider the ground projection of
the human center of mass pg

com. Its position with respect to
the left foot is projected onto the line connecting the two feet.
The result is then normalized to obtain an offset o 2 [0, 1]

o =
(pg

com � pg
lFoot) · (p

g
rFoot � pg

lFoot)

|| pg
rFoot � pg

lFoot ||2

where pg
lFoot and pg

rFoot are the ground projections of the
left and right foot respectively. When the human is in a
symmetric pose, the offset o has a value around 0.5 and when
the human stands on a single foot, it is either 0 (left foot) or
1 (right foot). The robot center of mass ground projection is
then reconstructed on the line connecting its feet by means
of this offset value. To also retarget changes of the center
of mass that are not on the line connecting the feet, we

can apply the same concept while considering the maximum
backward and forward center of mass displacement in the
orthogonal direction of the line connecting the feet as done
in [1].

APPENDIX II
DATASETS

To train our method, we teleoperated the robot in an ideal
network without any delay and recorded the corresponding
robot motion. Every demonstration contains several Carte-
sian and postural trajectories that determine the whole-body
motion (Fig. S2): the center of mass ground projection, the
waist height, the hand positions, the arms posture (shoulder
rotation, elbow flexion, forearm rotation), the neck posture
(flexion and rotation) and the torso posture (flexion, rotation
and abduction). We record the retargeted trajectories, that is
the reference trajectories for the whole-body controller of the
robot.

We used three different datasets (Table I), each one
divided into a training set and a test set. The first dataset
(Dataset Multiple Tasks) is designed to test how well the
robot recognizes tasks and deals with the intrinsic variability
of the operator’s movements. This is the dataset used to
perform the experiments on the real robot. The second one
(Dataset Obstacles) is designed to evaluate the approach with
unexpected obstacles. The third dataset (Dataset Goals) is
designed to evaluate the approach with novel goal positions.

The datasets are available online at https://doi.

org/10.5281/zenodo.5913573.

https://doi.org/10.5281/zenodo.5913573
https://doi.org/10.5281/zenodo.5913573


A. Dataset Multiple Tasks
This dataset covers two scenarios: reaching a bottle with

the right hand (Fig. S1 and handling a box (Fig. S2).
The bottle task consists of demonstrations of 2 distinct

whole-body reaching primitives: one primitive is for reaching
the bottle on the table, the other one is for reaching the bottle
on the top of the box. For each primitive, we recorded 6
repetitions of the task for training, for a total of 12 training
whole-body demonstrations with an average duration of 6.1s.
Every demonstration provided by the human operator is
different, since it is not possible to exactly reproduce the
same whole-body movement twice; to further increase the
variance of the demonstrated movements, in 3 repetitions
out of the 6, an obstacle was placed in between the robot
and the bottle. To assess the quality of the predictions, 10
different testing repetitions were recorded for each of the
two primitives; 5 with the obstacle in between the robot
and the bottle, and 5 without any obstacle, for a total of
20 motions. In this dataset, the obstacles are at the same
positions in both the training set and the testing set (see the
dataset “Obstacles” below).

The second scenario consists of demonstrations of 7
distinct whole-body box handling primitives: 3 for picking
up the box — from a low position, from a mid-height and
from the table; 4 for placing the box at a specific location
— on the floor, on the table, inside a container, or in a
person’s hands. For each primitive, we recorded 6 different
repetitions for training, for a total of 42 training whole-body
demonstrations, with an average duration of 7.2 s for the
pick-up motions and of 5.8 s for the box-placing motions.
For the test set, 3 new different repetitions of the 7 motions
were recorded, for a total of 21 testing motions.

B. Dataset Obstacles
The training set is composed of 6 demonstrations of bottle

reaching motions with 3 different locations of an obstacle
(Fig. S3): 2 repetitions without obstacles, 2 with an obstacle
in between the robot and the bottle, and 2 with a different
obstacle. The average duration of the demonstrations is 6.9s.
The test set consists of motions for the same task but with
obstacles at different locations (Fig. S3b): 3 repetitions for
each of the 3 distinct scenarios with different obstacles.

C. Dataset Goals
The training set is composed of 7 demonstrations of bottle

reaching motions (Fig. S4), with the goal located in 7 dif-
ferent positions. The average duration of the demonstrations
is 6.1s. The test set consists of motions reaching the same
bottle but at 10 different locations (Fig. S4b).

APPENDIX III
DELAYED TELEOPERATION

A. Hardware and communication setup
The human motion is captured by the Xsens MVN system

[44], which considers a human model comprising 66 degrees
of freedom (corresponding to 22 spherical joints). The user
teleoperating the robot is equipped with the wearable motion

capture suit MVN Link, consisting of a Lycra suit with 17
inertial measurement units (IMUs) and a wireless data link
transmitting at a frequency of 240Hz. Our compensation
method receives the delayed data from the motion capture
system at 100Hz and transmits to the robot controller at
50Hz.

The user teleoperating the robot is also equipped with a
VR Oculus headset. Through the headset, the operator can
visualize the delayed images from both an external camera
at the robot side, as a third-person view of the teleoperated
robot, and the robot cameras, for a first-person immersive
experience. The communication protocol employed by the
network is UDP with a bandwidth of 3Mbps. The forward
delay is artificially generated, using the standard way to delay
packets in Linux with the “netem” scheduling policy, which
is based on the “iproute2” set of tools [45].

The images from the cameras at the robot side are delayed
by using the open-source application Kinovea [46], which
allows the user to set a constant delay for the streaming of
the video. The resulting delayed streaming is projected onto
the VR headset through the application Virtual Desktop [47].

B. Delay generation

The round-trip delay ⌧(t) at time-step t is divided into a
forward ⌧f (t) (operator to robot) and a backward delay ⌧b(t)
(robot to operator):

⌧(t) = ⌧f (t) + ⌧b(t)

Each one-way delay is composed of two parts, one deter-
ministic and one stochastic [25]. The deterministic compo-
nent corresponds to the transmission and propagation delays.
It does not change when all the transmitted packets have
the same format and size and use the same physical link
[25]. The stochastic part, often called the “jitter”, is mainly
associated with the queueing delay [49] and varies from
packet to packet, even when the packets have the same size
and format.

If we denote by ⌧f,D the deterministic part of ⌧f and by
⌧f,S the stochastic part:

⌧f (t) = ⌧f,D + ⌧f,S (S3)
⌧b(t) = ⌧b,D + ⌧b,S (S4)

In our experiments, we generate a forward delay that
follows a normal distribution:

⌧f (t) = ⌧f,D +N
�
0,�⌧f

�

For both simulations and real experiments, we set the
deterministic part of the forward delay ⌧f,D between 100ms
to 1s (depending on the experiment, see the captions of each
figure) and the jitter �⌧f to 2

15⌧f,D, which is in line with
what the jitter usually represents [50].

⌧f,D 2 [100, 1000] (depending on the experiment)(S5)

�⌧f =
2

15
⌧f,D (S6)



For the stochastic part of the backward delay, we as-
sume that the robot uses a video streaming software that
implements a jitter buffer (sections “Delay estimation by
the robot” and “Jitter buffer”), which is the case of all the
modern video streaming systems. If we set the jitter buffer
length to d, then this buffer adds an additional deterministic
delay of d: all the packets that arrive before d seconds
are re-ordered and packets that are not arrived are dropped
(dropping a few frames has little consequence for a state-of-
the-art video codec). As a consequence, from the operator’s
perspective, the backward delay is constant. This is why,
for both simulations and real experiments, we generate a
constant backward delay:

⌧b(t) = ⌧b,D(t) (S7)

For simplicity, we set ⌧b(t) = ⌧f,D in all our experiments,
but nothing in our system requires these two delays to be
equal; in particular, it would be equivalent to set ⌧b(t) =
⌧b,D(t) +K with K any constant delay caused by the jitter
buffer.

C. Delay estimation by the robot
We assume that the clocks of the robot and of the computer

of the operator are synchronized. In our real experiments,
we synchronize the clock using the NTP system [26], which
is the standard Unix protocol for time synchronization. The
two clocks typically differ from less than 1ms on a local
network [52]. Alternatively, GPS receivers can provide a
highly accurate and absolute clock reference with an error
of a few nano-seconds [52].

We add a time-stamp to each of the packets sent by the
operator, which makes it possible for the robot to compute
the forward delay ⌧f (t) (this includes both the deterministic
and stochastic part) when a packet is received at time t :

⌧f (t) = clockrobot(t)� timestampoperator(t) (S8)

Please note that this does not assume that the delay follows
a normal distribution. If necessary, the robot can re-order
the packets according to the time-stamps to condition the
trajectory predictions.

While the robot needs an estimate of the backward delay,
it cannot know in advance the stochastic part before sending
it. Our approach is to rely on the jitter buffer (section “Jitter
buffer”) implemented in the video streaming system to make
the backward delay deterministic: if we set the jitter buffer
length to d s on the operator receiving side, then we know
that the delay caused by the jitter will be exactly equal to d.

In our experiment, we therefore assume that the backward
delay is known and constant (100 ms, 250ms, etc. depending
on the experiments). To keep the implementation simple and
easy to reproduce, we assumed that the deterministic back-
ward delay was always equal to the deterministic forward
delay (a reasonable assumption given that the same link
is used for both directions) and that the stochastic part is
negligible (because we chose to not add any jitter on the
backward delay in the robot experiment, see the Jitter buffer
section below):

⌧b(t) = ⌧f (t) = ⌧f,D(t) (S9)
⌧b,S(t) = 0 (S10)

In a deployed setup, the robot would benefit from a better
estimate of the average backward delay (the deterministic
part) and the length of the jitter buffer. To do so, most video
streaming systems use the RTCP protocol [28] to get out-of-
band statistics and control information for a video streaming
session that follows the RTP protocol [54]. This data would
need to be sent periodically from the operator’s computer to
the robot so that the robot knows both d and ⌧b,D (which
are not expected to change at high speed). Alternatively, a
custom system can be designed by using time-stamps on the
image packets to gather statistics about the delay.

D. Jitter buffer
The jitter buffer is the component of a video streaming

system [27], [55] that re-orders packets if they are delayed
by less than the length of the buffer and drops packets that are
too late. Much work has been dedicated to adapt its length
automatically [27]: if it is too small, then the video is jittery,
but if it is too large, delays are added, which is detrimental
to the user (in particular during video calls). In our system,
we assume that the length is fixed and known to the robot,
for simplicity.

We did not implement a jitter buffer because we wanted to
avoid modifying the video streaming system: reordering or
dropping packets would require a considerable expertise in
the internals of both the encodings (e.g., MP4) and the video
streaming software. Instead, we consider that video stream-
ing with delay and jitter is a problem that is well solved by
all the current video streaming systems, as experienced by
the million of users who watch videos online on smartphones
with non-ideal connections.

To summarize, from the point of view of our system, the
jitter buffer results in an additional but deterministic delay.
However, we assume that the robot knows the value of this
additional delay as well as the deterministic part of the delay.

APPENDIX IV
PROBABILISTC MOTION PRIMITIVES (PROMPS) FOR

PRESCIENT TELEOPERATION

A. Definition of Probabilist Motion Primitives
A ProMP [31] is a probabilistic model for representing

a trajectory distribution. The movement primitive repre-
sentation models the time-varying mean and variance of
the trajectories and is based on basis functions. A single
trajectory is represented by a weight vector w 2 Rm. The
probability of observing a trajectory y given the underlying
weight vector is given as a linear basis function model

⇠t = �tw + ✏⇠, (S11)

p(y|w) =
Y

t

N (⇠t|�tw,⌃⇠), (S12)

where ⌃⇠ is the observation noise variance, ✏⇠ ⇠ N (0,⌃⇠)
is the trajectory noise. The matrix �t 2 Rm corresponds to



the m normalized radial basis functions evaluated at time t,
with

�c(t) =
exp

⇣
� 1

2

�
t� c�1

m�1

�2⌘

Pm
c=1 exp

⇣
� 1

2

�
t� c�1

m�1

�2⌘ , (S13)

where the variable c 2 {1, 2, ...,m} specifies the center of
each basis function. The distribution p(w;✓) over the weight
vector w is Gaussian, with parameters ✓ = {µw,⌃w}
specifying the mean and the variance of w. The trajectory
distribution p(y;✓) is obtained by marginalizing out the
weight vector w, i.e.

p(y,✓) =

Z
p(y|w)p(w;✓)dw. (S14)

B. Learning ProMPs from demonstrations
The demonstrations are trajectories retargeted from the hu-

man. These are recorded in an ”offline phase”, while the user
teleoperates the robot within a local network (approximately
without delays) to perform a variety of tasks. Since the
duration of each recorded trajectory may be different, a phase
variable � 2 [0, 1] is introduced to decouple the movement
from the time signal, obtaining a common representation in
terms of primitives that is duration independent [32]. For
each task, the modulated trajectories ⇠i(�) are then used
to learn a ProMP. The parameters ✓ = {µw,⌃w} of the
ProMP are estimated by using a simple maximum likelihood
estimation algorithm. For each demonstration i, we compute
the weights with linear ridge regression, i.e.

wi =
�
�>

� �� + �
��1

�>
� ⇠i(�), (S15)

where the ridge factor � is generally set to a very small
value, typically � = 10�12 as in our case, as larger values
degrade the estimation of the trajectory distribution. Assum-
ing Normal distributions p(w) ⇠ N (µw,⌃w), the mean µw

and covariance ⌃w can be computed from the samples wi:

µw =
1

D

DX

i=1

wi, ⌃w =
1

D

DX

i=1

(wi � µw)(wi � µw)>,

(S16)
where D is the number of demonstrations. Since a whole-
body trajectory is represented by N trajectories (x, y, z

position of the center of mass, of the hands, etc.), we learn
a ProMP for each of the N trajectories. These ProMPs all
together encode the same task k.

C. Recognizing the category of motion
Each learned k-th set of N ProMPs encodes different

whole-body trajectories to accomplish a given task like
picking up a box or squatting. To recognize to which set k
the current teleoperated motion belongs to, we can minimize
the distance between the first nobs delayed observations and
the mean of the N ProMPs of a group k, as done in [32]:

k̂ = arg min
k2[1:K]

 NX

n=1

X

t2Tobs

|yn(t�⌧f (t))��n,t�⌧f (t)µn,wk
|
�
,

(S17)

where K is the number of tasks in the dataset and Tobs =
{t1, ..., tnobs

} is the set of timesteps associated to the nobs

early observations. While computing k̂, the ProMPs are
modulated to have a duration equal to the mean duration of
the demonstrations. The recognition (S17) starts whenever a
motion is detected, i.e. the derivative of the observed end-
effector trajectories exceeds a given threshold. The distance
in (S17) is continuously computed after having identified
the current motion. In this way, we can verify that the
observations do not diverge from the demonstrations (exceed
by a given threshold the demonstrated variance), in which
case a gradual switch to delayed teleoperation is performed.

D. Time-modulation of the ProMPs

During motion recognition, we assumed that the duration
of the observed trajectories is equal to the mean duration
of the demonstrated trajectories, which might not be true.
To match as closely as possible the exact speed at which the
movement is being executed by the human operator, we have
to estimate the actual trajectory duration. More specifically,
we want to find the time modulation ↵, that maps the actual
duration of a given (observed) trajectory to the mean duration
of the associated demonstrated trajectories.

During the learning step, for each k-th set of ProMPs
we record the set of ↵ parameters associated to the demon-
strations: S↵k = {↵1, ...,↵n}. Then, from this set, we can
estimate which ↵ better fits the current movement speed.
We considered the best ↵̂ to be the one that minimizes the
difference between the observed trajectory and the predicted
trajectory for the first nobs datapoints:

↵̂ = arg min
↵2S

↵k̂

⇢ X

t2Tobs

|y(t� ⌧f (t))� �↵(t�⌧f (t))µw
k̂
|
�
.

(S18)

E. Updating the posterior distribution of the ProMPs

Once the k̂-th most likely set of ProMPs and their duration
has been identified, we continuously update their posterior
distribution to take into account the observations that arrive at
the robot side. Each ProMP has to be conditioned to reach
a certain observed state y⇤

t . The conditioning for a given
observation x⇤

t = {y⇤
t ,⌃

⇤
y} (with ⌃⇤

y being the accuracy
of the desired observation) is performed by applying Bayes
theorem

p(wk̂|x
⇤
t ) / N (y⇤

t |�↵̂twk̂,⌃
⇤
y)p(wk̂). (S19)

The conditional distribution of p(wk̂|x
⇤
t ) is Gaussian with

mean and variance

µ̂w
k̂
= µwk̂

+L
�
y⇤
t ��>

↵̂tµwk̂

�
, (S20)

⌃̂w
k̂
= ⌃wk̂

�L�>
↵̂t⌃wk̂

, (S21)

where

L = ⌃w
k̂
�↵̂t

�
⌃⇤

y +�>
↵̂t⌃w

k̂
�↵̂t

��1
. (S22)

Given the delay in the transmitted data ⌧f (t), we can
compute the timestep t

⇤ at which the ProMP has to be



conditioned to a certain observation x⇤
t :

t
⇤ = t� ⌧f (t)� t0. (S23)

where t0 is the starting time of the current motion.

F. Motion anticipation
The references for the robot controller are generated at

each time based on the updated ProMPs’ mean trajectories
µ̂w

k̂
. For a given ProMP, the sample µ̂w

k̂
(t⇤) corresponding

to the last conditioned observation, is a reconstruction of the
past retargeted human input

µ̂w
k̂
(t⇤) = ŷ(t� ⌧f (t)). (S24)

The sample µ̂w(t⇤ + ⌧f (t)) is an estimate of the current
retargeted human input

µ̂w
k̂
(t⇤ + ⌧f (t)) = ŷ(t), (S25)

and can be used to synchronize the human movement with
that of the robot, compensating only the forward delay (see
Fig. 2). In our case, we want to synchronize the motion of
the human operator with what is seen from the robot side,
thus compensating for both the forward and backward delays.
To do so, we select the sample µ̂w(t⇤ + ⌧f (t) + ⌧̂b(t)) as a
control reference, which corresponds to a future prediction
of the retargeted human movements:

µ̂w
k̂
(t⇤ + ⌧f (t) + ⌧̂b(t)) = ŷ(t+ ⌧̂b(t)). (S26)

The remaining samples [µ̂w
k̂
(t⇤+⌧f (t)+⌧̂b(t)+1), µ̂w

k̂
(t⇤+

⌧f (t) + ⌧̂b(t) + 2), ...] are also given to the controller. They
are used as control references if a new reference cannot be
computed in the next control step due to packet losses or
jitter.

After generating a first prediction, the transition from de-
layed to predicted references can be discontinuous (Fig. ??).
To smoothen the transition, a policy blending arbitrates the
delayed received references y(t � ⌧f (t)) and the predicted
ones ŷ(t+⌧̂b(t)|t�⌧f (t)), determining the adjusted reference
(Fig. ??):

ŷ0(t+ ⌧̂b(t)|t� ⌧f ) = (1� �)yd + �yp, (S27)

where yd = y(t � ⌧f (t)), yp = ŷ(t + ⌧̂b(t)|t � ⌧f (t)),
� = {�0, ...,�n, ...,�N}> with �n 2 ]0, 1[

�n =
1

1 + e
�12( i

�yn
� 1

2 )
, (S28)

i = {0, 1, ...,�yn} and �yn is the initial difference be-
tween a delayed reference and the corresponding prediction
expressed in mm (for Cartesian trajectories) or deg ⇥ 10�1

(for postural trajectories).

G. Teleoperation under unexpected circumstances
If something unexpected happens, or if the operator sud-

denly changes their mind about what to do and the ongoing
motion cannot be completed or is significantly altered, the
prescient teleoperation is transitioned back to the delayed
teleoperation. The transition from predicted to delayed refer-
ences is triggered whenever the distance between the current

observation and learned mean exceeds a given threshold �� ,
which in the experiments was fixed equal to the learned
variance plus 5cm and considered for each of the x, y, z

trajectories of the hands. Since the transition can be discon-
tinuous, a policy blending arbitrates the last predicted sample
ŷ(tlast+ ⌧̂b(tlast)|tlast� ⌧f (tlast)) and the delayed received
references y(t� ⌧f (t)):

ŷ0(t+ ⌧̂b(t)|t� ⌧f ) = (1� �)Yp + �yd, (S29)

where yd = y(t � ⌧f (t)), Yp = ŷ(tlast + ⌧̂b(tlast)|tlast �
⌧f (tlast)), � = {�0, ...,�n, ...,�N}> with �n defined as in
(S28).

H. Comparison between ProMPs and LSTM
We implemented a LSTM (Long Short Term Memory

network) [59] using the Pytorch library [60]. This LSTM
predicts the next k time-steps given the previous k time-steps.
To keep the network small, the trajectories are sub-sampled
from 100Hz to 10Hz, so that 10 time-steps correspond to
1 second of motion. For instance, to predict the next 2
seconds of motions, the LSTM has 20 inputs and 20 outputs.
The network has 10 hidden nodes (preliminary experiments
showed that increasing this number did not have any quali-
tative effect on the predictions). It is trained with the Adam
optimizer using mini-batches of size 16, for 100 epochs (our
experiments show that this is enough to reach the minimum
loss), and the Mean Squared loss function. To account for the
stochasticity of the initialization and the stochastic gradient
descent, 10 LSTMs are trained with different seeds.

Like with ProMPs, one LSTM is trained for each dimen-
sion of the prediction (e.g., a LSTM for the x-coordinate of
the left hand, another one for the y-coordinate, etc.); however,
contrary to ProMPs, the whole “Multi tasks” training set is
used to train each LSTM. A different set of LSTMs is trained
for 1-second prediction (Fig. S6) and 2-second prediction
(Fig. S7). The LSTMs that were trained for 2 seconds could
have been used to predict 1-second ahead, but at the risk
of being lower-performing than a network specialized in 1-
second predictions.

For this comparison, the ProMPs are conditioned at each
time-step with all the points since the beginning of the
trajectory, and the ProMP is queried to predict the value
at t + 2 seconds(or t + 1s). As an additional baseline, the
“delayed” trajectory is the operator’s trajectory shifted in
time by either one or two seconds, which corresponds to
what the robot would do if there were no compensation.

For a particular trajectory T and a particular dimension D

(e.g., x-position of the hand), the prediction error is the sum
of the differences between the prediction and the recorded
trajectory:

eT,D =
1

N

i=NX

i=1

���x(pred)
i � x

(gt)
i

��� (S30)

where N is the number of points in the trajectory, x(pred)
i

the prediction and x
(gt)
i the point of the trajectory performed

by the operator at time-step i (unknown to the robot at this
time-step).



APPENDIX V
SOURCE CODE

The code of the ProMP library is available at
https://doi.org/10.5281/zenodo.7438257

and on https://github.com/hucebot/promp.
The comparison between ProMP and LSTM
is available as a python notebook at https:

//doi.org/10.5281/zenodo.7441367 and on
https://github.com/hucebot/lstm_vs_promp

(this code relies on the ProMP library).
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a. Reaching a bottle (training set), datatset Multiple Tasks

b. Reaching a bottle (test set), datatset Multiple Tasks

Fig. S1. Dataset “Multiple Tasks”, scenario reaching a bottle on the table. a. Training trajectories and learned ProMPs. The whole-body motion
of the teleoperated robot is obtained by following the reference trajectories retargeted from the human. We learned a ProMP for each of these trajectories,
given 6 demonstrations in a local network without any delay (3 with an obstacle in between the robot and the bottle, and 3 without). b. Test trajectories.
The test trajectories are different and additional repetitions of the training motions. For the task of reaching a bottle 10 different repetitions were recorded
(5 with an obstacle in between the robot and the bottle, and 5 without).
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Fig. S2. Dataset “Multiple Tasks”, scenario picking up a box at a low position. a. Training trajectories and learned ProMPs. For each of the
6 demonstrations, the motion of the operator is first “retargeted” to the robot using the whole-body controller (ignoring delays). The trajectories of each
body/joint of the robot is then recorded. From this set of demonstrations (thin lines), a ProMP is fitted for each trajectory; this ProMP is represented here
as a thick line (the mean) and a light zone (the standard deviation). The computed mean is a smooth trajectory that averages all the demonstrations and
the standard deviation captures the variability of the demonstrations. b. Test trajectories. The test trajectories are different and additional repetitions of
the training motions. For the tasks of picking up a box 3 different repetitions were recorded.
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Fig. S3. Dataset “Obstacles”: Conforming the teleoperation to the intended motion. a. Training trajectories and learned ProMPs. The most
relevant learned ProMPs and the associated demonstrations are reported. The 6 demonstrations (2 without obstacles, 2 with an obstacle in between the
robot and the bottle and other 2 with a different obstacle) have been recorded while teleoperating the robot in simulation, in a local network without any
delay. b. Test trajectories. The 9 test trajectories are different from those used for training and consist of 3 repetitions of the bottle reaching motion for
each of the 3 distinct simulated scenarios with different obstacles, illustrated on the left. c. Results: comparison between the compensated trajectory
and the ideal (non-delayed) trajectory with a mean round-trip delay of 1.5s. On the top row, there is an unexpected obstacle (a small box) to avoid
and the operator approaches the object by the right; on the second row, the obstacle in front of the robot is different; on the bottom row, there is the
same obstacle from the top row with in addition a large obstacle on the right of the robot, which forces the operator to move the hand in between the
two obstacles. These situations were not in the training set. After the initial recognition period, our approach makes the robot follow the specific way the
human is performing the task despite the delay, and even if the robot is asked to perform the task in a way that has not been demonstrated before (but
included in the distribution of the demonstrations). This is not the same as following the mean of previously demonstrated motions (here, the dashed line)
or letting the robot replicate previously demonstrated motions. The non-delayed trajectories are some of the test trajectories from panel b, where the robot
has to reach the bottle on the table in the presence of different obstacles that were not considered during the training.
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Fig. S4. Dataset “Goals”: Conforming the teleoperation to new goals. a. Training trajectories and learned ProMPs. The most relevant learned
ProMPs and the associated demonstrations are reported. The 7 demonstrations have been recorded while teleoperating the robot in simulation, in a local
network without any delay. The different bottle locations are illustrated on the left. b. Test trajectories. The 10 test trajectories are different from those
used for training. The different bottle locations are illustrated on the left. c. Results: comparison between the compensated trajectory and the ideal
(non-delayed) trajectory with a mean round-trip delay of 1.5s. The bottles are located on the table in different positions that were not in the training
set (but included in the distribution of the demonstrations). The non-delayed trajectories are some of the test trajectories from panel b, where the robot has
to reach the bottle on the table in the presence of different obstacles that were not considered during the training.



Fig. S6. Prediction for LSTM and ProMP, 1 second ahead. a. Prediction error, 1-s horizon. The plot shows the average difference between the
point predicted 1 second ahead (100 time-steps) and the ground truth (Methods), for each degree coordinate of each hand, for each trajectory of the dataset
“Multiple tasks” (Methods). The box extends from the lower to upper quartile values of the data, with a line at the median. For the LSTM, the 10 replicates
of the learning process (with different seeds) are considered as independent data (i.e., the variance of the prediction error comes both from the different
trajectories and the different seeds). The “Delayed” trajectory corresponds to the original trajectory delayed by 1 second, that is, to what the robot would
have done without any prediction system. All comparisons are statistically significant (p < 10�6, Mann-Whitney U-test). b-d. Examples of predicted
trajectories.

Fig. S7. Prediction for LSTM and ProMP, 2 seconds ahead. a. Prediction error, 2-s horizon. The plot shows the average difference between the
point predicted 2 seconds ahead (200 time-steps) and the ground truth (Methods), for each degree coordinate of each hand, for each trajectory of the
dataset “Multiple tasks” (Methods). The box extends from the lower to upper quartile values of the data, with a line at the median. For the LSTM, the
10 replicates of the learning process (with different seeds) are considered as independent data (i.e., the variance of the prediction error comes both from
the different trajectories and the different seeds). The “Delayed” trajectory corresponds to the original trajectory delayed by 2 seconds, that is, to what the
robot would have done without any prediction system. All comparisons are statistically significant (p < 10�6, Mann-Whitney U-test). All comparisons
are statistically significant (p < 10�6, Mann-Whitney U-test). b-d. Examples of predicted trajectories.



TABLE S2
DIFFERENCE (ROOT MEAN SQUARE ERROR) WITH THE NON-DELAYED TRAJECTORIES, FOR BOTH THE COMPENSATED AND THE

NON-COMPENSATED (DELAYED) TRAJECTORIES (AVERAGE DELAY: 1.5 S) THE ERROR IS COMPUTED FOR THE 20 TESTING MOTIONS FROM THE

BOTTLE REACHING SCENARIO OF THE DATASET MULTIPLE TASKS (FIG. S1), AND FOR THE 21 TESTING MOTIONS FROM THE BOX HANDLING

SCENARIO OF THE DATASET MULTIPLE TASKS (FIG. S2). THE TIME-VARYING FORWARD FOLLOWS A NORMAL DISTRIBUTION WITH 750MS AS MEAN

AND 100MS AS STANDARD DEVIATION. THE BACKWARD DELAY IS SET EQUAL TO 750MS.

Box handling Bottle reaching
RMS error [rad] RMS error [rad]

compensation no compensation compensation no compensation

head yaw 0.024±0.011 0.035±0.012 0.013±0.007 0.021±0.011
torso pitch 0.045±0.020 0.136±0.064 0.027±0.012 0.041±0.019
torso roll 0.022±0.011 0.089±0.038 0.015±0.008 0.020±0.010
torso yaw 0.069±0.028 0.129±0.055 0.019±0.009 0.032±0.011

r. shoulder yaw 0.071±0.025 0.145±0.051 0.065±0.018 0.221±0.092
r. elbow 0.062±0.020 0.171±0.067 0.096±0.030 0.194±0.071

r. wrist prosup. 0.025±0.007 0.077±0.033 0.054±0.012 0.091±0.041

RMS error [cm] RMS error [cm]
compensation no compensation compensation no compensation

r. hand x 1.02±0.31 2.95±1.12 1.29±0.33 4.97±1.46
r. hand y 0.90±0.26 3.36±1.21 1.21±0.31 4.33±1.17
r. hand z 0.96±0.30 2.96±0.75 1.11±0.25 4.15±1.13

com x 0.90±0.13 1.24±0.36 0.33±0.07 1.01±0.20
com y 0.79±0.11 1.06±0.39 0.24±0.06 1.01±0.32
waist z 0.88±0.14 2.02±1.22 0.22±0.07 0.61±0.09


	Introduction
	Previous work
	Prescient Teleoperation
	Delay Estimation
	Delay Compensation with Predictor Anticipation
	Whole-body controller

	Experiments
	Conclusion and discussion
	References
	Appendix I: Humanoid robot and whole-body controller
	The iCub humanoid robot
	Whole-body controller
	Motion retargeting

	Appendix II: Datasets
	Dataset Multiple Tasks
	Dataset Obstacles
	Dataset Goals

	Appendix III: Delayed Teleoperation
	Hardware and communication setup
	Delay generation
	Delay estimation by the robot
	Jitter buffer

	Appendix IV: Probabilistc Motion Primitives (ProMPs) for prescient teleoperation
	Definition of Probabilist Motion Primitives
	Learning ProMPs from demonstrations
	Recognizing the category of motion
	Time-modulation of the ProMPs
	Updating the posterior distribution of the ProMPs
	Motion anticipation
	Teleoperation under unexpected circumstances
	Comparison between ProMPs and LSTM

	Appendix V: Source code
	References

