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Abstract. ROLLO was a candidate to the second round of the NIST
Post-Quantum Cryptography standardization process. In the last update
in April 2020, there was a key encapsulation mechanism (ROLLO-I) and
a public-key encryption scheme (ROLLO-II). In this paper, we propose
an attack to recover the syndrome during the decapsulation process of
ROLLO-I. From this syndrome, we explain how to recover the private
key. We target two constant-time implementations: the C reference im-
plementation and a C implementation available on GitHub. By getting
power measurements during the execution of the Gaussian elimination
function, we are able to extract on a single trace each element of the
syndrome. This attack can also be applied to the decryption process of
ROLLO-II.

Keywords: Side-Channel Attack, Power Consumption Analysis, ROLLO, Key-
Recovery Attack, Rank Metric, LRPC Codes

1 Introduction

Nowadays number theory based cryptography, like RSA [11] or ECDSA [9], is
efficient but weak against the Shor’s quantum algorithm [13]. The existence of
quantum algorithms pushed the National Institute of Standards and Technology
(NIST) to started in 2016 the Post-Quantum Cryptography (PQC) standard-
ization process to get signatures and, key-encapsulation mechanisms (KEM) or
public-key encryption schemes (PKE), resisting to both classical and quantum
attacks. In this work we focus on ROLLO, a code-based candidate in rank met-
ric. Even if ROLLO has not been selected for the third round due to recent
algebraic attacks [5, 6], NIST encouraged the community to study rank-metric



cryptosystems. They seem to be a good alternative to cryptosystems in Ham-
ming metric, but were not studied enough at that point regarding side-channel
analysis and embedded implementations. Indeed, public-key cryptosystems are
commonly used in embedded systems. Thus it is essential to identify potential
leakage to improve their resistance against side-channel attacks and ensure their
security in practice. Kocher introduced side-channel attacks in 1996 [10]. An
attacker can use information provided by a side-channel to extract secret data
from a device executing a cryptographic primitive. The information leakage is
exploited without having to tamper with the device. Two recent papers related
to side-channel attacks on code-based cryptography in rank metric have been
published [4, 12]. Both exploit timing leakage from the decoding failure rate of
LRPC codes [8]. In this work, we focus on constant-time implementations of
schemes using LRPC codes. We target two constant-time implementations of
ROLLO, in particular the Gaussian elimination function for LRPC decoding.
The first implementation is provided by the authors of ROLLO’s proposal to
NIST standardization process [2]. The second one only provides an implementa-
tion of ROLLO-I for 128 bits of security [1].

Our contribution. To the best of our knowledge, this is the first single-trace
attack against different versions of the constant-time Gaussian elimination for
error-correcting codes in rank metric. We show that the power consumption
during the decapsulation/decryption process can provide enough information to
make an efficient key-recovery attack on ROLLO schemes. Our attack allows us
to recover various secret data such as:

– the private key in both ROLLO-I and -II via the syndrome recovery,
– the shared secret in ROLLO-I key-encapsulation mechanism, or the en-

crypted message in ROLLO-II public-key encryption.

We finally present two countermeasures to make the implementations resistant
to the proposed attack.

Organization. In Section 2, we recall background on error-correcting codes in
rank metric as well as ROLLO schemes. In Section 3, we explain our attack on
the reference implementation using rbc_library. We also provide a glimpse of
countermeasures in Section 4. Finally we conclude in Section 5.

2 Background

ROLLO’s submission is based on ideal Low-Rank Parity-Check (LRPC) codes.
The latter were introduced in 2013 [8]. In this section, we briefly explain ideal
LRPC codes, then recall the ROLLO proposal to NIST PQC standardization
process.

2.1 Rank-metric codes

In the following, we denote by q a power of a prime number, and let m, n, and,
k be positive integers such that n > k.



We also consider the isomorphism between the vector space Fn
qm and the exten-

sion field Fqm [Z]/(Pn) given by

φ : Fn
qm → Fqm [Z]/(Pn)

(x1, . . . , xn) 7→
n∑

i=1

xiZ
i

with Pn an irreducible polynomial of degree n and (Pn) the ideal of Fqm [Z]
generated by Pn. Note that the vector space Fqm is isomorphic to Fq[z]/(Pm),
with Pm an irreducible polynomial of degree m over Fq.
Let us define a linear code C over Fqm of length n and dimension k represented
by its parity-check matrix H ∈ F(n−k)×n

qm .
Since a codeword x is in Fn

qm , each of its coordinates xi, for 1 ≤ i ≤ n, can be
associated to a vector (xi,1, . . . , xi,m) in Fm

q . Thus an element x ∈ Fn
qm can also

be represented by a matrix as follows:

M(x) = (xi,j) 1≤i≤n
1≤j≤m

∈ Fn×m
q .

For an element x ∈ Fn
qm , the syndrome of x is defined as the vector s = H · xT .

Considering the rank metric, the distance between two vectors x and y in Fn
qm

is defined by
d(x,y) = ‖x− y‖= ‖v‖= rank(M(v))

with v = x− y.
The support of a vector x = (x1, . . . , xn) ∈ Fn

qm is defined as the subset of Fqm

spanned over Fq. Namely, the support of x is given by

Supp(x) = 〈x1, . . . , xn〉Fq
.

W.l.o.g., the support of (x,y) is Supp(x,y) = 〈x1, . . . , xn, y1, . . . , yn〉Fq . The
ideal LRPC codes base their structure on ideal codes.

Given a polynomial Pn ∈ Fq[Z] of degree n and a vector v ∈ Fn
qm , an ideal

matrix generated by v is a n× n matrix defined by

IM(v) =


v(Z) mod Pn

Z · v(Z) mod Pn

...
Zn−1 · v(Z) mod Pn

 .

The authors of ROLLO restrained the definition of ideal LRPC (Low-Rank Par-
ity Check) codes to (2, 1)-ideal LRPC codes for all variants of ROLLO [2].
Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be a pair of
two vectors in Fn

qm , such that Supp(h1,h2) = F , and Pn ∈ Fq[Z] be a polynomial
of degree n. A [2n, n]qm-code C is an ideal LRPC code if it has a parity-check
matrix of the form

H =

IM(h1)
T IM(h2)

T

 .



2.2 ROLLO

ROLLO is a second round submission to the post-quantum cryptography stan-
dardization process launched by NIST in 2016. Since the last update in April
2020, ROLLO is composed of two cryptosystems: ROLLO-I, a Key-Encapsulation
Mechanism (KEM), and ROLLO-II, a Public-Key Encryption (PKE). Both are
described in Figure 1. We use the following notations:

– A
$←− Fk

qm denotes the operation of selecting randomly k vectors from the
vector space Fk

qm , then A ∈ Fk
qm .

– (u,v)
$←−l A denotes the operation of selecting randomly 2n linear combina-

tions from the element A, then u,v ∈ Fn
qm and Supp(u,v) = A.

– RSR denotes the Rank Support Recovery algorithm given in the specification
of ROLLO to decode LRPC codes [2].

Alice: KeyGen

Pick F
$←− Fd

qm s.t. rank(F ) = d

Pick (x,y)
$←−l F

sk = (x,y, F )
Compute the public key
pk(Z) = x−1(Z) · y(Z) mod Pn Bob: Enc

Pick E
$←− Fr

qm s.t. rank(E) = r

Pick (e1, e2)
$←−l E

c(Z) = e2(Z)+e1(Z)·pk(Z) mod Pn

Encaps Encrypt
K = ciphertext =

Hash(E) M ⊕ Hash(E)

Alice: Dec
Compute the syndrome
s(Z) = x(Z) · c(Z) mod Pn

Recover the support of the
error E = RSR(F, s, r)

Decaps Decrypt
K = M =

Hash(E) ciphertext ⊕ Hash(E)

pk

sk

c

ROLLO-I ROLLO-II

ROLLO-I ROLLO-II

ciphertext

Fig. 1: ROLLO-I (KEM) and ROLLO-II (PKE) cryptosystems.

In the following, we focus on the vulnerabilities of implementations of Gaussian
elimination process in the case of ROLLO.



3 Side-channel attack on Gaussian elimination in
constant-time

In the RSR algorithm, we first compute the support of the syndrome [2]. The
Gaussian elimination is applied to the syndrome matrix S =M(s) ∈Mn,m(F2)
to compute its support. We know that the syndrome is first computed as:

s(Z) = x(Z) · c(Z) mod Pn,

with x, c, s ∈ Fqm [Z]/(Pn). Therefore, with the knowledge of the syndrome s
and the ciphertext c, we can recover x, a part of the private key as:

x(Z) = s(Z)× c(Z)−1 mod Pn.

Knowing x can lead to a full recovery of the private key. First, we can get the
second part of the private key y by computing

y(Z) = pk(Z)× x(Z) mod Pn.

Then, the support of y and x gives the last part of the private key F .

The Gaussian elimination in constant-time requires to process each row in each
column of the syndrome matrix. Thus, an attacker could be able to recover all
values in this matrix. In case of a non constant-time Gaussian elimination, it
is possible to treat only the rows under the pivot row. Therefore, the values in
all rows above the pivot row remain unknown to the attacker. Consequently,
constant-time provides an advantage to a side-channel attacker.
Secondly, the constant-time eases the detection of a pattern corresponding to
the targeted operation inside the power trace. Once the attacker found the exact
location of this pattern, it becomes straightforward to find the locations for each
other iteration.
We analyzed two constant-time implementations of Gaussian elimination and
discovered two possible leakages through power consumption. The first one has
been provided as Additionnal Implementations in April 2020 for the second round
of NIST PQC standardization process, and is available on the ROLLO candi-
date webpage [2]. We refer to it as the reference implementation. It uses the
rbc_library, which provides different functions to implement schemes using rank-
metric codes [3]. The second implementation has been published on GitHub [1].
We refer to it as the GitHub implementation.
In this extended abstract, we only present the attack against the reference im-
plementation.

Notations. We denote by ⊗ the multiplication between a scalar and a row of a
matrix and by ⊕ the bitwise XOR between two bits or two rows of a matrix.
The bitwise AND is represented by ∧ and the bitwise NOT by ¬. The term mask
does not refer to a boolean masking but to a variable giving the additions on
rows according to values obtained from coefficients of the processed column.



3.1 Information leakage of the reference implementation

The reference implementation is based on Algorithm 1, which was first intro-
duced in [7].

Algorithm 1: Gaussian elimination in constant time
Input: S ∈Mn,m(F2)
Output: S ∈Mn,m(F2) in systematic form and rank = min(dimension, n)

1 dimension = 0
2 for j = 0, . . . ,m− 1 do
3 pivot_row = min(dimension, n− 1)
4 for i = 0, . . . , n− 1 do
5 mask = spivot_row,j ⊕ si,j

6 tmp = mask ⊗ si
7 if i > pivot_row then
8 spivot_row = spivot_row ⊕ tmp
9 else

10 dummy = spivot_row ⊕ tmp

11 for i = 0, . . . , n− 1 do
12 if i 6= j then
13 mask = si,j

14 tmp = mask ⊗ spivot_row

15 if dimension < n then
16 si = si ⊕ tmp
17 else
18 dummy = si ⊕ tmp

19 dimension = dimension+ spivot_row,i

The input matrix is composed of n rows and m columns. The algorithm outputs
the matrix in systematic form and its rank. The first inner for loop (line 4)
fixes the ones in the diagonal (corresponding to the pivots) and the second inner
for loop (line 13) removes the ones in the pivot column. In both inner for loops
in Algorithm 1, mask ∈ F2 is computed and multiplied with specific rows of the
syndrome matrix. However, the multiplication of a 32-bit word (u0, . . . , u31)2
with zero or one provides information leakage in the power traces. This allows
us to recover all the mask values computed during the process, then, the initial
syndrome matrix.
Our attack consists in recovering the syndrome matrix

S = n

y

m−−−−−−−−−−−−−−−−−−−−−−−→
s0,0 s0,1 · · · s0,m−1
s1,0 s1,1 · · · s1,m−1
...

...
. . .

...
sn−1,0 sn−1,1 · · · sn−1,m−1

 , (1)

where si,j ∈ F2 for (i, j) ∈ J0, n − 1K × J0,m − 1K. We denote by Sj the matrix
obtained after the treatment of the j-th column of S and by Sj [k], the k-th



column of the matrix Sj . The recoveredmask values from the two inner for loops
lead to a system of linear equations. This system is obtained from two steps
described below.

After the first inner for loop in Algorithm 1: we recover the mask values
spivot_row,j ⊕ si,j . If mask = 0, then the pivot row is unchanged. Otherwise,
the i-th row is added to the pivot row. Then, the first loop provides the indices
of rows XORed to the pivot row. We define

σj = (σ0,j , σ1,j , . . . , σn−1,j), where σi,j =

{
0 if mask = 0

1 if mask = 1
,

the vector containing all mask values recovered after the j-th iteration. We also
define the matrix

Jk =

1 · · · 0 · · · 0

...
. . .

...
...

σ0,k · · · 1 · · · σn−1,k
...

...
. . .

...
0 · · · 0 · · · 1




k-th row

k-th column

,

involved in the computation of the system of linear equations. For instance, let
us consider the pivot row of index 0. After the first inner for loop, the syndrome
matrix given in Equation 1 is under the following form

∑n−1
i=0 σi,0si,0

∑n−1
i=0 σi,0si,1 · · ·

∑n−1
i=0 σi,0si,m−1

s1,0 s1,1 · · · s1,m−1
...

...
. . .

...
sn−1,0 sn−1,1 · · · sn−1,m−1

 .

We notice in lines 7− 8 in Algorithm 1 that only rows with index greater than
the pivot row index are added to the pivot row. Thus, after the treatment of the
column j, we define σi,j = 0 for i ≤ pivot_row.

After the second inner for loop in Algorithm 1: the recovered mask values
correspond to the coefficients si,j of the matrix obtained after the first inner
for loop. We denote by σ′j = (σ′0,j , . . . , σ

′
j−1,j , ∗, σ′j+1,j , . . . , σ

′
n−1,j) the vector

composed of mask values. The item ∗ represents the pivot that is not processed
in the second loop. For the attack, ∗ is replaced by one.
On one hand, during the treatment of the j-th column, σ′j completes the system
of linear equations. Assuming we want to recover the column 0, we use a linear
solver on the system

J0 × S[0] = (σ′0)
t.



On the other hand, the vector σ′j allows us to recover all the operations performed
on rows. These operations are taken into account in solving the system of linear
equations of the (j + 1)-th column. For this, we define the matrix

J ′k =

1 · · · σ′0,k · · · 0

...
. . .

...
...

0 · · · 1 · · · 0

...
...

. . .
...

0 · · · σ′n−1,k · · · 1




k-th row

k-th column

.

Thus, during the treatment of the column j, for j ≥ 1, we consider

Sj−1 =

 ∏
k=j−1,...,0

J ′k × Jk

× S.

In case there is no pivot in a column, all the mask values are equal to zero, thus

J ′k × Jk = In.

Finally, to recover the column j, we solve the system of linear equations

Jj−1 ×

 ∏
k=j−2,...,0

J ′k × Jk

× S[j − 1] = (σ′j−1)
t.

Experimental results. An example of a power trace obtained after the execu-
tion of the Gaussian elimination on an ARM SecurCore SC300 32-bit processor
(equivalent to Cortex-M3) is given in Figure 2. For a better understanding, we
highlight each occurrence in the computation of the different masks. We can
observe the difference of power consumption when 32-bit words are multiplied
either by one or by zero. The difference of pattern leads us to recover the mask
values of the two inner for loops. We also performed this experiment on a Cortex-
M4 microcontroller.
The attack presented in this section has also been adapted to the GitHub im-
plementation [1].

4 Countermeasures

We propose two solutions to protect the future implementations against our at-
tack. In this section, we just detail one of them and give the general idea for the



Fig. 2: Full trace and a zoom of the first inner loop

second one.
The first countermeasure consists in reducing the distinguisher between a mul-
tiplication of a word by zero or by one. Therefore we mask the processed coef-
ficients. In the first inner for loop, we split the pivot row into two parts. Thus,
for each iteration we compute

spivot_row = s1pivot_row ⊕ s2pivot_row,

with s1pivot_row, s2pivot_row ∈ F2m . The variable tmp (line 6 - Algorithm 1) is
then computed as

tmp = (mask′ ∧ (si ⊕ s2pivot_row)) ∨ (¬mask′ ∧ s2pivot_row),

with mask′ = ¬(mask − 1). Then, we can update the pivot row by computing

spivot_row = s1pivot_row ⊕ tmp.

If i ≤ pivot_row, we have

dummy = s1pivot_row ⊕ tmp.

The same operations are performed in the second inner for loop by replacing
the pivot row by the processed row si. With this countermeasure, whether the
mask is zero or one, we always perform the same operations, namely two bitwise
ANDs between non-zero and zero words. Thus, we are not able to distinguish
different patterns when mask equals 0 or 1. It is important to emphasize that
the implementations with this countermeasure remain in constant-time.

The second countermeasure is based on shuffling. The treatment of each column
is performed randomly by using an algorithm generating a random permuta-
tion of a finite set, such as the Fisher-Yates method. The choice is left to the



developer under condition of a proper implementation. With the randomization
countermeasure, an attacker can distinguish patterns related to the masks values
for both implementations, but not determine the order of elements. Moreover,
a brute-force attack is not achievable. Indeed, an adversary has n! possibilities
for each column, which implies a total of (n! )m possibilities to recover the whole
syndrome matrix. For instance, with ROLLO-I-128 parameters, the complexity
is approximately 227731. Thus, only the number of zeros and ones on the matrix
would be known.

5 Conclusion and perspectives

We show in this paper that constant-time implementation of Gaussian elimina-
tion provided in [2] is sensitive to power consumption attacks. We exploit the
weakness introduced by the variablemask to avoid previous timing attacks. This
information leakage allows us to make the first attack by power consumption on
the last implementation version given by the authors of ROLLO. We can also
apply our side-channel attack on another implementation of ROLLO-I-128 [1].
These attacks can lead to a full key-recovery using one single trace. To secure the
implementations, we propose two different countermeasures. The first one can be
applied to [2] by hiding the values of mask. The second countermeasure can be
applied to both implementations. The idea is to treat each row in a column of the
matrix randomly. It adds randomness which makes our attack not exploitable in
practice anymore. We base our work on traces got from Cortex-M3 and Cortex-
M4 microcontrollers. The constant-time Gaussian elimination function is in the
rbc_library library. This library is also used in the implementation of the RQC
scheme. Even though the Gaussian elimination in constant time is not used in
the RQC implementation, the entire library should be analyzed to find possible
leakage. In particular, we want to analyze the Karatsuba function used in both
ROLLO implementation and the polynomial multiplication for computation over
ideal codes in RQC. Another perspective could be to analyze the various imple-
mentations of the Gaussian elimination in the third round candidates to the
NIST PQC standardization process.
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