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ROLLO was a candidate to the second round of the NIST Post-Quantum Cryptography standardization process. In the last update in April 2020, there was a key encapsulation mechanism (ROLLO-I) and a public-key encryption scheme (ROLLO-II). In this paper, we propose an attack to recover the syndrome during the decapsulation process of ROLLO-I. From this syndrome, we explain how to recover the private key. We target two constant-time implementations: the C reference implementation and a C implementation available on GitHub. By getting power measurements during the execution of the Gaussian elimination function, we are able to extract on a single trace each element of the syndrome. This attack can also be applied to the decryption process of ROLLO-II.

Introduction

Nowadays number theory based cryptography, like RSA [START_REF] Rivest | A Method for Obtaining Digital Signatures and Public-Key Cryptosystems[END_REF] or ECDSA [START_REF] Johnson | The Elliptic Curve Digital Signature Algorithm (ECDSA)[END_REF], is efficient but weak against the Shor's quantum algorithm [START_REF] Shor | Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[END_REF]. The existence of quantum algorithms pushed the National Institute of Standards and Technology (NIST) to started in 2016 the Post-Quantum Cryptography (PQC) standardization process to get signatures and, key-encapsulation mechanisms (KEM) or public-key encryption schemes (PKE), resisting to both classical and quantum attacks. In this work we focus on ROLLO, a code-based candidate in rank metric. Even if ROLLO has not been selected for the third round due to recent algebraic attacks [START_REF] Bardet | An Algebraic Attack on Rank Metric Code-Based Cryptosystems[END_REF][START_REF] Bardet | Improvements of Algebraic Attacks for Solving the Rank Decoding and MinRank Problems[END_REF], NIST encouraged the community to study rank-metric cryptosystems. They seem to be a good alternative to cryptosystems in Hamming metric, but were not studied enough at that point regarding side-channel analysis and embedded implementations. Indeed, public-key cryptosystems are commonly used in embedded systems. Thus it is essential to identify potential leakage to improve their resistance against side-channel attacks and ensure their security in practice. Kocher introduced side-channel attacks in 1996 [START_REF] Kocher | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF]. An attacker can use information provided by a side-channel to extract secret data from a device executing a cryptographic primitive. The information leakage is exploited without having to tamper with the device. Two recent papers related to side-channel attacks on code-based cryptography in rank metric have been published [START_REF] Aragon | A key recovery attack against LRPC using decryption failures[END_REF][START_REF] Samardjiska | A Reaction Attack Against Cryptosystems Based on LRPC Codes[END_REF]. Both exploit timing leakage from the decoding failure rate of LRPC codes [START_REF] Gaborit | Low Rank Parity Check codes and their application to cryptography[END_REF]. In this work, we focus on constant-time implementations of schemes using LRPC codes. We target two constant-time implementations of ROLLO, in particular the Gaussian elimination function for LRPC decoding. The first implementation is provided by the authors of ROLLO's proposal to NIST standardization process [START_REF] Aguilar-Melchor | ROLLO-Rank-Ouroboros[END_REF]. The second one only provides an implementation of ROLLO-I for 128 bits of security [START_REF] Aguilar-Melchor | Constant time algorithms for ROLLO-I-128[END_REF].

Our contribution. To the best of our knowledge, this is the first single-trace attack against different versions of the constant-time Gaussian elimination for error-correcting codes in rank metric. We show that the power consumption during the decapsulation/decryption process can provide enough information to make an efficient key-recovery attack on ROLLO schemes. Our attack allows us to recover various secret data such as:

the private key in both ROLLO-I and -II via the syndrome recovery, the shared secret in ROLLO-I key-encapsulation mechanism, or the encrypted message in ROLLO-II public-key encryption.

We finally present two countermeasures to make the implementations resistant to the proposed attack.

Organization. In Section 2, we recall background on error-correcting codes in rank metric as well as ROLLO schemes. In Section 3, we explain our attack on the reference implementation using rbc_library. We also provide a glimpse of countermeasures in Section 4. Finally we conclude in Section 5.

Background

ROLLO's submission is based on ideal Low-Rank Parity-Check (LRPC) codes. The latter were introduced in 2013 [START_REF] Gaborit | Low Rank Parity Check codes and their application to cryptography[END_REF]. In this section, we briefly explain ideal LRPC codes, then recall the ROLLO proposal to NIST PQC standardization process.

Rank-metric codes

In the following, we denote by q a power of a prime number, and let m, n, and, k be positive integers such that n > k.

We also consider the isomorphism between the vector space F n q m and the extension field F q m [Z]/(P n ) given by

φ : F n q m → F q m [Z]/(P n ) (x 1 , . . . , x n ) → n i=1
x i Z i with P n an irreducible polynomial of degree n and (P n ) the ideal of F q m [Z] generated by P n . Note that the vector space F q m is isomorphic to F q [z]/(P m ), with P m an irreducible polynomial of degree m over F q . Let us define a linear code C over F q m of length n and dimension k represented by its parity-check matrix H ∈ F (n-k)×n q m . Since a codeword x is in F n q m , each of its coordinates x i , for 1 ≤ i ≤ n, can be associated to a vector (x i,1 , . . . , x i,m ) in F m q . Thus an element x ∈ F n q m can also be represented by a matrix as follows:

M (x) = (x i,j ) 1≤i≤n 1≤j≤m ∈ F n×m q .
For an element x ∈ F n q m , the syndrome of x is defined as the vector s = H • x T . Considering the rank metric, the distance between two vectors x and y in F n q m is defined by

d(x, y) = x -y = v = rank(M (v)) with v = x -y.
The support of a vector x = (x 1 , . . . , x n ) ∈ F n q m is defined as the subset of F q m spanned over F q . Namely, the support of x is given by Supp(x) = x 1 , . . . , x n Fq . W.l.o.g., the support of (x, y) is Supp(x, y) = x 1 , . . . , x n , y 1 , . . . , y n Fq . The ideal LRPC codes base their structure on ideal codes.

Given a polynomial P n ∈ F q [Z] of degree n and a vector v ∈ F n q m , an ideal matrix generated by v is a n × n matrix defined by

IM(v) =      v(Z) mod P n Z • v(Z) mod P n . . . Z n-1 • v(Z) mod P n      .
The authors of ROLLO restrained the definition of ideal LRPC (Low-Rank Parity Check) codes to (2, 1)-ideal LRPC codes for all variants of ROLLO [START_REF] Aguilar-Melchor | ROLLO-Rank-Ouroboros[END_REF]. Let F be a F q -subspace of

F q m such that dim(F ) = d. Let (h 1 , h 2 ) be a pair of two vectors in F n q m , such that Supp(h 1 , h 2 ) = F , and P n ∈ F q [Z] be a polynomial of degree n. A [2n, n] q m -code C is an ideal LRPC code if it has a parity-check matrix of the form H =   IM(h 1 ) T IM(h 2 ) T   .

ROLLO

ROLLO is a second round submission to the post-quantum cryptography standardization process launched by NIST in 2016. Since the last update in April 2020, ROLLO is composed of two cryptosystems: ROLLO-I, a Key-Encapsulation Mechanism (KEM), and ROLLO-II, a Public-Key Encryption (PKE). Both are described in Figure 1. We use the following notations:

-A $ ← -F k
q m denotes the operation of selecting randomly k vectors from the vector space

F k q m , then A ∈ F k q m . -(u, v) $ ← -l A denotes the operation of selecting randomly 2n linear combina- tions from the element A, then u, v ∈ F n q m and Supp(u, v) = A.
-RSR denotes the Rank Support Recovery algorithm given in the specification of ROLLO to decode LRPC codes [START_REF] Aguilar-Melchor | ROLLO-Rank-Ouroboros[END_REF].

Alice: KeyGen Pick F $ ← -F d q m s.t. rank(F ) = d Pick (x, y) $ ← -l F sk = (x, y, F ) Compute the public key pk(Z) = x -1 (Z) • y(Z) mod Pn Bob: Enc Pick E $ ← -F r q m s.t. rank(E) = r Pick (e1, e2) $ ← -l E c(Z) = e2(Z)+e1(Z)•pk(Z) mod Pn Encaps Encrypt K = ciphertext = Hash(E) M ⊕ Hash(E) Alice: Dec Compute the syndrome s(Z) = x(Z) • c(Z) mod Pn
Recover the support of the error E = RSR(F, s, r) In the following, we focus on the vulnerabilities of implementations of Gaussian elimination process in the case of ROLLO.

Decaps Decrypt K = M = Hash(E) ciphertext ⊕ Hash(E)
3 Side-channel attack on Gaussian elimination in constant-time

In the RSR algorithm, we first compute the support of the syndrome [START_REF] Aguilar-Melchor | ROLLO-Rank-Ouroboros[END_REF]. The Gaussian elimination is applied to the syndrome matrix S = M (s) ∈ M n,m (F 2 ) to compute its support. We know that the syndrome is first computed as:

s(Z) = x(Z) • c(Z) mod P n , with x, c, s ∈ F q m [Z]/(P n ).
Therefore, with the knowledge of the syndrome s and the ciphertext c, we can recover x, a part of the private key as:

x(Z) = s(Z) × c(Z) -1 mod P n .
Knowing x can lead to a full recovery of the private key. First, we can get the second part of the private key y by computing

y(Z) = pk(Z) × x(Z) mod P n .
Then, the support of y and x gives the last part of the private key F .

The Gaussian elimination in constant-time requires to process each row in each column of the syndrome matrix. Thus, an attacker could be able to recover all values in this matrix. In case of a non constant-time Gaussian elimination, it is possible to treat only the rows under the pivot row. Therefore, the values in all rows above the pivot row remain unknown to the attacker. Consequently, constant-time provides an advantage to a side-channel attacker. Secondly, the constant-time eases the detection of a pattern corresponding to the targeted operation inside the power trace. Once the attacker found the exact location of this pattern, it becomes straightforward to find the locations for each other iteration. We analyzed two constant-time implementations of Gaussian elimination and discovered two possible leakages through power consumption. The first one has been provided as Additionnal Implementations in April 2020 for the second round of NIST PQC standardization process, and is available on the ROLLO candidate webpage [START_REF] Aguilar-Melchor | ROLLO-Rank-Ouroboros[END_REF]. We refer to it as the reference implementation. It uses the rbc_library, which provides different functions to implement schemes using rankmetric codes [START_REF] Aragon | rbc_library[END_REF]. The second implementation has been published on GitHub [START_REF] Aguilar-Melchor | Constant time algorithms for ROLLO-I-128[END_REF]. We refer to it as the GitHub implementation.

In this extended abstract, we only present the attack against the reference implementation.

Notations. We denote by ⊗ the multiplication between a scalar and a row of a matrix and by ⊕ the bitwise XOR between two bits or two rows of a matrix. The bitwise AND is represented by ∧ and the bitwise NOT by ¬. The term mask does not refer to a boolean masking but to a variable giving the additions on rows according to values obtained from coefficients of the processed column.

Information leakage of the reference implementation

The reference implementation is based on Algorithm 1, which was first introduced in [START_REF] Bernstein | McBits: Fast Constant-Time Code-Based Cryptography[END_REF].

Algorithm 1: Gaussian elimination in constant time

Input: S ∈ Mn,m(F2) Output: S ∈ Mn,m(F2) in systematic form and rank = min(dimension, n) 1 dimension = 0 2 for j = 0, . . . , m -1 do The input matrix is composed of n rows and m columns. The algorithm outputs the matrix in systematic form and its rank. The first inner for loop (line 4) fixes the ones in the diagonal (corresponding to the pivots) and the second inner for loop (line 13) removes the ones in the pivot column. In both inner for loops in Algorithm 1, mask ∈ F 2 is computed and multiplied with specific rows of the syndrome matrix. However, the multiplication of a 32-bit word (u 0 , . . . , u 31 ) 2 with zero or one provides information leakage in the power traces. This allows us to recover all the mask values computed during the process, then, the initial syndrome matrix. Our attack consists in recovering the syndrome matrix ----------------------→ 

S = n         m -
     s 0,0 s 0,1 • • • s 0,m-1 s 1,0 s 1,1 • • • s 1,m-1 . . . . . . . . . . . . s n-1,0 s n-1,1 • • • s n-1,m-1      , (1) 
where s i,j ∈ F 2 for (i, j) ∈ 0, n -1 × 0, m -1 . We denote by S j the matrix obtained after the treatment of the j-th column of S and by S j [k], the k-th column of the matrix S j . The recovered mask values from the two inner for loops lead to a system of linear equations. This system is obtained from two steps described below.

After the first inner for loop in Algorithm 1: we recover the mask values s pivot_row,j ⊕ s i,j . If mask = 0, then the pivot row is unchanged. Otherwise, the i-th row is added to the pivot row. Then, the first loop provides the indices of rows XORed to the pivot row. We define

σ j = (σ 0,j , σ 1,j , . . . , σ n-1,j ), where σ i,j = 0 if mask = 0 1 if mask = 1 ,
the vector containing all mask values recovered after the j-th iteration. We also define the matrix

J k = 1 • • • 0 • • • 0 . . . . . . . . . . . . σ 0,k • • • 1 • • • σ n-1,k . . . . . . . . . . . . 0 • • • 0 • • • 1                       k-th row k-th column ,
involved in the computation of the system of linear equations. For instance, let us consider the pivot row of index 0. After the first inner for loop, the syndrome matrix given in Equation 1 is under the following form

     n-1 i=0 σ i,0 s i,0 n-1 i=0 σ i,0 s i,1 • • • n-1 i=0 σ i,0 s i,m-1 s 1,0 s 1,1 • • • s 1,m-1 . . . . . . . . . . . . s n-1,0 s n-1,1 • • • s n-1,m-1      .
We notice in lines 7 -8 in Algorithm 1 that only rows with index greater than the pivot row index are added to the pivot row. Thus, after the treatment of the column j, we define σ i,j = 0 for i ≤ pivot_row.

After the second inner for loop in Algorithm 1: the recovered mask values correspond to the coefficients s i,j of the matrix obtained after the first inner for loop. We denote by σ j = (σ 0,j , . . . , σ j-1,j , * , σ j+1,j , . . . , σ n-1,j ) the vector composed of mask values. The item * represents the pivot that is not processed in the second loop. For the attack, * is replaced by one. On one hand, during the treatment of the j-th column, σ j completes the system of linear equations. Assuming we want to recover the column 0, we use a linear solver on the system

J 0 × S[0] = (σ 0 ) t .
On the other hand, the vector σ j allows us to recover all the operations performed on rows. These operations are taken into account in solving the system of linear equations of the (j + 1)-th column. For this, we define the matrix

J k = 1 • • • σ 0,k • • • 0 . . . . . . . . . . . . 0 • • • 1 • • • 0 . . . . . . . . . . . . 0 • • • σ n-1,k • • • 1                         k-th row k-th column .
Thus, during the treatment of the column j, for j ≥ 1, we consider

S j-1 =   k=j-1,...,0 J k × J k   × S.
In case there is no pivot in a column, all the mask values are equal to zero, thus

J k × J k = I n .
Finally, to recover the column j, we solve the system of linear equations

J j-1 ×   k=j-2,...,0 J k × J k   × S[j -1] = (σ j-1 ) t .
Experimental results. An example of a power trace obtained after the execution of the Gaussian elimination on an ARM SecurCore SC300 32-bit processor (equivalent to Cortex-M3) is given in Figure 2. For a better understanding, we highlight each occurrence in the computation of the different masks. We can observe the difference of power consumption when 32-bit words are multiplied either by one or by zero. The difference of pattern leads us to recover the mask values of the two inner for loops. We also performed this experiment on a Cortex-M4 microcontroller.

The attack presented in this section has also been adapted to the GitHub implementation [START_REF] Aguilar-Melchor | Constant time algorithms for ROLLO-I-128[END_REF].

Countermeasures

We propose two solutions to protect the future implementations against our attack. In this section, we just detail one of them and give the general idea for the The same operations are performed in the second inner for loop by replacing the pivot row by the processed row s i . With this countermeasure, whether the mask is zero or one, we always perform the same operations, namely two bitwise ANDs between non-zero and zero words. Thus, we are not able to distinguish different patterns when mask equals 0 or 1. It is important to emphasize that the implementations with this countermeasure remain in constant-time.

The second countermeasure is based on shuffling. The treatment of each column is performed randomly by using an algorithm generating a random permutation of a finite set, such as the Fisher-Yates method. The choice is left to the developer under condition of a proper implementation. With the randomization countermeasure, an attacker can distinguish patterns related to the masks values for both implementations, but not determine the order of elements. Moreover, a brute-force attack is not achievable. Indeed, an adversary has n! possibilities for each column, which implies a total of (n! ) m possibilities to recover the whole syndrome matrix. For instance, with ROLLO-I-128 parameters, the complexity is approximately 2 27731 . Thus, only the number of zeros and ones on the matrix would be known.

Conclusion and perspectives

We show in this paper that constant-time implementation of Gaussian elimination provided in [START_REF] Aguilar-Melchor | ROLLO-Rank-Ouroboros[END_REF] is sensitive to power consumption attacks. We exploit the weakness introduced by the variable mask to avoid previous timing attacks. This information leakage allows us to make the first attack by power consumption on the last implementation version given by the authors of ROLLO. We can also apply our side-channel attack on another implementation of ROLLO-I-128 [START_REF] Aguilar-Melchor | Constant time algorithms for ROLLO-I-128[END_REF]. These attacks can lead to a full key-recovery using one single trace. To secure the implementations, we propose two different countermeasures. The first one can be applied to [START_REF] Aguilar-Melchor | ROLLO-Rank-Ouroboros[END_REF] by hiding the values of mask. The second countermeasure can be applied to both implementations. The idea is to treat each row in a column of the matrix randomly. It adds randomness which makes our attack not exploitable in practice anymore. We base our work on traces got from Cortex-M3 and Cortex-M4 microcontrollers. The constant-time Gaussian elimination function is in the rbc_library library. This library is also used in the implementation of the RQC scheme. Even though the Gaussian elimination in constant time is not used in the RQC implementation, the entire library should be analyzed to find possible leakage. In particular, we want to analyze the Karatsuba function used in both ROLLO implementation and the polynomial multiplication for computation over ideal codes in RQC. Another perspective could be to analyze the various implementations of the Gaussian elimination in the third round candidates to the NIST PQC standardization process.

Fig. 1 :
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 2 Fig. 2: Full trace and a zoom of the first inner loop