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Abstract. In this paper, we present a single-trace attack on a BIKE
Cortex-M4 implementation proposed by Chen et al. at CHES 2021. BIKE
is a key-encapsulation mechanism, candidate to the NIST post-quantum
cryptography standardisation process. We attack by exploiting the ro-
tation function that circularly shifts an array depending on the private
key. Chen et al. implemented two versions of this function, one in C and
one in assembly. Our attack uses subtraces clustering combined with a
combinatorial attack to recover the full private key. We obtained a high
clustering accuracy in our experiments, and we provide ways to deal with
the errors. We are able to recover all the private keys for the C imple-
mentation, and while the assembly version is harder to attack using our
technique, we still manage to reduce BIKE Level-1 security from 128 to
65 bits for a significant proportion of the private keys.

1 Introduction

The currently used public-key cryptography is based on number theory prob-
lems, such as integer factorisation for RSA [RSA78]. In 1994, Shor proposed a
quantum algorithm to solve the integer factorisation problem in polynomial time
[Sho97]. Therefore if a large-scale quantum computer was built, it could break all
cryptosystems that rely on this problem. For this reason, the National Institute
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of Standards and Technology (NIST) is running a Post-Quantum Cryptogra-
phy (PQC) standardisation process to select the next encryption and digital
signature standards for the quantum era.

BIKE [AAB+21] is one of the Key-Encapsulation Mechanisms (KEM) based
on coding theory that was recently selected to the fourth round of the standard-
isation process. Recently, BIKE received an increased focus from the community
regarding its side-channel resilience. The BIKE specification includes a constant-
time implementation from [DGK20], protected against timing and cache attacks.
However this implementation does not provide resistance against other side chan-
nels, such as power consumption analysis, although there are multiple attacks
of this type targeting the code family used in the scheme, but not against the
scheme itself.

Previous works. Many code-based schemes leverage a low- or moderate-density
parity-check codes to obtain better performances. Among them, BIKE is based
on binary Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes
which were first proposed for cryptographic purposes in [MTSB13]. Those sparse
parity-check codes share a similar iterative decoding algorithm that suffers from
timing variations. A first constant-time implementation was proposed by Chou
for QcBits in [Cho16]. This one was attacked by a differential power analysis
(DPA) on the syndrome computation during the decryption [RHHM17]. In a
more recent work, Sim et al. improved this DPA attack and also proposed a
single-trace attack targeting the same weakness [SKC+19]. Authors discuss the
applicability of this later attack to two schemes including BIKE. Two other im-
plementation works have then been published targeting BIKE which was selected
by the NIST as a third round alternate candidate in the meantime. Drucker et
al. proposed a portable C constant-time implementation adapted for 64-bit ARM
microcontrollers [DGK20]. This work was used as a basis for the Cortex-M4 op-
timised implementations by Chen et al. [CCK21]. One of the key operations in
the decoding of QC-MDPC codes is the computation of unsatisfied parity-check
equations. It is usually done by computing circular shifts of the syndrome: this
is the operation we target in our side-channel analysis. From this perspective,
the implementation from Chen et al. differs from the previous ones and this
motivated our choice to target it (details are provided in Section 3). Moreover,
two versions of this syndrome rotation are proposed: one in C and an optimized
assembly one which is an interesting challenge.

Our contribution. In this paper, we go further in the study of resistance of
the QC-MDPC decoding implementations against power analysis attacks. We
propose a single-trace attack combining unsupervised machine learning with a
combinatorial attack against the syndrome rotation in the BIKE Cortex-M4 im-
plementations from [CCK21]. To the best of our knowledge, it is the first full
key-recovery attack against the latter, either in C or in assembly. And in a more
general way, it is the first attack exploiting a leakage from an assembly instruc-
tion on the QC-MDPC decoding algorithm. We provide practical results of our
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attack against both the C and assembly versions. We also present a countermea-
sure in C to improve the side-channel resistance of such implementations.

Organisation of the paper. In Section 2, we recall background of coding theory in
the Hamming metric and on QC-MDPC decoders, as well as the BIKE scheme.
In Section 3, we present the weakness we target and an outline of our attack.
In Section 4, we provide practical results for our attacks with details on adapta-
tions to C and assembly. Finally, we propose a countermeasure in Section 5 and
conclude this paper in Section 6.

2 Preliminaries

In this section we recall some background on coding theory and present the BIKE
cryptosystem [AAB+21] as well as MDPC codes with their decoding algorithm.

2.1 Coding Theory

Definition 1. Linear codes. A linear code C over Fq of length n and dimension
k is a vector subspace of Fn

q of dimension k.
Such a code can be represented in two equivalent ways:

– either by a generator matrix G ∈ Fk×n
q where each row of G is an element

of a basis of C,
C = {mG|m ∈ Fk

q}.

– or by a parity-check matrix H ∈ F(n−k)×n
q such that H is full rank and, for

each c ∈ C:
Hc⊺ = 0.

Code-based cryptography is based on the difficulty of decoding random error-
correcting codes, a well known NP-complete problem [BMVT78]:

Definition 2. Syndrome decoding (SD) problem. Given a parity-check matrix

H ∈ F(n−k)×n
q , a syndrome s ∈ Fn−k

q , and a positive integer t, the syndrome
decoding problem consists in finding an error vector e ∈ Fn

q such that:

– He⊺ = s,
– e is of Hamming weight t.

In this work we focus on codes with coefficients in F2, associated with the
Hamming metric. The BIKE cryptosystem takes advantage of the structure of
circulant matrices and quasi-cyclic codes, as follows.

Definition 3. Circulant matrices. An r × r square matrix M is a circulant
matrix if it is of the form:
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M =


m0 m1 . . . mr−1

mr−1 m0
. . . mr−2

...
. . .

. . .
...

m1 m2 . . . m0


We say that M is generated by the vector m = (m0, . . . ,mr−1).

There exists an isomorphism between the ring of polynomialsR = F2[X]/(Xr−
1) and set of circulant r × r matrices. Operations on matrices (multiplication
and inversion in particular) can thus be performed using polynomials in the ring
R: to a vector m = (m0, . . . ,mr−1) ∈ Fr

2 generating a circular matrix, we can

associate the polynomial M(X) =
r−1∑
i=0

miX
i.

Definition 4. Quasi-Cyclic codes. An [sn, k] linear code C is quasi-cyclic (QC)
of index s if, for any codeword c = (c1, . . . , cs) ∈ (Fn

2 )
s in C, the vector obtained

after applying a circular shift to every block ci is also a codeword.

In the following we focus on [2r, r] QC codes: letH be a parity-check matrix of
such a code, then it can be represented by a parity-check matrix H = (H0| H1),
where Hi is a circulant r × r matrix.

Definition 5. Quasi-cyclic moderate density parity-check (QC-MDPC) codes.
An [n, r, w] QC-MDPC code C is a quasi-cyclic code that admits a parity-check
matrix H such that H has a constant row weight w = O(

√
n).

BIKE relies on [n, r, w] QC-MDPC codes, with n = 2r. Parity-check matrices
are thus represented by two vectors h0 and h1 ∈ Fr

2 of weight d = w
2 each.

2.2 BIKE Scheme

BIKE is an alternate candidate to the third round of the NIST post-quantum
standardisation process, which moves to the fourth round. We describe the ver-
sion of the scheme presented in the third round submission package, which was
labelled BIKE-2 in previous rounds. H, L and K denote hash functions, and
Decoder the decoding algorithm described in Section 2.3. In these algorithms,
l is the shared secret size.

KeyGen(l):

– Pick σ
$←− {0, 1}l

– Pick (h0, h1)
$←− R2 s.t. |h0| = |h1| = w

2

– Compute h← h1h
−1
0

– Return the private key (h0, h1, σ) and the public key h
Encap(h, l):

– Pick m
$←− {0, 1}l
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– Compute (e0, e1)
$←− H(m)

– Compute (c0, c1)← (e0 + e1h,m⊕ L(e0, e1))
– Compute the shared secret K ← K(m, c0, c1)
– Return the ciphertext (c0, c1)

Decap((h0, h1, σ), (c0, c1)) :
– Compute e′ ← Decoder(c0h0, h0, h1)
– Compute m′ ← c1 ⊕ L(e′)
– If e′ = H(m′) then return K ← K(m′, c)
– Else return K ← K(σ, c)

Table 1 contains the parameters for the three security levels of BIKE scheme
(length of the code and row weight of the parity-check matrix). The decapsula-
tion procedure relies on the decoding algorithm of the QC-MDPC codes.

Security r w

Level-1 12323 142

Level-3 24659 206

Level-5 40973 274

Table 1: BIKE parameters

2.3 Decoding MDPC Codes

While the BIKE scheme can be instantiated using any decoder for the MDPC
codes, the choice of the decoding algorithm has an impact on the decoding
failure probability, and potentially on the security of the scheme. To meet the
security requirements, the authors proposed to use the Black-Gray-Flip (BGF)
algorithm as decoder [AAB+21,DGK20]. The BGF algorithm is a variant of the
iterative bit-flipping algorithm [Gal62] that was originally described as a decoder
for Low-Density Parity-Check codes.

The principle of the bit-flipping algorithm is as follows: in each iteration,
the number of unsatisfied parity-check equations is computed for each bit of
the error vector. If this number is greater than a threshold value T , then the
corresponding bit is flipped and the syndrome is recomputed. This procedure is
described in Algorithm 1. The function counter takes as input the parity-check
matrix H and the syndrome s, and returns an array containing the number of
unsatisfied parity-check equations (in other words, it counts for each column of
H the number of ones that appear in the same position in this column and in
the syndrome). The function threshold returns the threshold associated to an
iteration. This value can be computed in various ways, the BIKE scheme uses
precomputed values that are fixed for each iteration, which can be found in the
BIKE specification [AAB+21].
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Input: s,H, a number of iterations N
Output: e

1 e← 0n

2 for iteration = 1, . . . , N do
3 T ← threshold(iteration)
4 count← counter(H, s)
5 for i = 0, . . . , n− 1 do
6 if count[i] ≥ T then
7 e[i]← e[i]⊕ 1
8 s← s⊕H[:, i]

9 return e

Algorithm 1: Bit-flipping algorithm. H[:, i] denotes the i-th column of H.

In order to reduce the decoding failure rate of this algorithm, BIKE uses the
BGF. During the first iteration, the BGF classifies the coordinates of the error
as black or gray using two different thresholds. It then performs two additional
iterations to confirm (or not) the choices that were made during the classification.
The algorithm is described in Algorithm 2, see [AAB+21] for more details.

The BIKE scheme sets the number of iterations N to 5, which leads to 7
computations of unsatisfied parity-check equations, due to the structure of the
BGF algorithm: one in each call to the BFIter procedure, and two additional
ones for the iteration where the black and gray values are processed.

2.4 Optimising the Bit-Flipping Algorithm

As shown in [Cho16], it is possible to take into account the fact that the con-
sidered matrices are circulant matrices to optimise the bit-flipping algorithm,
by computing the number of unsatisfied parity-check equations as a multiplica-
tion in the ring Z[X]/(Xr − 1). Let u be the vector such that uj represents the
number of unsatisfied parity-check equations for the j − th column. Then this
vector u can be computed as (h0 · s, h1 · s). Note that both h0 and h1 have a low
Hamming weight, hence the cost of computing the number of unsatisfied parity-
check equations at each iteration of the algorithm is reduced to computing two
sparse-dense polynomial multiplications in the ring Z[X]/(Xr − 1).

Chou proposed a method to perform these operations efficiently in [Cho16],
later on reused in [CCK21]. Let f be a dense polynomial and g be a sparse
polynomial, represented as an array of coordinates I = {i|gi = 1}. Then,

fg =
∑
i∈I

Xif,

where each Xif can be computed as a cyclic shift of the polynomial f . Each in-
teger i ∈ I is encoded on j bits, where j = ⌈log2(r)⌉: i = (bj−1, bj−2, · · · , b1, b0)2.
To compute the sparse-dense polynomial multiplication of the syndrome s with
a secret value hi, the cyclic shift of s is performed w

2 times.
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Input: s,H, a number of iterations N
Output: e

1 e← 0n

2 for iteration = 1, . . . , N do
3 T ← threshold(iteration)
4 e, black, gray ← BFIter(s+ eHt, e, T,H)
5 if iteration = 1 then
6 e← BFMaskedIter(s+ eHt, e, black, (d+ 1)/2 + 1, H)
7 e← BFMaskedIter(s+ eHt, e, gray, (d+ 1)/2 + 1, H)

8 return e
9

10 procedure BFIter(s, e, T, H)
11 count← counter(H, s)
12 for i = 0, . . . , n− 1 do
13 if count[i] ≥ T then
14 e[i]← e[i]⊕ 1
15 black[j]← 1

16 else if count[i] ≥ T − θ then
17 gray[j]← 1

18 return e, black, gray
19

20 procedure BFMaskedIter(s, e, mask, T, H)
21 count← counter(H, s)
22 for i = 0, . . . , n− 1 do
23 if count[i] ≥ T then
24 e[i]← e[i]⊕mask[i]
25 end

26 return e
Algorithm 2: BGF algorithm

The fact that the secret nonzero coordinates of hi are manipulated during
the computation of the unsatisfied parity-check equations is the key for our
attack to succeed. In the next section we describe how this rotation operation
is implemented in [CCK21] and how the countermeasures against cache and
timing attacks allow us to recover information using a side-channel attack by
power analysis.

3 Overview of our Attack

The purpose of constant-time implementation is to remove the dependence be-
tween the execution time of a program and the secret values it manipulates.
Chen et al. [CCK21] proposed an optimised and constant-time implementation
of the syndrome rotation for Cortex-M4, which is itself based on the portable
implementation proposed by Drucker et al. [DGK20].
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3.1 Constant-Time Syndrome Rotation for Cortex-M4

We consider the Cortex-M4 as a target, which is a 32-bit ARM embedded proces-
sor. Most computations such as arithmetic or logical operations are thus made
on 32-bit registers. Consequently, in the considered BIKE implementation, the
syndrome is stored as an array of integers of size ⌈ r

32⌉, and the secret vectors h0

and h1 are stored as two arrays of w
2 each, where each element of the array is the

position of a nonzero coordinate in the vector. We now describe the techniques
used in [CCK21] to compute the syndrome rotations in constant time. We pro-
vide in Algorithm 3 a description of the cyclic shift of the syndrome s by ind
positions. ind is an integer encoded as (bj−1, bj−2, · · · , b1, b0)2. The algorithm
is split into two parts: first, the high order bits of ind (from bj−1 to b5) are
processed, to perform a shift of ind − (ind mod 32) bits. Then the remaining
bits (b4 to b0) are processed to perform a shift of (ind mod 32) bits.

Input: s, ind
Output: Cyclic shift of s by ind bits

1 dupS ← (s|s)
2 (bj−1, bj−2, . . . , b1, b0)← (ind)2

// Process most significant bits

3 for elt = j − 1, · · · , 5 do
4 if belt == 1 then

5 for i = 0, · · · , 2× ⌈ r
32
⌉ − 2elt−5 do

6 dupS[i]← dupS[i+ 2elt−5]

// Process less significant bits

7 shift← (b4, . . . , b0)
8 for i = 0, . . . , i < ⌈r/32⌉ do
9 dupS[i] = (dupS[i] >> shift)|(dupS[i+ 1] << shift)

10 s← dupS[0 : r]
Algorithm 3: Non constant-time rotation for Cortex-M4

Algorithm 3 is not in constant time due to the conditional branching, line 4,
which depends on the bits values. One way to remove this conditional branching
is to replace it by an operation such as:

s[k] = (s[k] ∧ ¬mask)⊕ (s[k + 2elt−5] ∧mask) (1)

where mask is an unsigned 32-bit word whose value is determined by the bit
belt as follows:

mask = −belt =
{
0xFFFFFFFF if belt == 1
0x00000000 if belt == 0

Thus, if the bit belt is at 1 then s[k] takes the value s[k + 2elt−5], otherwise
there is no modification. Operation (1) is targeted by Sim et al. in the QcBits
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implementation [SKC+19]. Drucker et al. replaced the XOR in Operation (1)
by a logical OR, c.f. [DGK20], giving Operation (2):

s[k] = (s[k] ∧ ¬mask) ∨ (s[k + 2elt−5] ∧mask) (2)

However, by studying the C code of [CCK21] we noticed that Operation (1)
is implemented as:

s[k]⊕ = (s[k]⊕ s[k + 2elt−5]) ∧mask. (3)

In this work we target both implementations of Operation (3) from [CCK21],
one in plain C and the other one leveraging the SEL assembly instruction.

3.2 Determine Bit Values

We want to recover the coordinates of the private key (h0, h1). Those coordi-
nates are decomposed in binary representation to shift the syndrome thanks to
Operation (3) or the SEL instruction. To obtain the values of the bits for each
index ind = (bj−1, bj−2, . . . , b0), we exploit leakages of information embedded in
power traces. We first need to identify time features corresponding to the syn-
drome rotation. Second, we also need to separate the execution for the bits from
(bj−1, . . . , b5) from the last 5 bits. Once it is done, we can determine the masks
values with a clustering algorithm and by consequence the bits values. Clustering
is an unsupervised machine-learning method that interprets the input data and
finds natural groups called clusters. So the subtraces containing the syndrome
rotation can be sorted into clusters under the condition that, at some points,
there are differences between traces. To obtain their values, we need to execute
a clustering for each bit with only the time features corresponding. Thus, the
clustering algorithm will return two clusters, one with the bits at 1 and one
with those at 0. There are many clustering algorithms: we used the most known
namely the k-means algorithm [Mac67] and obtained good enough results. More
advanced clustering algorithms may slightly improve the attack but this is left
for further research. The k-means algorithm partitions a set of points (resp. vec-
tors) into k groups with the objective of minimizing the distance between the
points (resp. vectors) in each group and the different means of the groups. The
algorithm is repeated until it converges or if a maximum number of iterations,
fixed in advance, is reached.

Algorithm 4 presents the different steps of recovering a bit belt. We do not
use k-means directly with the subtraces. We first rescale the traces using their
standard deviation to help the clustering step (Algorithm 4, line 1). The k-
means algorithm, line 2, uses the Euclidean distance on the set of rescaled traces
to cluster and returns a label for each one, either 0 or 1, and a centroid for
each cluster (a.k.a the means). The last step is to determine the value of the
bits for each cluster. We noticed that the power consumption is higher for the
bits at 1 than for the ones at 0. Hence, we take the maximum values in both
centroids and compare them to decide if we need to permute the labels, line 3.
The permutation, line 4, is just the action to change the label 1 into label 0 and
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Input: traces for belt, iter
Output: Values of belt

1 tracesr ← rescale(traces)
2 labels, centroid← kmeans(tracesr, 2, iter)
3 if max(centroid[0]) > max(centroid[1]) then
4 labels← Permute(labels)
5 return labels

Algorithm 4: Bits belt Recovery

vice versa. Then Algorithm 4 returns the labels which correspond to the values
of the bits.

From this technique, we theoretically obtain up to j − 5 bits values for each
coordinate. Thus we have partially recovered the private key (h0, h1). The last
step is to finish the attack by doing a full key-recovery attack thanks to a math-
ematical approach.

3.3 Information Set Decoder

Using our side-channel attack, we extract some information about the secret
vectors h0 and h1. Each hi is represented as an array of w

2 integers which are
the positions of the nonzero coordinates in hi. Each coordinate hij is encoded
by l = ⌈log2(r)⌉ bits, and the information we got from the side-channel analysis
is a subset of these l bits. In other words, this means that for each hij we know a
subset L of {1, . . . , r} such that hij ∈ L. The size of L depends on the number of
recovered bits: more information we recover, smaller L is. Our goal is therefore
to get the smallest search space L from the side-channel analysis to ease our
attack.

We explored two ways of performing the ISD: one that we call classical Prange
and the approach from [HPR+21]. More details about the complexity analysis
for both of these methods can be found in Appendix A. Results are given in
Figure 1.

As we can see, using the approach from [HPR+21] allows us to theoretically
reduce the complexity of our attack. Nevertheless, we will need in practice to
recover half of the bits representing each coordinate for the attack to be feasible
in a reasonable time, which corresponds to a probability of success close to 1
for both approaches. The theoretical gap we could gain by using the second
approach is not verified in practice. For this reason, in the rest of the paper we
compute the attack complexities given by the classical Prange algorithm (i. e. the
first approach). Nonetheless, in the cases where the success probability gets low,
the more advance approach from [HPR+21] can be used to reduce the overall
complexity.

Remark 1 We also tried to adapt the approach from [RHHM17] by taking into
account the fact that we have information on the nonzero coordinates, not only
in h0 but also in h1. However, it led to higher complexities than the classical
Prange algorithm.
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Fig. 1: Probability of success of the ISD algorithms depending on the number of
recovered bits from our side-channel analysis.

To compute the actual complexity of the Prange algorithm, we need to take
into account the cost of linear algebra, which is not negligible in our case. This
cost is equal to the cost of inverting an r×r matrix over F2, i.e r

ω bit operations.
In our computations we use the value ω = 2.8.

4 Experimentation on the Cortex-M4

The necessary material for reproducing our experiments have been made avail-
able on GitHub [CARG].

We performed experiments on both the plain C implementation (referred to
as C implementation) and the implementation leveraging the SEL instruction
(referred to as assembly implementation in the following). Both were made by
running the implementation provided on PQM4 GitHub [CCK21]. Implemen-
tations for Level-1 and Level-3 are available, and we chose to test the attack
strategy previously described on the Level-1 parameters. Nonetheless, as the ro-
tation function works using the same method for both sets of parameters, we
can assume that the attack will work for Level-3 parameters despite an extra
bit. Since the BIKE scheme can be used with ephemeral keys, we provide exper-
imental results using a single trace of power consumption.

4.1 Measurement Setup

The experimentation setup was made up of a Chipwhisperer STM32F4 based
on a CW308 UFO Board. The board was connected to a computer using an ST-
LINK/V2 for debugging purposes. Power consumption was measured through
an oscilloscope with a 3GHz bandwidth. We took traces of the full decapsula-
tion process for both implementations using the same oscilloscope configuration
except for the acquisition sampling rate. In fact, the execution of the assembly
implementation takes less time than the C implementation, so it allows us to use



12 Agathe Cheriere, Nicolas Aragon, Tania Richmond, Benôıt Gérard

a higher sampling rate. The Cortex-M4 was flashed with files generated using the
GCC compiler with the optimisation flag set to -Og. For our experimentation,
we generated valid keys (resp. ciphertexts) using the key generation (resp. en-
capsulation) function provided in the implementations, and passed these values
as inputs to the decapsulation function.

Figure 2 shows power consumption traces for the whole decapsulation pro-
cess. The first trace, Figure 2a, is for the C implementation and the one below,
Figure 2b, is for the assembly implementation. One thing to notice is that the
scale for the voltage is not the same for both traces: the power consumption is
significantly lower for the assembly one (approximately half of the one for the C
trace). Nevertheless, both traces follow the same general pattern which can be
cut into seven smaller patterns, highlighted by a red rectangle in Figure 2.

Remark 2 For each iteration we can observe an overall drop of the power con-
sumption as the iterations progress. It is directly linked to the decreasing of the
syndrome weight processed at each iteration.

(a) C implementation

(b) Assembly implementation

Fig. 2: Full traces of the decapsulation execution, respectively for the C and the
assembly implementation. One iteration of syndrome rotation is highlight in red.

The BIKE specification [AAB+21] gives us information to determine rela-
tions between different parts of the traces and the decoding algorithm. In fact,
the number of iterations in the Bit-Flipping algorithm is fixed to 5 by the au-
thors. By adding the two iterations generated by the Black-Gray part of the
algorithm (Subsection 2.3), we obtain a correspondence between the number of
patterns and the number of iterations in the algorithm: one of these patterns is
highlighted in red in Figure 2. In each pattern, the first part is the syndrome
computation, and the two other parts (more visible at the end of the traces,
where the consumption is overall lower) correspond to the syndrome rotation
(the operation we are targeting) and to the computation of the number of un-
satisfied parity-check equations. In the rest of this section, full syndrome rotation
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will refer to the execution of the rotations for all the coordinates, and syndrome
rotation will refer to the rotation of the syndrome for one specific coordinate.

The traces display in Figure 3 show, respectively, a full syndrome rotation
in Figure 3a and a zoom on three syndrome rotations in Figure 3b for the C
implementation. On Figure 3a, 71 blocks can be counted, which exactly cor-
responds to the number of coordinates in hi. The syndrome rotation function
always takes the same amount of time, mandatory to remove time dependence.
Figure 3b shows that each syndrome rotation is isolated from the others, thus
the beginning of the execution can be easily determined.

(a) Syndrome rotation for all hi coordinates

(b) Zoom on three coordinates of hi

Fig. 3: Syndrome rotations for hi with a zoom on three coordinates.

The implementation structure of the syndrome rotation makes the distinction
between the bits easier. Indeed, the treatment of the syndrome for each bit
is composed of two for loops, the outer and the inner. The inner for loop is
executed t times, the value of t changes for each bit bi so there is a specific pattern
for each bi. Those specific patterns help to determine which bit is treated at one
instant of the trace. We used them to cut the traces into subtraces corresponding
to only one bit bi, the one we want to recover.

In assembly traces, we find the same structural characteristics with the blocks
and a specific pattern for each bi.

Figure 4 displays the points of interest (PoI) for the section of the traces
corresponding to b13. They were computed by using the sum of squared pairwise
t-differences T-test (SOST) [GLRP06]: E(T0)− E(T1)√

σ(T0)2

#T0
+ σ(T1)2

#T1

2

(4)

Tl is the mean of the traces with the value of bit at l.
In Figure 4, the PoIs for C traces are numerous while assembly traces have

noticeably less PoIs, and the SOST values are much lower, which explains why
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(a) SOST for the C implementation

(b) SOST for the assembly implementation

Fig. 4: SOST for b13 subtraces, for a C trace and an assembly trace.

we can not recover the mask values with the exact same method for both imple-
mentations. Both approaches are detailed in the following subsections.

Remark 3 The optimisation flags -O0 and -O3 were also tested for both im-
plementations to have an idea of their impact on the power consumption of the
function. On a general aspect, the traces are following the pattern displayed in
Figure 2. The execution time is obviously different, either longer or shorter, but
the extraction of the information is also possible.

4.2 Attack on the Plain C Implementation

We first recall how the plain C implementation performs its conditional assign-
ment in order to shift the syndrome:

Rx⊕ = (Rx⊕Ry) ∧mask (5)

Looking at this operation, there are two possible PoI to detect leakages.
More specifically, either the final XOR (denoted ⊕) between Rx and the result
of (Rx ⊕ Ry) ∧mask, or the logical AND (denoted ∧) could leak information
about the mask value, as the other XOR (i. e.Rx⊕Ry) is not impacted by the
mask. Furthermore, both logical operations correlated with mask can leak at
the same time. Figure 4 shows that, at least for the bit b13, the XOR and AND
leak even though we cannot determine which one (or both) leaks information.
Figure 4a shows the leakages instant. However, we detected that an iteration
of the syndrome rotation for a zero syndrome (i.e a zero vector) has higher
leakage than for a nonzero syndrome. The SOST of the former in Figure 5 is five
times higher than the one for the latter. The iteration with zero syndrome often
occurs twice at the end of the decapsulation process, so we will use these last
two executions to perform our attack. And as we use the k-means algorithm, the
greater the difference is, the better its efficiency is. Thus we focus our attack on
the exploitation of the last two iterations.
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Fig. 5: SOST for zero syndrome subtraces for C implementation

Remark 4 In Figure 5 and 4a, the values decrease with the time due to the
desynchronisation of the subtraces. Those are very small discrepancies that occur
in each trace.

Leakage Exploitation We show in Figure 6 two comparisons between means
of two groups of traces, either for masks at 1 or at 0. Figure 6a is the comparison
for nonzero syndrome traces and Figure 6b for zero syndrome traces (with 2840
traces in both groups). Both mean traces have some points of divergence at the
same instant, however the difference between means is greater in the second one
(for zero syndrome). We guess that it is due to the reduction of noise generated
by the logical operations. Indeed, as Rx and Ry in Operation 5 are at 0, no bit
is flipping from 0 to 1 nor from 1 to 0 on them. For instance, the two XORs
return 0 independently of mask value, as Rx, Ry, and (Rx ⊕ Ry) ∧mask are
equal to 0. Thus, there is less power consumption by the operations unrelated
to the mask. We conclude, in this specific case, that the logical AND is leaking
as it is the only operation manipulating mask.

(a) Nonzero syndrome traces

(b) Zeros syndrome traces

Fig. 6: Extract from the comparison between the trace means for the 1 and 0
masks, for nonzero syndrome first, and zero syndrome secondly.

Computing the SOST gives the PoIs which are the exact instants where the
difference between traces should be the highest. The bigger the difference is, the
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easier it will be for the classification algorithm to correctly separate traces in
two clusters. Indeed, as the algorithm bases its classification on the Euclidean
distance between the means and the traces in the cluster, if the distance between
the two means is important (when choosing a good PoI) the number of errors is
smaller. In Table 2 we give the accuracy of the k-means algorithm for each bit.
Those accuracies were computed by executing the k-means algorithm under the
condition of a single-trace attack, which signifies that the groups of traces to sort
into two clusters are composed of 2 ∗w = 2 ∗ 142 = 284 subtraces corresponding
to the last two iterations. The accuracy was computed by running the algorithm
100 times on the same groups and also for various full traces. The results shown
in Table 2 is the average of all the computed accuracies.

Bit 13 12 11 10 9 8 7 6 5

Clustering accuracy 0.974 0.987 0.972 0.985 0.962 0.983 0.985 0.504 0.536

Table 2: Average k-means accuracy

Clustering Accuracy In Table 2, we can notice that for the bits from b13
to b7 accuracies are high. But, curiously for the last two bits, b6 and b5, their
accuracies are hardly higher than 0.5. The difference with the other bits can be
explained by the fact that the number of shifts executed in the inner for loop is
different. In fact, for b6 (resp. b5) the number is divided by two (resp. four). In
other words, when there are 8 operations for bits from b13 to b7 in the inner for
loop, there is only 4 for b6 and 2 for b5. This explains the observed difference
on multiple PoIs. For instance, b6 leaks only in one time sample and with less
amplitude than previous bits. Focusing on this single leaking point, the accuracy
moves from 0.5 to 0.92.

Our goal is to recover the bit values with as few errors as possible. So, to
increase the success rate in our bits detection, we proceeded in three steps.
Firstly, we ran l times the k-means algorithm (l = 50 for our different tests) with
the same subgroup of traces. For each bit, we reduce the subtraces to an interval
of 20 samples (except for b6 for which we focused on a single sample) centered
to the highest PoIs of the SOST computed: ideally we would like to consider
less samples to precisely target the PoIs, but using a few samples allows to
reduce the impact of the noise. We obtain the best results by taking ten samples
from each side of the highest PoIs. The second step is to look at the l results
returned by k-means, gather identical results into groups, and count the number
of occurrences of each group. We select the result with the highest occurrence
as labels. We chose the value of l that led to the best experimental results.

The last step is to identify the potential errors. We applied a maximum
likelihood strategy. Since we ran the k-means with the subtraces for the two last
iterations, we had at the end two labels for each bit. If both labels were identical,
then we supposed that it was the right value, otherwise the k-means algorithm
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failed and we considered this as a clustering error. During our experiments, we
never encountered the case where both labels were wrong, so we do not treat
this case. Our technique returned between 0 and 3 errors on the 7 ∗ 284 = 1988
labeled subtraces for bits from b13 to b7. For bit b6, there are between 15 and
20 errors in the labelisation of the 284 associated subtraces. It is due to the fact
that the subtraces consist of a single leaking point, as previously discussed.

We will use an ISD algorithm to finish the attack, and as we will see, recov-
ering the values of the bits from b13 to b6 is enough to recover the secret using
a single iteration of the algorithm. Hence, recovering b5 is not necessary since it
would not make the ISD algorithm run faster.

At this stage of the attack, the coordinates are partially recovered. We have
the values of half of the bits, from b13 to b7 with potentially up to 3 errors, as
well as the values for the bit b6 with up to 20 errors.

Recovering the Remaining Bits First, we assume that there is no error dur-
ing the classification process, so we correctly recovered the binary representation
of each coordinate of hi, up to the bit b6 included. To compute the complexity
of our attack, we use the discussion from Section 3.3. Basically, for each nonzero
coordinate, we have a subset of 64 positions where it might be. So, to create
the square submatrix of size r used in the ISD, we can select every columns
in the 64 ∗ 142 = 9088 possibilities where we know nonzero coordinates might
be, and complete the information set with 12323 − 9088 = 3235 other random
columns. Since we are guaranteed to have selected every nonzero coordinate in
the information set, the algorithm will succeed with probability 1.

To handle the errors that occur during the classification process, we use
the fact that we know where these errors occur. Indeed, we use traces from 2
different syndrome rotations for each bit, and if we obtain different labels for
this bit then obviously one is wrong and we count it as an error. For example, if
we get different labels for the bit b6 for a coordinate, we select the 128 possible
columns as if we did not recover information about b6. In theory, it could happen
that all labels are the same and the information we get is still erroneous, but it
never occurred during our experiments.

In our experiments, the total of possible positions did not go higher than r,
whether there are errors or not, so the probability of success of the ISD algorithm
was always 1.

4.3 Attack on an Assembly Instruction

The assembly implementation replaces the series of AND and XOR of the full
C implementation by a unique assembly instruction SEL. This instruction sets
the destination register (Rx) to either Ry if the flag is set (a.k.a bit at 1) or
Rx if the flag is not set (a.k.a. bit at 0). The leakage exploited for the full C
implementation does not exist anymore, but we can still recover the bit values
by adapting our strategy.
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Selection of the Exploited Subtraces To extract the information about
coordinates, we used the same process than previously explained for the C im-
plementation. The main difference is on the subgroup of traces given as input
to the k-means algorithm. The traces for the iterations with zero syndromes do
not show specific leakages. In fact, using the SEL instruction the main source of
leakage comes from bit values flipping in the destination register when the mask
is at 1. However in the case of a zero syndrome, there are no bit-flips in the
destination register no matter the mask, since both source registers only con-
tain zeros. Therefore we chose to exploit the 4 first bit-flipping iterations that
correspond to nonzero syndromes.

Impact of the Syndrome We noticed that the syndrome has a big impact on
where the leakages will appear. Indeed, even if in Figure 4 the SOST seems to
show PoIs for one trace, by selecting other traces the PoIs in their SOST will
appear at other instants on the traces, and the syndrome is the only element
which differentiates the different traces used in the SOST computation. The most
obvious consequence is that we cannot select one specific instant to classify the
traces as it changes depending on the syndrome. We need to take the whole power
consumption trace for one bit to make this attack feasible for any syndrome.
We noticed that the first three iterations of the BGF decoder often use the
same syndrome as input, hence the leakage points are mostly identical for these
three iterations. Taking as input for the k-means algorithm the 3 ∗w traces was
inconclusive, and the solution we found was to resynchronize and compute the
mean of the three subtraces for each bit. Precise resynchronization is critical to
our attack because the slightest discrepancy modifies the mean and can lead to a
different k-means output. The modification of the syndrome during the decoding
process makes the bit-recovery process dependent of the previous bits values. In
fact, if the treated bit bi is 1 then the syndrome will be rotated and thus totally
different from the non-rotated syndrome (bit at 0) when treating the next bit
bi−1, so the following bits will leak at different temporal instants and will depend
on the value of bi. So, the traces with a bit at 1 need to be treated separately
from those with a bit at 0 for the following bits, which divides the traces into
more and more subgroups as we progress in the recovery process.

Cluster Management With assembly traces and the method using k-means,
we are able to recover the bits from b13 to b9 without any error. Yet, the clusters
containing the traces get smaller and smaller as the classification progresses, so
for the bit b9 some clusters were just composed of one or zero trace. Some others
contained two traces. We detail how we treat clusters with only a few traces in
them.

Cluster with a unique trace. Suppose we have one trace in the cluster, we are
unable to determine if the bit bi is either a 0 or a 1 as we cannot use k-means.
And this applies also for the following bits, so we stop the detection process at
this bit for these traces.
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Two traces in a given cluster. Suppose now that we have two traces in one
cluster. Then it is possible that both traces correspond to the same bit value (0
or 1) but the k-means algorithm will distribute them into two clusters regardless,
hence we chose to stop our detection process and assume that we can not recover
the value of bi when the cluster contains only two traces.

Bigger cluster with the same mask value. There are some clusters with three
to five traces for which the bit bi has the same value. And it is not possible to
determine in advance if we will be in this specific case. However, the impact is
not that important because the errors during the classification does not block
the bits detection process: it will just slightly increase the ISD complexity.

Starting from bit b6, the clusters are on average too small to be treated, so we
chose to stop our classification problem at the bit b7.

At the end of the classification step, we were able to recover for each coordi-
nate the bits from b13 to b9 without errors. For some coordinates, we could not
go further in their recovery but for the majority of them we had the value for b8
and b7.

Full Private Key Recovery with the ISD Recovering the private key
(h0, h1) with the information obtained from the classification for the C im-
plementation is done in polynomial time since we have enough information to
reach a probability of success of 1. However, for the assembly one, it is not that
straightforward because we can recover less bits.

ISD with half of the bits recovered Let us first suppose that we are in the best
case and we are able to recover correctly all the bits from b13 to b7 without
errors. Then we have a subset of 128 possible positions for each coordinate. In
the worst case this represents 128 ∗ 142 = 18176 positions, which leads to a
complexity of 2120. However, in practice, multiple coordinates can belong to the
same subset of 128 positions, which reduces the number of combinations to test
and by consequence reduces the complexity of the ISD algorithm.

The diagram on Figure 7a shows the distribution of the number of distinct
subsets of 128 positions that contain a nonzero coordinate for 500000 randomly
generated BIKE private keys. Figure 7b shows the complexity to recover the
private key using the ISD algorithm depending on the number of distinct subsets,
using the techniques presented Section 3.3. As we can see, there is a non negligible
proportion of private keys straightforward to recover, up to 96 distinct subsets.
Then the complexity grows exponentially, and while some keys are really hard
to attack using this method, a high proportion can be recovered in practice.

Recovery of the private key with lack of information In practice we do not recover
all the information about the bits b8 and b7. We thought of two methods to
compensate this lost. The first method is to select columns for the information
set from bigger subsets, of size 256 if b7 is missing or size 512 if b8 is missing.
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Fig. 7: Distribution of the number of distinct subsets of size 128 containing
nonzero coordinates, and the respective attack complexity for 500000 BIKE pri-
vate keys.

In our experimentation with the generated private keys, the number of miss-
ing bits can be as high as 25 which can make the cost of the ISD quite high.
Some keys that would have been vulnerable with more information, are now out
of our capabilities. The second method is to exhaust all of the 2k possibilities
for the k missing bits, then running the ISD algorithm as if every bit up to b7
was correctly recovered. If k = 25 for example, this leads to an overhead of 25
bits in the complexity of our attack. In particular, for keys where the number of
distinct blocks of size 128 containing nonzero coordinates do not exceed 96, our
attack still succeeds in less than 265 operations considering 25 unrecovered bits.

5 Countermeasure

As a reminder, the exploited leakage comes from the fact that the logical AND
is either done with two 32-bit words at 0 or with one filled with 1. We choose
to make a countermeasure that used both words in the operation, with a bit
flipping for each part to avoid difference of power consumption.

To do so, we first randomly generate two 32-bit words Rx2 and Ry2. Then we
can computeRx1 (resp.Ry1) such thatRx1 = Rx⊕Rx2 (resp.Ry1 = Ry⊕Ry2).
The last step before the operation is to redefine Rx such that Rx = Rx1⊕Ry1.
Then the operation can be executed as follows:

Rx⊕ = ((Rx1⊕Ry2) ∧mask) ∨ ((Rx2⊕Ry1) ∧ ¬mask) (6)

Operation (3) is rewritten in Operation (6).

The SOST computed for the countermeasure, Figure 8, is not showing any
specific points of interest. Additionally, its highest value is 22 times smaller than
for the SOST of the assembly implementation, Figure 4b, and 220 times smaller
than the one for the C implementation, Figure 4a.
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Fig. 8: SOST for the countermeasure

6 Conclusion

We show in this paper that the Cortex-M4 implementation provided in [CCK21]
is sensitive to power analysis attack. The full private key can be recovered using
a single trace of power consumption of the decapsulation process. The weakness
is directly linked to the manipulation of the coordinates in the private key. Given
partial information about these coordinates obtained through clustering, we can
then use an Information-Set Decoding algorithm and are able to recover the
whole private key. Both the C and the assembly implementations are vulnerable
to this attack. We recover all the private keys for the C version, and by using some
adaptations we recover a high proportion of the private keys for the assembly
one. Finally we propose a countermeasure to our attack in C using a binary
masking.

In this paper we targeted software implementations of BIKE. However, effi-
cient hardware implementations were recently proposed [RMGS20,RBCGG21].
It would be of interest to assess the potential vulnerability of the proposed at-
tack to those implementations where we expect significantly less leakages from
the syndrome rotation operation.

References

[AAB+21] Carlos Aguilar Melchor, Nicolas Aragon, Paulo Barreto, Slim Bettaieb,
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A Analysis of the ISD Complexity

We first formalize the instance of the syndrome decoding problem we want to
solve. Let C be the code that admits as a generator matrix the public key (1, h)
and let H be a parity-check matrix of this code. By definition we know that
the vector (h0, h1) is a codeword of C, hence H(h0, h1)

T = 0. This gives us an
instance of the SD problem [2] with H of size r× n over F2, where n = 2r, that
admits the private key (h0, h1) of weight w as a solution.
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To solve this instance, we use Prange’s information set decoding (ISD) al-
gorithm. The principle is as follows: in each iteration, we choose a subset of r
columns among n (called an information set), and we solve the linear system
H ′eT = 0, where H ′ is the square submatrix of H obtained by extracting the r
chosen columns. If all the nonzero coordinates of the desired solution (h0, h1) are
in the set of the chosen columns, then we obtain a solution to our ISD instance,
otherwise we obtain a random solution and try again with another subset. The

probability of success is
(r
w)
(nw)

, and this is what we aim to improve using the

additional information from our side-channel analysis.
The information we obtain is the same as the hints described in [HPR+21,

Section 4]. The only difference being that we use a parity-check matrix instead
of a generator matrix: we study how well this algorithm behaves compare to the
classical Prange algorithm in our particular case. We use the same definitions
as in [HPR+21]: let W be the set {1, . . . , n} that is partitioned in subsets Wi.
We assume that we know the weight of the secret (h0, h1) restricted to each
subset Wi. Recall that in our case, each nonzero position of (h0, h1) is encoded
by l = ⌈log2(r)⌉ bits. If we suppose that we recover the l1 most significant bits
of each position, then the set W is partitioned into N = 2⌈ r

2l−l1
⌉ subsets Wi of

cardinality 2l−l1 , except for the two subsets covering the highest coordinates in
both hi, which are of size r mod 2l−l1 . From our side-channel analysis we know
the weight ti of the private key restricted to each subset Wi.

To improve the probability of success of the Prange algorithm, we changed
our strategy of choosing the information set. We tested two different approaches:

1. Randomly choose the information set among theWi corresponding to values
of ti ̸= 0 (we refer to this technique as the classical Prange algorithm in the
following),

2. Fix the number of columns chosen in each Wi depending on the value of ti.

Theorem 1. Let I be the set {i|ti ̸= 0}, and let c =
∑
i∈I
|Wi|. The probability

of success of the classical Prange algorithm using hints from our side-channel
analysis is: (

r
w

)(
c
w

) .
The second approach is the one described in [HPR+21], adapted to work

with parity-check matrices. We fix a vector x ∈ ZN such that xi ⩾ ti and∑
i

xi = r. Then, to sample an information set, we choose for each i a random

subset Xi ⊆ Wi of cardinality xi, and then proceed to solve the linear system as
in the Prange algorithm.

Theorem 2. [HPR+21] The probability of success of the Prange algorithm using
hints from our side-channel analysis is:

N∏
i=1

(
xi

ti

)(|Wi|
ti

) .
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The last step to evaluate the complexity of this algorithm is to choose the best
vector x (i.e the one that maximizes the success probability of the algorithm).
We use a greedy approach as in [HPR+21] to perform this step:

– Initially, choose xi = |Wi| if ti ̸= 0 and xi = 0 otherwise.
– While

∑
i

xi > r, decrease by one the xi that reduces the probability of

success the least.

[HPR+21, Appendix E] gives a proof of why this approach yields the optimal
choice for x.

Remark 5 If after the initial step of the algorithm, we have
∑
i

xi ⩽ r, then the

probability of success of the algorithm is 1.

Among the BIKE private keys, some are easier to recover than others using
this technique. Indeed, the more ti equals to 0 we have, the better the attack will
perform, since it will allow to choose more positions in the subsets containing at
least one nonzero position. For this reason, we compute the complexity of our
attack by averaging the complexities for 10 random private keys. We run the
following experiment: for BIKE-level-1 parameter set (r = 12323, w = 142), we
compute the probability of success of the Prange algorithm for different values
of l1, i. e. the number of recovered bits among the 14 bits used to encode each
coordinate for this parameter.


