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Abstract

ROLLO, for Rank-Ouroboros, LAKE and LOCKER, was a candidate to
the second round of the National Institute of Standards and Technology
(NIST) Post-Quantum Cryptography (PQC) standardization process. In
the lastest update in April 2020, there was a key-encapsulation mech-
anism (ROLLO-I) and a public-key encryption scheme (ROLLO-II). In
this paper, we propose a side-channel attack to recover the syndrome
during the decapsulation process of ROLLO-I. From this syndrome, we
explain how to recover the private key. We target two constant-time
implementations: the C reference implementation and a C implementa-
tion available on GitHub. By capturing power measurements during the
execution of the Gaussian elimination function, we are able to extract
from a single trace each element of the syndrome. This attack can also be
applied to the decryption process of ROLLO-II. Finally, we give counter-
measures based on masking and randomization to protect future imple-
mentations. We also provide their impact regarding the execution time.
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1 Introduction

Nowadays number theory based cryptography, like RSA [17] or ECDSA [11],
is efficient but weak against the Shor’s quantum algorithm [19]. The existence
of quantum algorithms pushed the National Institute of Standards and Tech-
nology (NIST) to anticipate the time when an efficient quantum computer
will be able to execute these algorithms and break commonly used public-key
cryptography. In late 2016, NIST started the Post-Quantum Cryptography
(PQC) standardization process to get signatures and, key encapsulation mech-
anisms (KEM) or public-key encryption schemes (PKE), resisting to both
classical and quantum attacks. Among the historical schemes, as McEliece
[14] or NTRU [10], there are recent proposals based on rank metric. Error-
correcting codes in rank metric allow to reduce some drawbacks of Hamming
metric, like the key-sizes. In the second round of this standardization pro-
cess, there were two proposals in rank metric, namely ROLLO [1] and RQC
[15]. Both were not selected for the third round due to some algebraic attacks
[5, 6]. Nonetheless, NIST encouraged the community to study rank metric
cryptosystems: “NIST believes rank-based cryptography should continue to be
researched” [16]. Rank-metric based cryptosystems seem to be a good alter-
native to cryptosystems in Hamming metric, but were not studied enough at
that point regarding side-channel analysis and embedded implementations.
Indeed, public-key cryptosystems are commonly used in embedded systems.
Thus it is essential to identify potential leakage to improve their resistance
against side-channel attacks and ensure their security in practice. Kocher
introduced side-channel attacks in 1996 [12]. An attacker can use information
provided by a side-channel to extract secret data from a device executing a
cryptographic primitive. The information leakage is exploited without having
to tamper with the device. The first side-channel attack against a code-based
cryptosystem was proposed in 2008 [20] and targeted McEliece cryptosystem
in rank metric. It was then followed by numerous others in more than a decade
of research, with timing or power consumption attacks. More recently, there
were two papers combining physical attacks with algebraic properties [8, 13].
We do not detail more those attacks since they are out of scope.

Related work.

Two recent papers related to side-channel attacks on code-based cryptography
in rank metric have been published [4, 18]. Both exploit timing leakage from
the decoding failure rate of LRPC codes [9]. In this work, we focus on constant-
time implementations of schemes using LRPC codes. We target two constant-
time implementations of ROLLO, and in particular the Gaussian elimination
function. The first one is provided by the authors of ROLLO’s proposal to
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NIST [1]. The second one only provides an implementation of ROLLO-I for
128 bits of security [2].

Our contribution.

To the best of our knowledge, this is the first single trace attack against dif-
ferent versions of the constant-time Gaussian elimination for error-correcting
codes in rank metric. We show that the power consumption during the decapsu-
lation/decryption process can provide enough information to make an efficient
attack on ROLLO schemes. Our attack allows us to recover various secret data
such as:

• the private key in both cryptosystems via the syndrome recovery,
• the shared secret in ROLLO-I key encapsulation mechanism, or the

encrypted message in ROLLO-II public-key encryption.

We finally present two countermeasures to make the implementations resistant
to the proposed attack. Gaussian elimination is often used in coding theory
to go from a dense parity-check matrix to a parity-check matrix in systematic
form. With this work we want to point out that even recent implementations of
this operation could be vulnerable to side-channel attacks. For instance, Gaus-
sian elimination in constant-time is also used in Classic McEliece. Nonetheless
the implementation differs from the one in ROLLO, and we have not investi-
gated the leakage detection on Classic McEliece yet. But in case we are able to
detect differences in power consumption for some values as presented in this
paper, we could also apply our attack on this scheme to recover the parity-check
matrix.

Organization of the paper.

In Section 2, we recall elementary notions of error-correcting codes in rank
metric as well as ROLLO schemes. In Section 3, we detail attacks on both
implementations: the reference one using rbc library and the proposal on
GitHub. We also provide some experimental results for ROLLO-I-128. We dis-
cuss two different countermeasures in Section 4. Finally, we conclude this paper
in Section 5.

2 Background

ROLLO’s submission is based on ideal Low-Rank Parity-Check (LRPC) codes.
The latter were introduced in 2013 [9]. In this section, we first give some
details on ideal LRPC codes, then recall the ROLLO proposal to NIST PQC
standardization process.

2.1 Rank metric codes

In the following sections, we denote by q a power of a prime number, and let
m, n, and, k be positive integers such that n > k.
We also consider the isomorphism between the vector space Fn

qm and the
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extension field Fqm [Z]/(Pn) given by

φ : Fn
qm → Fqm [Z]/(Pn)

(x1, . . . , xn) 7→
n∑

i=1

xiZ
i

with Pn an irreducible polynomial of degree n and (Pn) the ideal of Fqm [Z]
generated by Pn. Note that the vector space Fqm is isomorphic to Fq[z]/(Pm),
with Pm an irreducible polynomial of degree m over Fq.
A linear code C over Fqm of length n and dimension k is a subspace of Fn

qm .
It is denoted by [n, k]qm , and can be represented by a parity-check matrix

H ∈ F(n−k)×n
qm such that

C = {x ∈ Fn
qm ,H.x

T = 0}.

An element x = (x1, . . . , xn) ∈ C is called a codeword. Since x ∈ Fn
qm , each of

its coordinate xi, for 1 ≤ i ≤ n, can be associated to a vector (xi,1, . . . , xi,m).
Thus an element x ∈ Fn

qm can also be represented by a matrix as follows:

M(x) = (xi,j) 1≤i≤n
1≤j≤m

∈ Fn×m
q .

For an element x ∈ Fn
qm , the syndrome of x is defined as the vector s = H.xT .

Considering the rank metric, the distance between two vectors x and y in Fn
qm

is defined by
d(x,y) = ‖x− y‖ = ‖v‖ = rank(M(v))

with v = x− y.
The support of a vector x = (x1, . . . , xn) ∈ Fn

qm is defined as the subset of Fqm

spanned over Fq. Namely, the support of x is given by

Supp(x) = 〈x1, . . . , xn〉Fq
.

W.l.o.g., the support of (x,y) is Supp(x,y) = 〈x1, . . . , xn, y1, . . . , yn〉Fq
. The

ideal LRPC codes base their structure on ideal codes.

Given a polynomial Pn ∈ Fq[Z] of degree n and a vector v ∈ Fn
qm , an ideal

matrix generated by v is a n× n matrix defined by

IM(v) =




v(Z) mod Pn

Z · v(Z) mod Pn

...
Zn−1 · v(Z) mod Pn


 .
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An [ns, nt]qm -code C, generated by the vectors (gi,j)i∈[1,...,s−t]
j∈[1,...,t]

∈ Fn
qm , is an

ideal code if a generator matrix in systematic form is of the form

G =




IM(g1,1) · · · IM(g1,s−t)

Int
...

. . .
...

IM(gt,1) · · · IM(gt,s−t)


 .

In [1], the authors restrain the definition of ideal LRPC (Low-Rank Parity
Check) codes to (2, 1)-ideal LRPC codes that they used for all variants of
ROLLO.
Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be a pair
of two vectors in Fn

qm , such that Supp(h1,h2) = F , and Pn ∈ Fq[Z] be a
polynomial of degree n. A [2n, n]qm-code C is an ideal LRPC code if it has a
parity-check matrix of the form

H =


IM(h1)T IM(h2)T


 .

2.2 ROLLO

ROLLO is a second round submission to the post-quantum standardization
process launched by NIST in 2016. Since the last update in April 2020, it is
composed of two cryptosystems: ROLLO-I, a Key-Encapsulation Mechanism
(KEM), and ROLLO-II, a Public-Key Encryption (PKE). Both are described
in Figure 1. We use the following notations:

• A
$←− Fk

qm denotes the operation of selecting randomly k vectors from the

vector space Fqm , then A ∈ Fk
qm .

• (u,v)
$←−l A denotes the operation of selecting randomly 2n linear combina-

tions from the element A, then u,v ∈ Fn
qm and Supp(u,v) = A.

• RSR denotes the Rank Support Recovery algorithm given in the specification
of ROLLO [1] to decode LRPC codes.

We unify tables of parameters from ROLLO’s specification into Table 1. For
the three security levels, q = 2. The name of each variant gives the targeted
classical security level, e.g. ROLLO-I-128 is a classical 128-bit security level.
The parameters d and r correspond respectively to the rank of the private
key and the rank of the errors. The parameters n and m can respectively be
obtained with the degrees of Pn and Pm.
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Instance d r Pn Pm

ROLLO-I-128 8 7 Z83 + Z7 + Z4 + Z2 + 1 z67 + z5 + z2 + z + 1
ROLLO-I-192 8 8 Z97 + Z6 + 1 z79 + z9 + 1
ROLLO-I-256 9 9 Z113 + Z9 + 1 z97 + z6 + 1

ROLLO-II-128 8 7 Z189 + Z6 + Z5 + Z2 + 1 z83 + z7 + z4 + z2 + 1
ROLLO-II-192 8 8 Z193 + Z15 + 1 z97 + z6 + 1
ROLLO-II-256 9 8 Z211 + Z11 + Z210 + Z8 + 1 z97 + z6 + 1

Table 1: ROLLO’s parameters for each security level

Alice: KeyGen

Pick F
$←− Fd

qm s.t. rank(F ) =
d
Pick (x,y)

$←−l F
sk = (x,y, F )
Compute the public key
pk(Z) = x−1(Z) · y(Z)
mod Pn

Bob: Enc

Pick E
$←− Fr

qm s.t. rank(E) = r

Pick (e1, e2)
$←−l E

c(Z) = e2(Z) + e1(Z) · pk(Z) mod Pn

Encaps Encrypt
K = ciphertext =

Hash(E) M ⊕ Hash(E)

Alice: Dec
Compute the syndrome
s(Z) = x(Z) · c(Z) mod Pn

Recover the support of the er-
ror E = RSR(F, s, r)

Decaps Decrypt
K = M =

Hash(E) ciphertext ⊕ Hash(E)

pk

sk

c

ROLLO-I ROLLO-II

ROLLO-I ROLLO-II

ciphertext

Fig. 1: ROLLO-I (KEM) and ROLLO-II (PKE) cryptosystems

In the following, we will focus on the vulnerabilities of the implementations
of Gaussian elimination process. The latter is used several times in ROLLO
cryptosystems, namely to compute:

• the support S of the syndrome s
• the support of the error (e1, e2) letting us recover the shared secret in the

case of ROLLO-I or encrypt/decrypt a message in the case of ROLLO-II ;
• the intersections of two vector spaces during the decoding of the syndrome

(RSR). These intersections determine the support E of the error:

E ←
⋂

1≤i≤d
f−1i · S,
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with F = 〈f1, . . . , fd〉 the support of the private key.

Thus, the leakage coming from implementations of Gaussian elimination can
allow a side-channel attacker to recover all the secret data. In the next section,
we explain the attack on the syndrome. This analysis can be performed to
recover the other mentioned data.

3 Side-channel attack on Gaussian elimination
in constant-time

In the RSR algorithm [1], we first compute the support of the syndrome.
For that, the Gaussian elimination is applied to the syndrome matrix
S = M(s) ∈Mn,m(F2) to calculate its support. We know that the syndrome
is first computed as:

s(Z) = x(Z) · c(Z) mod Pn,

with x, c, s ∈ Fqm [Z]/(Pn). Therefore, with the knowledge of the syndrome s
and the ciphertext c, we can compute x, a part of the private key as:

x(Z) = s(Z)× c(Z)−1 mod Pn.

Knowing x can lead to a full recovery of the private key. First, we can get the
second part of the private key y by computing

y(Z) = pk(Z)× x(Z) mod Pn.

Then, the support of y and x gives the last part of the private key F .

The Gaussian elimination in constant-time requires to process each row in each
column of the syndrome matrix. Thus, an attacker could be able to recover all
values in this matrix. In case of a non constant-time Gaussian elimination, it
is possible to treat only the rows under the pivot row. Therefore, the values in
all rows above the pivot row remain unknown to the attacker. Consequently,
constant-time provides an advantage to a side-channel attacker.
Secondly, the constant-time eases the detection of a pattern corresponding to
the targeted operation inside the power trace. Once the attacker found the
exact location of this pattern, it becomes straightforward to find the locations
for each other iteration.
We analyzed two constant-time implementations of Gaussian elimination and
discovered two possible leakages through power consumption. The first one has
been provided as Additionnal Implementations in April 2020 for the second
round of NIST PQC standardization process, and is available on the ROLLO
candidate webpage [1]. We refer to it as the reference implementation. It uses
the rbc library [3], which provides different functions to implement schemes
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using rank metric codes. The second implementation has been published on
GitHub [2]. We refer to it as the GitHub implementation.

Notations.

We denote by ⊗ the multiplication between a scalar and a row of a matrix and
by ⊕ the bitwise XOR between two bits or two rows of a matrix. The bitwise
AND is represented by ∧ and the bitwise NOT by ¬. The term mask does
not refer to a boolean masking but to a variable giving the additions on rows
according to values obtained from coefficients of the processed column.

3.1 Information leakage of the reference implementation

The reference implementation is based on Algorithm 1, which was first
introduced in [7].

Algorithm 1 Gaussian elimination in constant time

Require: S ∈Mn,m(F2)
Ensure: S ∈Mn,m(F2) in systematic form and rank = min(dimension, n)
1: dimension = 0
2: for j = 0, . . . ,m− 1 do
3: pivot row = min(dimension, n− 1)
4: for i = 0, . . . , n− 1 do
5: mask = spivot row,j ⊕ si,j
6: tmp = mask ⊗ si
7: if i > pivot row then
8: spivot row = spivot row ⊕ tmp
9: else

10: dummy = spivot row ⊕ tmp
11: end if
12: end for
13: for i = 0, . . . , n− 1 do
14: if i 6= j then
15: mask = si,j
16: tmp = mask ⊗ spivot row

17: if dimension < n then
18: si = si ⊕ tmp
19: else
20: dummy = si ⊕ tmp
21: end if
22: end if
23: end for
24: end for
25: dimension = dimension+ spivot row,i
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The input matrix is composed of n rows andm columns. The algorithm outputs
the matrix in systematic form and its rank. The first inner for loop (line 4) fixes
the ones in the diagonal (corresponding to the pivots) and the second inner
for loop (line 13) removes the ones in the pivot column. In both inner for loops
in Algorithm 1, mask ∈ F2 is computed and multiplied with specific rows of the
syndrome matrix. However, the multiplication of a 32-bit word (u0, . . . , u31)2
with zero or one provides information leakage in the power traces. This allows
us to recover all the mask values computed during the process, then, the initial
syndrome matrix.
Our attack consists in recovering the syndrome matrix

S = n

y

m−−−−−−−−−−−−−−−−−−−−−−−−→


s0,0 s0,1 · · · s0,m−1
s1,0 s1,1 · · · s1,m−1

...
...

. . .
...

sn−1,0 sn−1,1 · · · sn−1,m−1


 , (1)

where si,j ∈ F2 for (i, j) ∈ J0, n − 1K × J0,m − 1K. We denote by Sj the
matrix obtained after the treatment of the j-th column of S and, by S[k] the
k-th column of the matrix S. The recovered mask values from the two inner
for loops lead to a system of linear equations. This system is obtained from
two steps described below.

After the first inner for loop in Algorithm 1: we recover the mask values
spivot row,j ⊕ si,j . If mask = 0, then the pivot row is unchanged. Otherwise,
the i-th row is added to the pivot row. Then, the first loop provides the indices
of rows XORed to the pivot row. We define

σσσj = (σ0,j , σ1,j , . . . , σn−1,j), where σi,j =

{
0 if mask = 0

1 if mask = 1
,

the vector containing all mask values recovered after the j-th iteration. We
also define the matrix

1 · · · 0 · · · 0

...
. . .

...
...

σ0,k · · · 1 · · · σn−1,k

...
...

. . .
...

0 · · · 0 · · · 1







Jk = k-th row,

k-th column
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involved in the computation of the system of linear equations. For instance,
considering the pivot row of index 0. After the first inner for loop, the
syndrome matrix given in Equation 1 is under the form




∑n−1
i=0 σi,0si,0

∑n−1
i=0 σi,0si,1 · · ·

∑n−1
i=0 σi,0si,m−1

s1,0 s1,1 · · · s1,m−1
...

...
. . .

...
sn−1,0 sn−1,1 · · · sn−1,m−1


 .

In other words, we can compute it as

J0 × S =


 1 σ1,0 · · ·σn−1,0
0 In−1


× S,

where In−1 denotes the identity matrix of size n− 1 and 0 a column of n− 1
zeros.

We notice in lines 7−8 in Algorithm 1 that only rows with index greater than
the pivot row index are added to the pivot row. Thus, after the treatment of
the column j, we define σi,j = 0 for i ≤ pivot row.

After the second inner for loop in Algorithm 1: the recovered mask values
correspond to the coefficients si,j of the matrix obtained after the first inner
for loop. We denote by σσσ′j = (σ′0,j , . . . , σ

′
j−1,j , ∗, σ′j+1,j , . . . , σ

′
n−1,j) the vector

composed of mask values. The item ∗ represents the pivot that is not processed
in the second loop. For the attack, ∗ is replaced by one.
On one hand, during the treatment of the j-th column, σσσ′j completes the system
of linear equations. Assuming we want to recover the column 0, we use a linear
solver on the system

J0 × S[0] = (σσσ′0)t.

On the other hand, the vector σσσ′j allows us to recover all the operations per-
formed on rows. These operations are taken into account in solving the system
of linear equations of the (j + 1)-th column. For this, we define the matrix

1 · · · σ′
0,k · · · 0

...
. . .

...
...

0 · · · 1 · · · 0

...
...

. . .
...

0 · · · σ′
n−1,k · · · 1







J′
k = k-th row.

k-th column
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For example, for the treatment of column 1 we consider the matrix

S0 =


 (σσσ′0)t

0

IIIn−1




︸ ︷︷ ︸
=J′

0

×J0 × S.

More generally, during the treatment of the column j, for j ≥ 1, we consider

Sj−1 =


 ∏

k=j−1,...,0
J′k × Jk


× S.

In case there is no pivot in a column, all the mask values are equal to zero,
thus J′k × Jk = IIIn.
Finally, to recover the column j, we solve the system of linear equations

Jj−1 ×


 ∏

k=j−2,...,0
J′k × Jk


× S[j − 1] = (σσσ′j−1)t.

3.2 Information leakage of the GitHub implementation

In this section, we denote by 1 = (11 . . . 11)︸ ︷︷ ︸
m

and 0 = (00 . . . 00)︸ ︷︷ ︸
m

.

In [2], the authors introduced a row reduction in constant-time given in
Algorithm 2, that can be seen as a generalization of the one presented in
Algorithm 1.
At the end of Algorithm 2, we obtain a matrix under the row echelon form. In
order to ensure this, three masks are first computed according to coefficients
and pivot processed. Each mask is equal to 1 or 0. The three masks influence
the operations on rows (lines 19-20 in Algorithm 2) as presented in Figure 2.
We notice that two paths (in red bold) lead to bitwise XOR on rows. First,
when mask1 = mask2 = mask3 = 1, the pivot coefficient is fixed to one.
This happens at most once per loop over j. Then, when mask2 = mask3 = 1
independently of mask1, the other ones in the processed column j are removed.
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Algorithm 2 Row reduction in constant-time

Require: S ∈Mn,m(F2)
Ensure: S ∈Mn,m(F2) in row echelon form and its rank = pivot row
1: pivot row = 0
2: for j = 0, . . . ,m− 1 do
3: for i = 0, . . . , n− 1 do

4: if spivot row,j == 0 then
5: mask1 = 1
6: else
7: mask1 = 0
8: end if
9: if si,j == 1 then

10: mask2 = 1
11: else
12: mask2 = 0
13: end if
14: if i ≥ pivot row then
15: mask3 = 1
16: else
17: mask3 = 0
18: end if
19: spivot row ← spivot row ⊕ (si ∧ (mask1 ∧ (mask2 ∧mask3)))
20: si ← si ⊕ (spivot row ∧ (mask2 ∧mask3))
21: end for
22: if spivot row,j = 1 and pivot row < n then
23: pivot row = pivot row + 1
24: end if
25: end for

mask1

mask2

mask3

sp ← sp ⊕ si

si ← si ⊕ sp

sp ← sp

si ← si

mask3

sp ← sp

si ← si

sp ← sp

si ← si

mask2

mask3

sp ← sp

si ← si ⊕ sp

sp ← sp

si ← si

mask3

sp ← sp

si ← si

sp ← sp

si ← si

1

1

1 0

0

1 0

0

1

1 0

0

1 0

Fig. 2: Operations on matrix rows according to mask values. In red, paths
leading to XOR on rows with sp the pivot row and si the processed row

In Algorithm 2, we observe two sources of leakage. The first one consists of
the computation of mask1, mask2 and mask3. These masks are set in an
equivalent way, algorithmically, to secret-dependent branches. However, they
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are determined before an iterative conditional branching, namely in a weighted
sum in the GitHub implementation. We exploit a leakage in the computation of
this weighted sum to recover theirs values. Listing 1 details the implementation
of mask2 computation in the GitHub version.

Listing 1: Function to compute mask2 introduced in Algorithm 2 and from
GitHub implementation [2]

1 int bf_compute_mask(bf_element_t *mask , bf_element_t *a, uint8_t

bit_position)

2 {

3 // Determine the processed bit

4 uint8_t pos = bit_position / 64u;

5 // Determine the bit position

6 uint8_t bit = (( uint64_t) (pos * (a->high >> (bit_position - 64u))) ^

(1u-pos)*(a->low >> bit_position)) & 0x1u;

7 mask ->low = -((uint64_t) bit);

8 mask ->high = (uint64_t) -((uint8_t) bit) & ROLLO_I_BF_MASK_HIGH;

9 }

We notice that if the processed coefficient, defined as ”bit” in line 6, is equal to
one, all bits of mask2 are set to one, otherwise all bits are set to zero (lines 7-
8). The same kind of operations are observed for mask1 and mask3. However,
the leakage from flipping all the bits to 1 or to 0 differs. We deduce that it is
possible to recover the masks values.

The second source of leakage comes from the bitwise AND and XOR applied
on the syndrome matrix rows. Indeed, in lines 19-20 in Algorithm 2, the rows
are XORed with either zero or non-zero row according to the masks values.
The second source of leakage has not been exploited because it is equivalent to
what we observe with the masks’ recovery. However, it is always a good point
of interest for side-channel attacks.

As in the previous attack, the masks values recovery allows us to obtain a
system of linear equations. We define three vectors containing respectively the
values of mask1, mask2 and mask2 ∧mask3 after the iteration j:

σσσmask1,j = (σ0,j , . . . , σn−1,j), σσσmask2,j = (σ′0,j , . . . , σ
′
n−1,j),

σσσmask2∧mask3,j = (σ′′0,j , . . . , σ
′′
n−1,j),

with σi,j , σ
′
i,j , σ

′′
i,j = 0 or 1 when mask1, mask2, mask2 ∧mask3 = 0 or 1.

As we can see in Figure 2, when mask1 = 1, only one path leads to operations
on rows. Moreover, once we have mask1 = mask2 = mask3 = 1, mask1 = 0
until the end of the column treatment. Then, we have three cases for the pivot:

• If the vector σσσmask1,j contains only zeros, then the leading coefficient in the
pivot row is already one.

• If the vector σσσmask1,j contains only ones then either the pivot is on the last
row, and we need to consider mask2 and mask3 or the column does not
contain a pivot.
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• If the vector σσσmask1,j contains zeros and ones, the position of the last one
is the index of the added row to the pivot row in the column j.

We determine the system of linear equations as previously with two matrices
depending on respectively of mask1 and mask2 ∧mask3:

1 · · · 0 0 · · · 0 · · · 0

...
...

...
...

...

0 · · · 1 0 · · · 1 · · · 0

...
...

...
...

...

0 · · · 0 0 · · · 0 · · · 1







Jk = k,

pivot index k

1 · · · σ′′
0,k · · · 0

...
. . .

...
...

0 · · · 1 · · · 0

...
...

. . .
...

0 · · · σ′′
n−1,k · · · 1







J′
k = k.

k

The vector σσσmask2,j depends on the coefficients processed in the column j.
Therefore, σσσmask2,0 gives us the first column as there is no pre-processing on
rows. After the first iteration, we have to consider XORs performed on rows
of the matrix during the treatment of the column j − 1.
For example, after the treatment of the column 0, the positions of the executed
XORs are given in the resulting matrix J′0 × J0. Thus, for the column 1, we
use a linear solver on the system

J′0 × J0 × S[0] = (σσσmask2,1)t.

More generally, to recover the column j ≥ 1, we have to solve the system of
linear equations


 ∏

k=j−1,..,0
J′k × Jk


× S[j] = (σσσmask2,j)

t.

3.3 Experimental results of our power consumption
analysis

In this section, we demonstrate the practicability of the attack on an ARM
SecurCore SC300 32-bit processor (equivalent to CORTEX-M3). We imple-
mented ROLLO-I-128 in C. The first implementation corresponds to the
reference one and the second to the GitHub version [2]

ROLLO-I-128 traces are captured with a Lecroy SDA 725Zi-A oscilloscope
with a bandwidth of 2.5 GHz. We put a trigger right before the execution of the
Gaussian elimination. The measurements for the reference implementation are
given in Figure 3. The power trace of the first inner for loop (line 4 - Algorithm
1) is given in Figure 3a and the power trace of the second inner for loop (line
13-Algorithm 1) is given in Figure 3b. We can observe the difference of power
consumption when 32-bit words are multiplied either by one or by zero.
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The difference of pattern leads us to recover the mask values of the two inner
for loops. For example, we observe in Figure 3 the beginning of the treatment
of the first column:

σσσ0 = (0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, . . .),σσσ′0 = (∗, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, . . .).

(a) Full trace and a zoom of the first inner loop

(b) Full trace and a zoom of the second inner loop

Fig. 3: Measurements for the reference implementation - traces of the two
inner loops in Gaussian elimination for the processing of one column in

ROLLO-I-128: in green the treatment when the bit is 0 and in red when the
bit is 1
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The measurement for the GitHub implementation is given in Figure 4. We can
first observe the difference of patterns for the three masks values at each inner
iteration. For a better understanding, we highlight each time the computation
of the different masks. Then, we can perform the attack from the recovered
masks values:

σσσmask1,1 = (1, 1, 1, 0, 0, 0, 0, . . .),

σσσmask2,1 = (1, 0, 1, 0, 0, 1, 0, . . .)

σσσmask3,1 = (0, 0, 1, 1, 1, 1, 1, . . .)

}
σσσmask2∧mask3,1 = (0, 0, 1, 0, 0, 1, 0, . . .).

Fig. 4: Measurement for the GitHub implementation - trace of the treatment
of one column in ROLLO-I-128

3.4 Experiments with a Cortex-M4 and comparison

In this section, we show that the attack is also applicable on an ARM Cortex-
M4. For the experiments we used the ROLLO-I-128 implementation provided
in the mupq github on a STM32F4 ChipWhisperer microcontroller available
at https://github.com/mupq/mupq/tree/Round2/crypto kem.
The traces are captured with a RTO2000 oscilloscope with bandwidth 3GHz.
We put a trigger right before the execution of the Gaussian elimination.
Figure 5 provides measurements obtained with a Cortex-M4. Similarly to
Figure 3 with a Cortex-M3, the traces are annotated with rectangles and colors:
green for a mask at 0 and red for a mask at 1.

https://github.com/mupq/mupq/tree/Round2/crypto_kem
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(a) Full trace and a zoom of the first inner loop

(b) Full trace and a zoom of the second inner loop

Fig. 5: Measurement for the processing, on the Cortex M4, of one column in
the Gaussian elimination from the reference implementation
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We notice that in Figure 3a the difference between a mask at 0 and a mask at
1 is more pronounced than in Figure 5a. In fact, in the latter, the difference
of power consumption between both masks is smaller and requires looking
carefully at the end of the pattern to distinguish them. For Figure 3b and
Figure 5b, the patterns for a mask at 0 and a mask at 1 are similar. However,
we notice that the decreasing power in the pattern of a mask at 0 is more
accentuated in Figure 5b.

4 Countermeasures

In this section, we propose two solutions to protect the future implementations
against our attack. It is important to emphasize that the implementations with
the countermeasures remain in constant-time.

First countermeasure for the reference implementation.
The first countermeasure consists in reducing the differentiation between a
multiplication of a word by zero or by one. For this, we mask the coefficients
processed. In the first inner for loop, we split the pivot row into two parts.
Thus, for each iteration, we compute

spivot row = s1pivot row ⊕ s2pivot row,

with s1pivot row, s2pivot row ∈ F2m . The variable tmp (line 6 - Algorithm 1) is
then computed as

tmp = (mask′ ∧ (si ⊕ s2pivot row)) ∨ (¬mask′ ∧ s2pivot row),

with mask′ = ¬(mask− 1). Then, we can update the pivot row by computing

spivot row = s1pivot row ⊕ tmp.

If i ≤ pivot row, we have

dummy = s1pivot row ⊕ tmp.

The same operations are performed in the second inner for loop by replacing
the pivot row by the processed row si. With this countermeasure, whether
the mask is zero or one, we always perform the same operations, namely two
bitwise ANDs between non-zero and zero words. Thus, we are not able to
distinguish different patterns when mask equals 0 or 1. We applied the same
set up as in Section 3.3 to illustrate this in Figure 6.
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Fig. 6: First for loop trace of Gaussian elimination with masking
countermeasure

Second countermeasure for both implementations.
The second countermeasure is based on shuffling. The treatment of each
column is performed randomly by using an algorithm generating a ran-
dom permutation of a finite set, such as the Fisher-Yates method (given in
Appendix B). The choice is left to the developer under condition of a good
implementation.
Given a list of n elements to shuffle, the Fisher-Yates method starts with a
random function that generates a random number j such that 1 ≤ j ≤ n − k
where k is the number of elements already processed. Then, the elements are
processed in decreasing order. Namely, in the first iteration, the last element
of the list is swapped with the j-th element and goes on until the first element
is reached.
For the reference implementation, a list containing the coefficients indexes is
randomized before the two inner for loops. Then, at each iteration, the pivot
row is chosen randomly and the randomized list gives the proceeding order
for the other coefficients in the column. This countermeasure is presented in
Appendix A (Algorithm 3). The indexes are shuffled before the two inner
for loops, then there is no correlation between the masks of the first for loop
(line 4 - Algorithm 1) and the masks of the second for loop (line 13 - Algo-
rithm 1).
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For the GitHub implementation, a similar countermeasure is performed. pre-
sented in Appendix A (Algorithm 4). In this case, for each column (in the
main for loop) the pivot row is chosen randomly and the indexes are shuffled
using Fisher-Yates method.

With the randomization countermeasure, an attacker can distinguish patterns
related to the masks values for both implementations, but not determine the
order of elements. Moreover, a brute force attack is not achievable. Indeed,
an adversary has n! possibilities for each column, which implies a total of
(n!)m possibilities to recover the whole syndrome matrix. For instance, with
ROLLO-I-128 parameters the complexity is approximately 227731. Thus, only
the number of zeros and ones on the matrix will be known.
We provide in Table 2 the performances’ analysis for the SC300 processor
of the impact of our countermeasures. This impact depends on the board
and the used random number generator. We counted the cycles by using
IAR Embedded Workbench IDE for ARM compiler C/C++ with high-speed
optimization level. This tool is available at https://www.iar.com/knowledge/
learn/debugging/how-to-measure-execution-time-with-cyclecounter/.

implementation Reference GitHub
countermeasure masking randomization without randomization without
# cycles (×106) 3,15 2,5 1,82 2,9 2,22

Table 2: Impact factor of Gaussian elimination with and without
countermeasures for ARM securCore SC300 processor

5 Conclusion

We show in this paper that constant-time implementation of Gaussian elimina-
tion provided in [1] is sensitive to power consumption attacks. We exploit the
weakness introduced by the variable mask to avoid previous timing attacks.
This information leakage allows us to make the first attack by power consump-
tion on the last implementation version given by the authors of ROLLO. We
can also apply our side-channel attack on another implementation of ROLLO-
I-128 [2]. These attacks can lead to a full key-recovery using one single trace.
To secure the implementations, we propose two different countermeasures. The
first one can be applied to [1] by hiding the values of mask. The second coun-
termeasure can be applied to both implementations. The idea is to treat each
row in a column of the matrix randomly. It adds randomness which makes our
attack not exploitable in practice anymore. We base our work on traces got
from Cortex-M3 and Cortex-M4 microcontrollers. The constant-time Gaus-
sian elimination function is in the rbc library library. This library is also used
in the implementation of the RQC scheme. Even though the Gaussian elim-
ination in constant time is not used in the RQC implementation, the entire
library should be analyzed to find possible leakage. In particular, we want to
analyze the Karatsuba function used in both ROLLO implementation and the

https://www.iar.com/knowledge/learn/debugging/how-to-measure-execution-time-with-cyclecounter/
https://www.iar.com/knowledge/learn/debugging/how-to-measure-execution-time-with-cyclecounter/
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polynomial multiplication for computation over ideal codes in RQC. Another
perspective could be to analyze the various implementations of the Gaussian
elimination in the third round candidates to the NIST PQC standardization
process.

Acknowledgments. The authors would like to thank Benôıt Gérard for his
helpful advice.
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Appendix A Algorithms for countermeasures
with randomization

Algorithm 3 Gaussian elimination in constant time with randomization

Require: S ∈Mn,m(F2)
Ensure: S ∈Mn,m(F2) in systematic form
1: mask = dimension = 0
2: L← array containing indexes 0, . . . , n− 1
3: for j = 0, · · · ,m− 1 do
4: pivot row = min(dimension, n− 1)
5: randpivot = random(pivot row + 1, n− 1)
6: exchange spivot row and srandpivot
7: L = FisherYatesShuffle(L)
8: for i = 0, · · · , n− 1 do
9: randrow = L[i]

10: mask = spivot row,j ⊕ srandrow,j

11: tmp = mask ⊗ srandrow
12: if randrow > pivot row then
13: spivot row = spivot row ⊕ tmp
14: else
15: dummy = spivot row ⊕ tmp
16: end if
17: end for
18: L = FisherYatesShuffle(L)
19: for i = 0, · · · , n− 1 do
20: randrow = L[i]
21: if randrow 6= j then
22: mask = srandrow,j

23: tmp = mask ⊗ spivot row

24: if dimension < n then
25: srandrow = srandrow ⊕ tmp
26: else
27: dummy = srandrow ⊕ tmp
28: end if
29: end if
30: end for
31: dimension = dimension+ spivot row,i

32: end for
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Algorithm 4 Row echelon form in constant time with randomization

Require: S ∈Mn,m(F2)
Ensure: S ∈Mn,m(F2) in row echelon form and its rank = pivot row
1: pivot row = 0
2: L← array containing indexes 0, . . . , n− 1
3: for j = 0, · · · ,m− 1 do
4: randpivot = random(pivot row + 1, n− 1)
5: exchange spivot row and srandpivot
6: L = FisherYatesShuffle(L)
7: for i = 0, · · · , n− 1 do
8: randrow = L[i]
9: if spivot row,j == 0 then

10: mask1 = 1
11: else
12: mask1 = 0
13: end if
14: if srandrow,j == 1 then
15: mask2 = 1
16: else
17: mask2 = 0
18: end if
19: if randrow ≥ pivot row then
20: mask3 = 1
21: else
22: mask3 = 0
23: end if
24: spivot row ← spivot row ⊕ si ∧ (mask1 ∧ (mask2 ∧mask3))
25: srandrow ← srandrow ⊕ spivot row ∧ (mask2 ∧mask3)
26: end for
27: if spivot row,j = 1 and pivot row < n then
28: pivot row = pivot row + 1
29: end if
30: end for
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Appendix B Fisher-Yates Algorithm

Algorithm 5 FisherYatesShuffle

Require: L list of n elements
Ensure: the list L shuffled
1: for i = n− 1, · · · , 0 do
2: j = random() mod i
3: exchange Li and Lj

4: end for

Appendix C Toy example for the attack for
the reference implementation

Let us take a small example, with q = 2, m = 5 and n = 7, to illustrate the
information leakage that we found.

Assume we want to recover the follow-
ing matrix




1 1 1 0 0
0 0 0 1 0
0 1 0 1 0
0 1 0 1 1
1 1 1 1 1
1 1 0 1 1
1 0 0 1 0




corresponding to the syndrome s ∈ F7
25 .

−→

The searched matrix is defined as

S =




s0,0 s0,1 s0,2 s0,3 s0,4
s1,0 s1,1 s1,2 s1,3 s1,4
s2,0 s2,1 s2,2 s2,3 s2,4
s3,0 s3,1 s3,2 s3,3 s3,4
s4,0 s4,1 s4,2 s4,3 s4,4
s5,0 s5,1 s5,2 s5,3 s5,4
s6,0 s6,1 s6,2 s6,3 s6,4




After the execution of the Gaussian elimination process, we guess from the
power consumption analysis the masks in the first and second loops:

1. masks in the first loop for each column:

(∗, 1, 1, 1, 0, 0, 0), (1, ∗, 1, 0, 1, 1, 0), (1, 0, ∗, 0, 1, 0, 1), (1, 1, 1, ∗, 0, 1, 1),

(1, 1, 1, 0, ∗, 1, 0)

2. masks of the second loop for each column:

(∗, 0, 0, 0, 1, 1, 1), (1, ∗, 1, 1, 0, 0, 1), (0, 1, ∗, 1, 0, 1, 0), (1, 1, 1, ∗, 0, 1, 0),

(1, 1, 1, 0, ∗, 1, 1),

with ∗ the pivot. As explained in Section 3.1, the ∗ are replaced by one.
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Let us focus on recovering the two first columns of the syndrome matrix. The
recovered masks vector of the first loop (1, 1, 1, 1, 0, 0, 0) provides the additions
on the pivot row 0:

J0 × S =


 1 1 1 1 0 0 0

0 I6


× S[0] =




s0,0 + s1,0 + s2,0 + s3,0
s1,0
s2,0
s3,0
s4,0
s5,0
s6,0




.

The masks vector of the second loop σ′0 = (1, 0, 0, 0, 1, 1, 1) is the solution
vector of the system of linear equations where si,j are unknowns. Thus, by
applying a SageMath linear solver on the system

J0 × S[0] = (1 0 0 0 1 1 1)t,

we find the solution (1, 0, 0, 0, 1, 1, 1), which corresponds to the first column of
the syndrome matrix. SageMath is available at https://www.sagemath.org/.
At the end of the process of the first column, we have the matrix

S0 =


 (σ′0)t

0

I6


× J0 × S.

For the second column, the recovered masks vector of the first loop is (1, 0, 1, 0,
1, 1, 0). However, as explained in Section 3.1, only the rows for which the index
row is greater than the index pivot row are added to the pivot row. Thus, in
the recovered masks vector, we replace one by zero for i < 1. This gives us the
vector σ1 = (0, 0, 1, 0, 1, 1, 0). In addition, the masks vector of the second loop
is σ′1 = (1, 1, 1, 1, 0, 0, 1). We can then apply a SageMath linear solver on the
system 



1 0 0 0 0 0 0

0 1 1 0 1 1 0

0 I5




︸ ︷︷ ︸
J1

× S0[1] = (1 1 1 1 0 0 1)t,

with S0[1] the column 1 of the matrix S0.
The result of this system corresponds to the vector (1, 0, 1, 1, 1, 1, 0).

https://www.sagemath.org/
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At the end, we have the matrix

S1 =




1
(σ′1)t

0

0 I5


× J1 × S0.

We perform the same for the three remaining columns.
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