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We investigate the attitude of the solution of the Wentzell-Laplace boundary value problem with respect to shape deformations. On one hand, we prove the continuity of the solution under Lipschitz deformation of uniformly Lipschitz domains in the Euclidean space R d . On the other hand, we demonstrate the continuity of the solution under the W 2,∞ convergence of (2, ∞)-Sobolev domains in R d . After that, we discuss the convergence of the signed distance function in W 1,p (B) with 1 ≤ p ≤ ∞ with respect to the Hausdorff convergence of less regular domains, where B is a large ball containing the sequence of domains (Ω n ) n∈N and the limit set Ω, and we derive the following results: the uniformly Lipschitz case is enough for proving the convergence of the first order differential in L p with 1 ≤ p < ∞; while in case p = ∞, we need to assume more regularity, the "positive reach" one. Moreover, to prove the convergence of the first order differential of the projection function on ∂Ω n in L p with 1 ≤ p ≤ ∞, we have to inject the (2, ∞)-Sobolev regularity with the necessity of W 2,∞ convergence of these domains.

Introduction and Statement of the results

In this paper, we consider the Wentzell-Laplace boundary problem defined on a connected open bounded subset Ω of R d with Lipschitz boundary. Let us give the following Wentzell-Laplace boundary problem

   -∆u = f in Ω, -∆ τ u + ∂ n u = 0 on ∂Ω, (1) 
with f ∈ L 2 (Ω), and let B be a ball containing the set Ω. We denote by n the outward unit normal vector on ∂Ω and ∆ τ := div τ (∇ τ ) is the Laplace-Beltrami operator defined on ∂Ω, where the solution u belongs to the variational space

H s (Ω) := {u | u ∈ H 1 (Ω), u |∂Ω ∈ H 1 (∂Ω)}
equipped with the graph norm ∥.∥ Hs(Ω) defined by: ∥u∥ Hs(Ω) := ∥u∥ L 2 (Ω) + ∥∇u∥ L 2 (Ω) + ∥u∥ L 2 (∂Ω) + ∥∇ τ u∥ L 2 (∂Ω) .

Let's set H(Ω) as

H(Ω) := {u ∈ H s (Ω) | ∂Ω u = 0}
which is closed in H s (Ω) and inherits the norm from H s (Ω). In fact, this set is necessary in order to prove the existence and uniqueness of the solution (see section 3).

In fact, the Wentzell factor ∆ τ u = ∂ n u is well defined in the weak sense (see Definition 2.1) everywhere on ∂Ω if Ω is uniformly Lipschitz. This problem has been studied a lot recently, especially in the last decade, and it is important to continue discovering some new studies of this problem. So, as a kind of motivation, we are interested in studying the continuity of the solution of problem [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] with respect to shape deformations, to a variety of convergence senses, and to the regularity of the admissible domains.

First of all, we study the continuity of the solution of (1) under Lipschitz deformations of uniformly Lipschitz domains. To go deeper, we can refer to the article of M. Dabrine and D. Kateb on the "Persistency of wellposedness of Ventcel's boundary value problem under shape deformation" (see [START_REF] Dambrine | Persistency of wellposedness of Ventcel's boundary value problem under shape deformations[END_REF]), where they studied the persistence of the solvability of the boundary value problem under smooth domain deformation.

Moreover, we deal with the continuity of the solution of (1) with respect to the convergence of W 2,∞ of (2, ∞)-Sobolev domains (see the definition of Sobolev spaces in Definition 2.4). Recall that the convergence W 2,∞ of the domains means that we have the convergence of the signed distance functions in W 2,∞ .

Let us give the first result of the paper: Theorem 1 (continuity with respect to Lipschitz deformation). Let (Ω n ) n be a sequence of uniformly Lipschitz open domains and let Ω be a Lipschitz open domain that are included in R d . Consider the Wentzell-Laplace problem [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. Let u n ∈ H(Ω n ) and u ∈ H(Ω) be the solutions of [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] on Ω n and Ω, respectively. Suppose that the Micheletti distance

d(Ω n , Ω) = inf Φ∈W 1,∞ (R d ), Ωn=Φ(Ω) ∥Φ∥ W 1,∞ n ---→ 0, then u n n --→ u in H(Ω).
First of all, we have to show the existence and the uniqueness of the solution of the problem [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. Now, to prove this theorem, we need to introduce a sequence of Lipschitz vector fields (h n ) n∈N . We define the sequence of maps (Φ n ) n , by Φ n : R d → R d with Φ n := Id + h n so that we have Ω n = Φ n (Ω) = (Id + h n )(Ω). In fact, we divide the proof into three steps. In the first step, we formulate the variational formulation of [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] in Ω n , then we reduce our work to the fixed domain Ω, using the inverse of the transformation Φ n , and by defining the transport back functions v n := u n • Φ n and f := f n • Φ n . The second step consists in showing that (v n ) n is bounded in H(Ω). Finally, we demonstrate the convergence of v n to v (the solution on Ω) in H(Ω) in the last step. Now let's move on to the second main result, which is independent of the previous theorem:

Theorem 2 (continuity with respect to W 2,∞ convergence). Let (Ω n ) n be a sequence of (2, ∞)-Sobolev open domains and let Ω be a (2, ∞)-Sobolev open domain, that are included in a ball B in R d . Consider the Wentzell-Laplace problem [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF], and let u n ∈ H 3 2 (Ω n ) be the solution of (1) on Ω n . Suppose that Ω n W 2,∞ ----→ Ω.

Then there exists a limit u ∈ H

3 2 (Ω) such that u n H 1 (B)
----→ u and u is the solution of (1) on Ω.

Remark 1.1 We remark that the last theorem is not valid for the Hausdorff convergence of the sets, and we give a counter example in dimension two (see Remark 6.1).

The proof of the second theorem is much more difficult than the previous one. In fact, the Ω domain should be at least (2, ∞)-Sobolev, where a (2, p)-Sobolev with 1 ≤ p ≤ ∞ is defined such that the second-order differential of the signed distance function at the boundary D 2 b Ω belongs to L p loc (U h ), with U h being a tubular neighborhood around ∂Ω of radius h > 0. It is clear that our sets will be in particular Lipschitz domains or in the W 1,∞ class. This remark allows to find Lipschitz constants, in some proofs of our results.

First, we need to show the existence and uniqueness of the solution to problem [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. Next, we derive uniform bound estimates for the solutions, then we show the existence of an extension operator from

H 3 2 (Ω) into H 3 2 (B).
Actually, we want to extend H(Ω) to H(B), but it's not clear at all. The difficulty with the set H is that the restriction to Ω of a function in H(B) has no reason to belong to H(Ω). So, we notice that it is interesting to study the convergence in the space H 3 2 (Ω), thanks to the Necas property (see [START_REF] Amrouche | The Dirichlet and Neumann problems in Lipschitz and in C 1,1 domains[END_REF]) which says:

If u ∈ H 1 (Ω) and u ∈ H 1 (∂Ω) with ∆u = -f ∈ L 2 (Ω) ⊂ (H 1 2 (Ω)) ′ , then u ∈ H 3 2
(Ω) (with a uniform constant in the Lipschitz norm of Ω). Moreover, if (Ω n ) n is a sequence of open bounded uniformly Lipschitz domains that converges to Ω in some topology T , and u n being the solution of problem [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] on Ω n , we prove the existence of a subsequence of (ũ n ) n∈N , with ũn being the extension of u n in B, that converges weakly in H 3 2 (B) to a limit ũ. Therefore, we obtain the strong convergence in H 1 (B) thanks to the Compact injection of H 3 2 (B) in H 1 (B). Set u to be the restriction of ũ to Ω. We have u ∈ H 3 2 (Ω). The next step shows that we have -∆u = f in Ω. The question is: does u satisfy the boundary condition? To answer, we will give several lemmas. In Lemma 5.5, we show that for all v ∈ W 1,∞ (B), we have:

∂Ωn ∇ τ u n .∇ τ v -→ - ∂Ω ∂ n u v.
Now, to continue the proof, we have to prove Proposition 7.1 which says: for all v ∈ W 2,∞ (B), we have:

∂Ωn ∇ τ u n .∇ τ v -→ ∂Ω ∇ τ u.∇ τ v.
To overcome this obstacle, we need the assumption of the convergence of b n to b in W 2,p , 1 ≤ p ≤ ∞. In fact, a problem will appear in the differentials of the first (case p = ∞) and of the second order for the uniformly Lipschitz shapes. Therefore, we need more regularity to prove that Db n goes to Db in L ∞ (B), like the "positive reach" sets (see [START_REF] Delfour | Shapes and Geometries, (Metrics, Analysis, Differential Calculus, and Optimization Second Edition[END_REF]Definition 6.1,p.303]) where it suffices to have the Hausdorff convergence of these domains, and even more regular for the second-order calculus as the (2, ∞)-Sobolev domains (or simply W 2,∞ ) with the necessity of W 2,∞ convergence of these domains (for more details, one can refer to [START_REF] Delfour | Shapes and Geometries, (Metrics, Analysis, Differential Calculus, and Optimization Second Edition[END_REF]Definition 9.1,p. 374]). Indeed, to avoid working with Radon measures as in [START_REF] Delfour | Shapes and Geometries, (Metrics, Analysis, Differential Calculus, and Optimization Second Edition[END_REF], [START_REF] Cavalletti | New formulas for the Laplacian of distance functions and applications[END_REF], and [START_REF] Ambrosio | Curvature and distance function from a manifold[END_REF], we would like to truncate around the boundaries of the domains to get rid of singular points in B; in other words, we try to keep the skeletons far enough away from the boundaries ∂Ω n and ∂Ω, so we do the studies in a uniform tubular neighborhood U h , for some h > 0 (see subsection 6.4). Moreover, if Dp n (x) and Dp(x) represent the differentials of the projection functions p n and p at the point x ∈ U h on ∂Ω n and ∂Ω, respectively, we will deal with the convergence of Dp n (x) to Dp(x) in which we have to inject the regularity of (2, ∞)-Sobolev with the need for W 2,∞ convergence of these domains, which will be presented in Proposition 6.5. This proposition could be proved thanks to the article of Gunther Leobacher and Alexander Steinicke (see [8 , Theorem C]), where they derived an explicit formula for Dp(x), x ∈ U h .

In the proof of Theorem 2, we use the uniqueness of the limit to prove that u is the unique solution of (1). Moreover, since u is the only accumulation point of the sequence (u n ) n∈N , the whole sequence converges to u in H 1 (B), which completes the proof.

The plan of this paper is as follows (see Figure 1): in order to study the existence and uniqueness of the solution of problem (1) in section 3, we define the set of ε-cone in Definition 2.3, then we conclude that a Lipschitz domain has this property thanks to Theorem 3. Furthermore, we can deduce in Corollary 2.1 that if Ω is (2, ∞)-Sobolev domain then it also has the ε-cone property. Actually, we use the Lax-Milgram Theorem (see Proposition 3.1).

Concerning Theorem 1, the proof is in subsection 8.1.

For a proof of Theorem 2, we follow the following plan: After using Necas property stated above, we desire to derive several uniform estimates, with respect to domains in the set O which is introduced in Definition 4.1, on the function u ∈ H 

2 (Ω) to H 3 2 (B).
After that, we give some uniform estimations (with respect to ε) on the extended function ũ in H 3 2 (B) (Corollary 4.1), and if we consider a sequence of uniformly Lipschitz domains (Ω n ) n that converges to Ω under certain topology T , we show the strong convergence of the sequence of solutions (ũ n ) n to a limit ũ in H 1 (B) (Corollary 4.2). In Lemma 5.1, we show that the restriction u ∈ H 3 2 (Ω) of the limit ũ to Ω satisfies -∆u = f . But we still need to show that u solves the problem (1), i.e. does u satisfies -∆ τ u = ∂ n u on ∂Ω? To answer this question, we give several lemmas (from Lemma 5.2 to 5.5), in addition to Proposition 7.1 (see section 7). In fact, in this proposition, we need to deal with the convergence of the signed distance functions in W 2,p , p ≥ 1, in a uniform tubular neighborhood U h for some h > 0, which always exists due to Proposition 6.4 (see subsection 6.4), and then Theorem 2 is proved.

In section 6, we are going to study the behavior of the convergence in W 1,p (B), with 1 ≤ p ≤ ∞, of the sequence of the oriented distance functions (b n ) n∈N or (b Ωn ) n∈N with respect to the Hausdorff convergence of less regular domains (see Propositions 6.1, 6.2 and 6.3). Also, we study the convergence of the differential of the projection functions p n on ∂Ω n in L p for 1 ≤ p ≤ ∞ with respect to the W 2,∞ convergence of (2, ∞)-Sobolev domains (see Proposition 6.5). 

Definitions and preliminaries

The first definition is for claiming that the normal derivative ∂ n u is well defined in H -1 2 (∂Ω):

Definition 2.1 If ∆u ∈ L 2 (Ω), then the normal derivative ∂ n u is well defined in H -1 2 (∂Ω)
, where n denotes the outward unit normal vector field on the boundary, in the following weak sense:

Let us define the linear continuous form L of H 1 2 (∂Ω):

∀v ∈ H 1 2 (∂Ω), L(v) := Ω ∆u ṽ + ∇u.∇ṽ = ∂Ω ∂ n u v (2) 
where ṽ :

= γ -1 0 (v) ∈ H 1 (Ω) is the inverse image of v ∈ H 1 2 ( 
∂Ω) by the linear bounded trace mapping γ 0 from H 1 (Ω) onto H 1 2 (∂Ω). By Riesz representation theorem (see [START_REF] Bass | Functional analysis[END_REF]Theorem 4.12, p.40]), there exists a unique y in (H

1 2 (∂Ω)) ′ = H -1 2 (∂Ω), such that L(v) = ⟨y, v⟩ H -1 2 ×H 1 2 for all v ∈ H 1 2 ( 
∂Ω), then we can conclude from (2) that ∂ n u = y in a weak sense on the boundary ∂Ω. ♢

From the definition of H(Ω), ∇ τ u is defined on ∂Ω in a weak sense. For the study of this chapter, we need to define an extension of ∇ τ u in B:

Let b Ω (or simply b if no confusion) be the signed distance function to the set Ω, that is defined by

b Ω (x) = b(x, ∂Ω) :=    -d(x, ∂Ω) if x ∈ Ω, d(x, ∂Ω) if x ∈ R d \ Ω,
where d is the usual metric in R d , and for any

x ∈ R d , d(x, ∂Ω) = inf y∈∂Ω d(x, y) = inf y∈∂Ω |x -y|
Now, as the skeletons of Ω are of zero d-dimension, we deduce that b is differentiable almost everywhere in B, thus ∇b ∈ L 2 (B). In addition, we have outside the skeletons: its gradient satisfies |∇b| = 1 and ∇b = n on ∂Ω, where n is the outward normal vector field. Given m > 1 and p ≥ 1, a subset Ω of R d is said to be an (m, p)-Sobolev domain or simply a W m,p -domain if ∂Ω ̸ = ∅ and there exists h > 0 such that

b Ω ∈ W m,p loc (U h (∂Ω))
, where U h is a tubular neighborhood of ∂Ω of radius h. ♢

We can deduce the following corollary:

Corollary 2.1 If Ω is a (2, ∞)-Sobolev open bounded domain, then it has the ε-cone property, with ε > 0 is uniform on ∂Ω.
3 Existence and uniqueness of the solution of (1)

In order to prove the existence and uniqueness of the solution of problem (1), we give the variational formulation of this problem: For all v ∈ H(Ω), we have

   Ω -∆u v = Ω f v, ∂Ω -∆ τ u v + ∂Ω ∂ n u v = 0. (3) 
Hence, we get

Ω ∇u.∇v + ∂Ω ∇ τ u.∇ τ v = Ω f v. (4) 
Actually, we aim to use the Lax-Milgram Theorem, by showing the continuity of A and B on H(Ω) (even H s (Ω) is true), where

A(u, v) := Ω ∇u.∇v + ∂Ω ∇ τ u.∇ τ v, B(v) := Ω f v, (5) 
and that A is coercive on H(Ω). Let us remark that the coercivity cannot be valid on H s (Ω), since A(1, 1) = 0 and ∥1∥ Hs(Ω) = V olume(Ω) + P erimeter(Ω).

Lemma 3.1 A and B are continuous on H(Ω).

Proof: We have:

A(u, u) = ∥∇u∥ 2 L 2 (Ω) + ∥∇ τ u∥ 2 L 2 (Ω) ≤ ∥u∥ 2 H(Ω)
and

|B(u)| ≤ ∥f ∥ L 2 (Ω) ∥u∥ L 2 (Ω) ≤ ∥f ∥ L 2 (Ω) ∥u∥ H(Ω)
thanks to the Cauchy-Schwartz inequality. Therefore, A and B are continuous on H(Ω). □

Lemma 3.2 A is coercive on H(Ω).

Proof: Let us divide our proof into five parts:

1. Set λ LB to be the lowest non-zero eigenvalue of Laplacian-Beltrami operator, then ∀u ∈ H 1 (∂Ω) with ∂Ω u = 0, we have

∥u∥ L 2 (∂Ω) ≤ λ LB ∥∇ τ u∥ L 2 (∂Ω) (6) 
since we have by Courant-Hilbert lemma

λ LB = inf u∈H 1 (∂Ω), u⊥1 ∥∇ τ u∥ L 2 (∂Ω) ∥u∥ L 2 (∂Ω) .
2. Since we have

∥u∥ L 2 (∂Ω) ≤ λ LB ∥∇ τ u∥ L 2 (∂Ω) ,
we get by interpolation between L 2 (∂Ω) and

H 1 2 (∂Ω) that ∥u∥ H 1 2 (∂Ω) ≤ C(∂Ω)∥∇ τ u∥ L 2 (∂Ω) ≤ C(∂Ω)∥u∥ H 1 (∂Ω) . (7) 
3. Let us split u = v + w where v solves

   ∆v = 0 in Ω, v = u on ∂Ω (8) 
and w solves

   ∆w = ∆u in Ω, w = 0 on ∂Ω. (9) 
Now, for v ∈ H 3 2 (Ω) we have

∥v∥ L 2 (Ω) ≤ ∥v∥ H 1 (Ω) = constant ∥v∥ H 1 2 (∂Ω) ≤ C(ε)∥v∥ H 1 2 (∂Ω) = C(ε)∥u∥ H 1 2 (∂Ω) , (10) 
where C(ε) is a constant that depends on the equivalence of norms between H 1 2 (∂Ω) (the trace of H 1 (Ω)) and the intrinsic Sobolev norm H 1 2 defined as a double integral. In fact it depends also on the uniform Lipschitz constant or ε-cone property (for more details, see Maz'ya's book in Sobolev spaces [START_REF] Maz'ya | Sobolev Spaces -with Applications to Elliptic Partial Differential Equations[END_REF]). Thus, by [START_REF] Delfour | Shapes and Geometries, (Metrics, Analysis, Differential Calculus, and Optimization Second Edition[END_REF] we get

∥v∥ L 2 (Ω) ≤ C(ε)∥u∥ H 1 (∂Ω) . (11) 
Concerning w, we have using integration by parts in Ω:

-

Ω w∆w = Ω |∇w| 2 . ( 12 
)
On the other hand, we have:

-

Ω w∆w = - Ω w∆u = Ω ∇u.∇w ≤ ∥∇u∥ L 2 (Ω) ∥∇w∥ L 2 (Ω) . (13) 
Hence, combining between ( 12) and ( 13) we obtain

∥∇w∥ L 2 (Ω) ≤ ∥∇u∥ L 2 (Ω) . (14) 
But by Poincaré inequality we have:

∃C p = C Poincaré , such that ∥w∥ L 2 (Ω) ≤ C p ∥∇w∥ L 2 (Ω) . (15) 
Therefore, we get

∥w∥ L 2 (Ω) ≤ ∥∇u∥ L 2 (Ω) . (16) 
4. As u = v + w, we deduce that

∥u∥ 2 L 2 (Ω) ≤ 2(∥v∥ 2 L 2 (Ω) + ∥w∥ 2 L 2 (Ω) ) ≤ 2(∥∇u∥ 2 L 2 (Ω) + C(ε)∥u∥ 2 H 1 (∂Ω) ). (17) 
5. In this step, we will gather all the information above. So we have

∥u∥ 2 H(Ω) = ∥u∥ 2 L 2 (Ω) + ∥∇u∥ 2 L 2 (Ω) + ∥u∥ 2 L 2 (∂Ω) + ∥∇ τ u∥ 2 L 2 (∂Ω) ≤ 2 ∥∇u∥ 2 L 2 (Ω) + C(ε) ∥u∥ 2 L 2 (∂Ω) + ∥∇ τ u∥ 2 L 2 (∂Ω) + ∥∇u∥ 2 L 2 (Ω) + ∥u∥ 2 L 2 (∂Ω) + ∥∇ τ u∥ 2 L 2 (∂Ω) ≤ 3∥∇u∥ 2 L 2 (Ω) + 2C(ε) λ 2 LB (∂Ω) + 1 ∥∇ τ u∥ 2 L 2 (∂Ω) + λ 2 LB (∂Ω) + 1 ∥∇ τ u∥ 2 L 2 (∂Ω) = 3∥∇u∥ 2 L 2 (Ω) + (2C(ε) + 1) λ 2 LB (∂Ω) + 1 ∥∇ τ u∥ 2 L 2 (∂Ω) ≤ max 3, (2C(ε) + 1) λ 2 LB (∂Ω) + 1 ∥∇u∥ 2 L 2 (Ω) + ∥∇ τ u∥ 2 L 2 (∂Ω)
Therefore, there exists a constant α := max 3, (2C(ε) + 1)

λ 2 LB (∂Ω) + 1 such that ∥u∥ 2 H(Ω) ≤ α ∥∇u∥ 2 L 2 (Ω) + ∥∇ τ u∥ 2 L 2 (∂Ω) . ( 18 
) If we set β := 1 α A(u, u) ≥ β∥u∥ 2 H(Ω) . ( 19 
)
Hence A is coercive on H(Ω).

□

Remark 3.1 The constant α of coercivity of A depends only on:

1. C(ε) the constant in the equivalence of norms between H 1 2 (∂Ω) (seen as the trace of H 1 (Ω)) and the intrinsic Sobolev norm H 1 2 defined as a double integral. It is uniform on the class of ε-cone domains (see Maz'ya's book in Sobolev spaces [START_REF] Maz'ya | Sobolev Spaces -with Applications to Elliptic Partial Differential Equations[END_REF]).

2. The first non-trivial eigenvalue of the Laplace-Beltrami operator on ∂Ω.

In dimension two, it depends only on the perimeter and decreases with respect to it; if there exists δ > 0 such that Perimeter(∂Ω) ≥ δ > 0, then λ LB (∂Ω) is bounded by a constant depending only on δ and not Ω.

In dimension three, bounds on curvature of ∂Ω could be needed (to investigate). Now, in order to end the proof of the existence and uniqueness of the solution, let us give this crucial proposition: Proposition 3.1 (Existence and uniqueness of the solution of (1)). Let Ω be a Lipschitz domain. Then for any f ∈ H ′ (Ω) (the dual of H(Ω)), problem (1) has a unique solution u in H(Ω).

Proof: In order to prove this proposition, we just have to apply Lax-Milgram Theorem.

□ From the work above, we can show this proposition that will be useful in the next subsection:

Proposition 3.2 (A priori bounds for u Ω ). For all f ∈ H ′ (Ω), the solution u Ω of (1) on Ω satisfies ∥u Ω ∥ H(Ω) ≤ α(Ω)∥f ∥ H ′ (Ω) . (20) 
Moreover, if f ∈ L 2 (Ω), then we have

∥u Ω ∥ H(Ω) ≤ α(Ω)∥f ∥ L 2 (Ω) . (21) 
Proof: Let f ∈ H ′ (Ω). We use u Ω ∈ H(Ω) as a test function so that we get from (18)

∥u Ω ∥ 2 H(Ω) ≤ α(Ω)A(u Ω , u Ω ) = α(Ω) b(u Ω ) ≤ α(Ω)∥f ∥ H ′ (Ω) ∥u Ω ∥ H(Ω) , hence we get ∥u Ω ∥ H(Ω) ≤ α(Ω)∥f ∥ H ′ (Ω) . If f ∈ L 2 (Ω), then we have ∥u Ω ∥ H(Ω) ≤ α(Ω)∥f ∥ L 2 (Ω) .

□ 4 Extension operator and uniform bound estimations

The difficulty with the set H is that the restriction to Ω of a function in H(B) has no reason to belong to H(Ω). Therefore, we consider the space H 3 2 to overcome this difficulty. That's the reason we deal with the right hand side f to be in L 2 (Ω) and not just in H ′ (Ω).

In this section, our goal is to show the existence of an extension operator from

H 3 2 (Ω) into H 3 2 (B).
Furthermore, we would like to study some uniform bound estimation in H 3 2 (Ω) and H 3 2 (B) in order to show the existence of a weakly convergent sequence of solutions (u n ) n , with respect to the convergence of a sequence of domains (Ω n ) n to the limit set Ω in some sense, to a limit u in the extended set H 3 2 (B), and in particular we get the strong convergence of u n to u in H 1 (B), thanks to the compact injection of

H 3 2 (B) into H 1 (B).
In order to set ourselves in the uniform case with respect to Ω, we give this definition: Definition 4.1 We set O to be a class of domains Ω ∈ O ε such that there exists M > 0 and α(Ω) ≤ M (the constant M is uniform with respect to Ω ∈ O ε ). In other words, the domains in O are considered to be uniformly Lipschitz with a uniform constant M . ♢

In order to have an extension operator, we pass to H 3 2 (Ω) thanks to Necas property (see [START_REF] Amrouche | The Dirichlet and Neumann problems in Lipschitz and in C 1,1 domains[END_REF]): The following corollary investigates a uniform bound on the extended function ũ in H (

If u ∈ H 1 (Ω) and u ∈ H 1 (∂Ω) with ∆u = -f ∈ L 2 (Ω) ⊂ (H 1 2 (Ω)) ′ , then u ∈ H
) 23 
In particular, we have the strong convergence in H 1 (B), in other words, we have

ũn -→ ũ in L 2 (B), (24) 
∇ũ n -→ ∇ũ in L 2 (B). ( 25 
)
Set u to be the restriction of ũ to Ω. One has u ∈ H 3 2 (Ω). The question now is: does u solves (1) on Ω? To answer, we have to pass to the limit in the variational formulations. 

Interpretation of the limit

In this section, we deal firstly with the volume case, so that we show that the limit u is a solution of the volume equation -∆u = f . But in order to prove that u satisfies the boundary conditions of (1), we give several lemmas, in addition to using Proposition 7.1. We will divide this section into many subsections.

The differential equation in the volume

Lemma 5.1 Given a sequence of uniformly Lipschitz domains (Ω n ) n that converges to a Lipschitz domain Ω, let (u n ) n be a sequence of solutions of (1) defined in H 3 2 (Ω n ), and let u be its limit in H 3 2 (Ω). Then, for f ∈ L 2 (Ω), we have on Ω:

-∆u = f. Proof: Let φ ∈ D(Ω), we have: 

⟨-∆u n , φ⟩ D ′ (Ωn)×D(Ω) = ⟨f, φ⟩ D ′ (Ω)×D(Ω) ⇒ ⟨∇u n , ∇φ⟩ D ′ (Ωn)×D(Ω) = ⟨f, φ⟩ D ′ (Ω)×D(Ω) ⇒ ⟨∇u n , ∇φ⟩ L 2 (B)×L 2 (Ω) = ⟨f, φ⟩ L 2 (B)×L 2 (Ω) ⇒ ⟨∇u, ∇φ⟩ L 2 (B)×L 2 (Ω) = ⟨f, φ⟩ L 2 (B)×L 2 (Ω) by (25) ⇒ ⟨∇u, ∇φ⟩ D ′ (Ω)×D(Ω) = ⟨f, φ⟩ D ′ (Ω)×D(Ω) ⇒ ⟨-∆u, φ⟩ D ′ (Ω)×D(Ω) = ⟨f, φ⟩ D ′ (Ω)×D(Ω) .
X Ωn f v -→ B X Ω f v
where X Ωn and X Ω are the classical characteristic functions defined in L 1 (B).

Proof: From Theorem 3, we deduce that Ω n ∈ O ε . Thus, we can apply Theorem 4 that provides the existence of a subsequence that converges in three different senses, in particular we have the characteristic convergence of

Ω n to Ω (i.e |Ω n | → |Ω| or Ω n → Ω in L 1 (B)). Let f ∈ L 2 (B) and v ∈ L 2 (B).
Then we have:

X Ωn L 1 (B) ----→ X Ω (26)
Since X Ωn and the limit X Ω take values in {0, 1}, we get (Ω n ), and let u be its limit in H 3 2 (Ω). Then, for any v ∈ W 1,∞ (B), we have:

X Ωn L ∞ (B) ----→ X Ω . (27 
∂Ωn ∇ τ u n .∇ τ v -→ - ∂Ω ∂ n u v.
Proof: The proof can be easily done. From the boundary conditions in (3), we have:

∂Ωn -∆ τ u n v + ∂Ωn ∂ n u n v = 0.
Using integration by parts, we obtain

∂Ωn ∇ τ u n .∇ τ v = - ∂Ωn ∂ n u n v.
Applying the limit to the right-hand side as n tends to infinity, we get using Lemma 5.4

∂Ωn ∇ τ u n .∇ τ v -→ - ∂Ω ∂ n u v.

□

In order to complete the path concerning the surface terms, we still have to show that for all v in W 2,∞ (B), we have

∂Ωn ∇ τ u n .∇ τ v -→ ∂Ω ∇ τ u.∇ τ v
which will be proved in Proposition 7.1 (see section 7). In fact, to prove this proposition, we need to study locally the attitude of the convergence of the signed distance function b n := b Ωn to b := b Ω in W 2,p , with p ≥ 1, in a uniform tubular neighborhood U h of the boundaries for some h > 0, and actually we need the W 2,∞ convergence of (2, ∞)-Sobolev domains (here the (2, ∞)-Sobolev regularity has to be injected into the domains Ω n and Ω, which is much smoother than the Lipschitz one).

6 Study of the convergence of the signed distance and projection functions in W 1,p In this section, we are going to study the behavior of the convergence in W 1,p (B), with 1 ≤ p ≤ ∞, of the sequence of the oriented distance functions (b n ) n∈N or (b Ωn ) n∈N with respect to the Hausdorff convergence of less regular domains (uniformly Lipschitz and positive reach regularities). After that, assuming that b n converges toward b in W 2,∞ , we show the existence of a uniform tabular neighborhood U h of the boundaries for some h > 0, for (2, ∞)-Sobolev domains. Also, we study the convergence of the differential of the projection functions p n on ∂Ω n in L p (U h ), 1 ≤ p ≤ ∞, with the assumption of W 2,∞ convergence of (2, ∞)-Sobolev domains.

6.1 L p convergence of the signed distance functions for uniformly Lipschitz domains, for 1 ≤ p ≤ ∞ Proof: If p = ∞, the the proof is done for the complementary of Ω n and Ω in M. Dambrine and B. Puig article (see [START_REF] Dambrine | Oriented distance point of view on random sets[END_REF], p.5, Proposition 2.7, Step 2.) Moreover, if p < ∞, we have: 

∥b n -b∥ p L p (B) = B |b n (x) -b(x)| p ≤ B (sup x∈B |b n (x) -b(x)|) p = ∥b n -b∥ p L ∞ (B) vol(B) n -→ 0. □ 6.2 W
U hn := {x ∈ B; |b ∂Ωn (x)| ≤ h n }.
Then we have

b Ωn W 1,∞ (U h ) -------→ b Ω .
Proof: First of all, by [7, Theorem 3.3, (vii), p.347], we compute the gradient of b Ω :

∇b Ω (x) =        ∇d Ω (x) = x -p(x) |x -p(x)| , x ∈ R d \ Ω, ∇d ∁Ω (x) = - x -p(x) |x -p(x)| , x ∈ Ω        , |∇b Ω (x)| = 1, (28) 
where d Ω is the distance function to Ω, knowing that b Ω (x) = d Ω (x) -d ∁Ω (x), and p is the orthogonal projection of x ∈ U h on ∂Ω. Note that p(x) is unique in U h . We will denote by p n the projection on ∂Ω n instead of p Ωn .

Then we have for all x ∈ U h \ ∪ n∈N (∂Ω n ∪ ∂Ω):

|∇b Ωn (x) -∇b Ω (x)| = x -p n (x) |x -p n (x)| - x -p(x) |x -p(x)| .
Since the function φ(y) = y |y| is Lipschitz continuous on R n \ {0}, we obtain

|∇b Ωn (x) -∇b Ω (x)| ≤ |x -p n (x) -x + p(x)| = |p n (x) -p(x)|. ( 29 
)
Also, from Proposition 6.1, we get for all x ∈ U h :

d(x, p n (x)) = b Ωn (x) -→ b Ω (x) = d(x, p(x)). (30) 
Now, since U h is compact, ∃y ∈ U h , and there exists a subsequence (p k (x)) k∈N of the sequence (p n (x)) n∈N , still denoted by (p n (x)) n∈N , such that p n (x) -→ y in U h . Then it remains to show that y ∈ Ω and y = p(x).

Step 1. Setting y n := p n (x), we have

d(y n , Ω) ≤ d(y n , Ωn ) + d H ( Ωn , Ω) = 0 + d H ( Ωn , Ω) = d( Ωn , Ω).
Therefore, passing to the limit, taking into consideration the Hausdorff convergence and from the continuity of the distance function d(., Ω), we get:

d(y, Ω) = lim n d(y n , Ω) ≤ lim n d( Ωn , Ω) = 0. So y ∈ Ω.
Step 2. If p n (x) -→ y, then d(x, p n (x)) -→ d(x, y) by continuity of the distance function. Thus by (30), we get d(x, y) = d(x, p(x)) by the uniqueness of the limit. Since x ∈ U h , y → d(x, y) has the unique minimizer p(x) on Ω. Hence y = p(x).

Therefore |p n (x) -p(x)| -→ 0 for all x ∈ U h , this means that ∥p n -p∥ L ∞ (U h ) -→ 0, (31) 
and by (29), we get

∥∇b Ωn -∇b Ω ∥ L ∞ (U h ) -→ 0. ( 32 
)
Finally, by Proposition 6.1, we obtain the result. □ Proof: The proof here is much sharper than the precedent one. First of all, let us remark that since we don't have the positive reach condition, the points on the Skeletons (here the skeletons exist at least locally in a tabular neighborhood of ∂Ω) do not have a unique projection on the boundary p(x). In other word, the function |p n (x) -p(x)| is not defined on all B; hence to overcome this problem, we look for a new procedure in the following: In fact, we have for x ∈ B \ ∪ n∈N ∂Ω n ∪ ∂Ω,

Let x ∈ B \ ∪ n∈N (∂Ω n ∪ ∂Ω). Set Θ n := arg min y∈∂Ωn d(x, .) = {y ∈ ∂Ω n | d(x, y) = d(x, ∂Ω n )},
|∇b n (x) -∇b(x)| ≤ |p n (x) -p(x)| = g n (x).
Therefore, if we prove that g n goes to zero pointwisely, and since

|∇b n (x) -∇b(x)| ≤ |∇b n (x)| + |∇b(x)| = 1 + 1 = 2 which is integrable on B, then ∇b Ωn L 1 (B)
----→ ∇b Ω , thanks to the dominated convergence theorem, and

hence b Ωn W 1,1 (B)
-----→ b Ω . Now, by M. C. Delfour and J.-P. Zolésio book (see [7 p.350, Theorem 4.1 (i)]), we have the convergence in W 1,p (B), for all integers 1 ≤ p < ∞.

Pointwise convergence: From the Hausdorff converges of Ω n to Ω, we have:

∀ε > 0, ∃N ε > 0, such that ∀n ≥ N ε , d(Ω n , Ω) ≤ ε. ( 33 
)
Then we get (see Figure 2.2): Therefore, we have on one side:

1. B(p n (x), ε) ∩ Ω n ̸ = ∅, i.e. ∃y n ∈ ∂Ω n , such that d(p n (x), x) ≤ d(y n , x) ≤ d(p(x), x) + ε ≤ d(y, x) + ε. 2. B(p(x), ε) ∩ Ω n ̸ = ∅, i.e. ∃y ∈ ∂Ω n , such that d(p(x), x) ≤ d(y, x) ≤ d(p n (x), x) + ε ≤ d(y n , x) + ε.
|d(y n , x) -d(y, x)| ≤ ε. ( 34 
)
On the other side, we get

|d(p n (x), x) -d(p(x), x)| ≤ ε, that is equivalent to say |d(∂Ω n , x) -d(∂Ω, x)| ≤ ε. ( 35 
)
so, in order to finish the proof of the pointwise convergence, we have to prove that

∃y n ∈ Θ n , ∃y ∈ Θ, such that d(y n , y) -→ 0. ( 36 
)
To prove that, let (y n ) n∈N , with y n ∈ Θ n , be a sequence in B. Since B is compact, there exists a subsequence (y k ) k (still denoted by (y n ) n since no confusion) of (y n ) n in B, and there exist an element y in B, such that y n -→ y in B. Now, it is sufficient to prove that y ∈ ∂Ω.

Indeed, we have:

d(x, y) = lim n d(x, y n ) by estimation (34) = lim n d(x, ∂Ω n ) since y n ∈ Θ n = d(x, ∂Ω) by estimation (35)
hence, y ∈ ∂Ω, and the proof of (36) is finished. □ 6.4 L p convergence of the differential of the projection function for (2, ∞)-Sobolev domains, for 1 ≤ p ≤ ∞

In the following, as mentioned in the introduction, we are going to deal with the second-order derivatives of the signed distance function. In fact, we need such an extra regularity on Ω n and Ω, which is the (m, p)-Sobolev assumption, with m > 1 and p ≥ 1, in which via these regularity, the m-th order derivatives can be defined now locally. In particular, it is sufficient to choose m = 2 to deal with the second-order derivatives. Let us remark that in order to avoid working with Radon measures as in [START_REF] Delfour | Shapes and Geometries, (Metrics, Analysis, Differential Calculus, and Optimization Second Edition[END_REF], [START_REF] Cavalletti | New formulas for the Laplacian of distance functions and applications[END_REF], and [START_REF] Ambrosio | Curvature and distance function from a manifold[END_REF], we would like to make a truncation around the boundaries of the domains to get rid of the singular points of the signed distance functions in B. In other words, we separate the skeletons from the boundaries of ∂Ω n and ∂Ω. Actually, we have to deal with the Hessian matrices D 2 b n and D 2 b in a uniform tubular neighborhood U h , which always exists (see Proposition 6.4). Moreover, If we set p n and p to be the projection on ∂Ω n and ∂Ω, respectively, we will study the convergence of Dp n (x) to Dp(x) for all x ∈ U h , which will be presented in Proposition 6.5. This proposition could be proved thanks to Gunther Leobacher and Alexander Steinicke paper (see [8, Theorem C]), where they investigated an explicit formula for Dp(x), x ∈ U h . To do so, let us introduce the notion of a tubular neighborhoods of ∂Ω n for all n ∈ N (see Figure 3), then we show the existence of a uniform one, in the following proposition: Proposition 6.4 Let (Ω n ) n be a sequence of (2, ∞)-Sobolev domains that converges toward a (2, ∞)-Sobolev domain Ω in the W 2,∞ sense. For small h n > 0 and ∀n ∈ N, we set

U hn := {x ∈ B; |b ∂Ωn (x)| ≤ h n }.
Then there exists h > 0, such that h n > h, ∀n ∈ N, and a uniform tubular neighborhood U h , such that U h ⊂ ∩ n U hn , so that we guarantee that the chosen domain U h will not include any of the skeletons of Ω n and Ω, for all n ∈ N.

Proof: Suppose by contrary that there exists n 0 ∈ N such that h n0 < h, for all h small enough, then the skeleton of this set Ω n0 will approach from the boundary ∂Ω n0 , this means that the radius of curvature of this boundary at a point x n0 is going to zero. This is equivalent to saying that: at least one of the principle curvature of this boundary at x n0 is going to infinity. But we know that Ω n0 is converging to Ω in the W 2,∞ sense, i.e. the eigenvalues of the Hessian matrix D 2 b n0 are converging toward those of D 2 b. Hence, we get a contradiction. (see Figure 2.4). □ Remark 6.1 We remark that Proposition 6.4 is not true for the Hausdorff convergence of the domains (see a counter example in dimension two below).

Counter example: Let us give a counter example in dimension two for Hausdorff convergence of sets. Let γ : s ∈ R -→ R 2 be a parametrization of the boundary ∂Ω. We make a small perturbation γ ε , for all ε > 0 small enough, around a point x 0 ∈ ∂Ω in the following way:

γ ε (s) := γ(s) + ε φ s -s 0 ε
where φ is a mollifier and γ(s 0 ) = x 0 . One can see that as ε goes to zero, the perturbed domain Ω ε converges to Ω in the Hausdorff sense. But the distance h ε between the skeleton Sk(Γ ε ) of the perturbed section Γ ε of ∂Ω ε and the curve Γ ε itself will tend to zero as ε -→ 0 (see Figure 5). This contradict the fact that there exist h > 0 such that h ε > h for all ε > 0. Now, let us make a uniform cut-off of size h. 

ψ := ℓ d h
where d is the distance function to the limit set Ω, and ℓ is a C ∞ function defined on R + as the following:

ℓ(t) :=    1 if 0 ≤ t ≤ 1 2 , 0 if t ≥ 1.
♢ Now, we prove the convergence of the sequence (Dp n ) n to Dp in L p (U h ) for p ≥ 1, where Dp n and Dp represent the differential of the projection functions p n and p, respectively. Proposition 6.5 Let (Ω n ) n be a sequence of (2, ∞)-Sobolev open bounded domains in R d , that converges to a (2, ∞)-Sobolev open bounded domain Ω, in the W 2,∞ sense. Then, for 1 ≤ p ≤ ∞, we have

Dp n L p (U h ) -----→ Dp,
where U h is a uniform tubular neighborhood defined in subsection 6.4 and Dp n

L p (U h ) -----→ Dp, 1 ≤ p ≤ ∞, means that the ij-component D ij n L p (U h ) -----→ D ij for all i, j = 1, ..., d.
Proof: First of all, let us compute explicitly the matrix Dp(x) at the point x ∈ U h . To do so, we refer to [START_REF] Leobacher | Existence, uniqueness and regularity of the projection onto differentiable manifolds[END_REF]Theorem C], where the differential of p at x ∈ U h is computed as

Dp(x) = Id T p(x) (∂Ω) -|x -p(x)|L p(x),v -1 P T p(x) (∂Ω) , (37) 
where v = |x -p(x)| -1 (x -p(x)) and L p(x),v is the shape operator in the direction v at p(x), and P T p(x) (∂Ω) is the projection operator on T p(x) (∂Ω).

Let us explicit the shape and projection operator in local coordinates. We define the basis B of R d around p(x) like this: the first d -1 vectors are the principle vectors of the tangent space T p(x) (∂Ω) at p(x) and the last vector is the normal unit vector v. Then we have: 

P T p(x) (∂Ω) =          1 
L p(x),v =          k 1 (x) 0 . . . . . . 0 0 k 2 (x) . . . . . . . . . . . . . . . . . . . . . k d-1 (x) 0 0 . . . . . . 0 0          ,
where k i (x), i = 1, ..., d -1, are the principle curvatures of ∂Ω at p(x).

Hence, replacing |x -p(x)| by b(x), we get

Dp(x) = (Id T p(x) (∂Ω) -b(x)L p(x),v ) -1 P T p(x) (∂Ω) (38) =              1 1 -bk 1 (x) 0 . . . . . . 0 0 1 1 -bk 2 (x) . . . . . . . . . . . . . . . . . . . . . 1 1 -bk d-1 (x) 0 0 . . . . . . 0 0             
.

Notice that the denominators 1 -bk i (x), i = 1, ..., d, cannot be zero since we are working in a bounded volume U h . Clearly, the matrix Dp(x) is diagonal with respect to the basis B, so it is sufficient to study the diagonal terms. Therefore, if we denote by Dp ij (x) the ij-th component of the matrix Dp(x), we have for all i = j:

1) Convergence in L ∞ (U h ): ∥Dp ii n -Dp ii ∥ L ∞ (U h ) = sup x∈U h |Dp ii n (x) -Dp ii (x)| = sup x∈U h 1 1 -b n k n,i (x) - 1 1 -bk i (x) = sup x∈U h b n k n,i (x) -bk i (x) (1 -b n k n,i (x))(1 -bk i (x)) = sup x∈U h b n k n,i (x) -bk i (x) + b n k i (x) -b n k i (x) (1 -b n k n,i (x))(1 -bk i (x)) ≤ sup x∈U h (b n -b)k i (x) (1 -b n k n,i (x))(1 -bk i (x)) + sup x∈U h b n (k n,i -k i )(x) (1 -b n k n,i (x))(1 -bk i (x))
In fact, since D 2 b n tends to D 2 b in L ∞ (U h ), we have the convergence of the eigenvalues of the Hessian matrix D 2 b n toward those of D 2 b in L ∞ (U h ), in other words, the principle curvatures k n,i (x) for all i = 1, ..., d converge uniformly toward k i (x) (see Figure 2.4). Therefore, we have ∥k n,i -

k i ∥ L ∞ (U h ) = sup x∈U h |k n,i (x) -k i (x)| n --→ 0.
In particular, the principle curvatures k n,i , i = 1, ..., d, are uniformly bounded with respect to n ∈ N. In addition, the oriented distance functions b n go to b in L ∞ (U h ), hence they are also uniformly bounded with respect to n ∈ N. Therefore, we get:

∥Dp ii n -Dp ii ∥ L ∞ (U h ) ≤ C 1 ∥b n -b∥ L ∞ (U h ) + C 2 ∥k n,i -k i ∥ L ∞ (U h ) n ---→ 0
where C 1 and C 2 are two positive constants independent of n ∈ N. Finally, we get the desired result:

Dp n L ∞ (U h ) -----→ Dp. (39) 
2) Convergence in L p (U h ), p < ∞:

For all i = j, we have:

∥Dp ii n -Dp ii ∥ p L p (U h ) = U h |Dp ii n (x) -Dp ii (x)| p ≤ U h ( sup x∈U h |Dp ii n (x) -Dp ii (x)|) p = ∥Dp ii n -Dp ii ∥ p L ∞ (U h ) vol(U h ) -→ 0.
Hence, we have it for all i, j = 1, ..., d. Therefore, we get the result:

Dp n L p (U h ) -----→ Dp. ( 40 
) □ 7 
The remaining convergence on the surface

In order to prove Theorem 2, we have to give the following crucial proposition:

Proposition 7.1 If u n ∈ H 3 2 (Ω n ) and u ∈ H 3 2 ( 
Ω) are defined as in Remark 4.1, then for all v ∈ W 2,∞ (B), we have:

∂Ωn ∇ τ u n .∇ τ v -→ ∂Ω ∇ τ u.∇ τ v.
Proof: We begin by transferring our domains of the integrals to the large one B which is containing all of Ω n and Ω, then we proceed by applying the truncation on the uniform domain U h .

First of all, let us recall that the tangential vector ∇ τ u can be extended to the vector ∇u-(∇u.∇b)∇b in the uniform tubular neighborhood U h . Now, without loss of generality, we choose the test function v ∈ W 2,∞ (B) so that the normal derivative vanishes on ∂Ω (i.e. we get ∇v = ∇ τ v in B). Then, we have:

∂Ω ∇ τ u.∇ τ v = ∂Ω [∇u -(∇u.∇b).∇b] .∇v = ∂Ω ∇u.∇v - ∂Ω (∇u.∇b)∇b.∇v
Now, as the normal vector n is unitary and using the fact that ∇b is the extension of n in U h , we obtain by applying the divergence theorem: for all v ∈ W 2,∞ (B),

∂Ω ∇u.∇v = ∂Ω ∇u.∇v(n.n) = ∂Ω ψ(∇u.∇v)(n.n) ∂Ω [ψ(∇u.∇v)n] .n = Ω div [ψ(∇u.∇v)n] = U h div [ψ(∇u.∇v)∇b]
where the cut-off function ψ is introduced in Definition 6.1. Hence we get

∂Ω ∇u.∇v = U h (∇u.∇v)∇ψ.∇b + U h ψ∇(∇u.∇v).∇b + U h ψ(∇u.∇v)∆b = U h (∇u.∇v)∇ψ.∇b + U h ψ(∇(∇u T )∇v T ).∇b + U h ψ∇u T ∇(∇v T )∇b + U h ψ(∇u.∇v)∆b = U h (∇u.∇v)∇ψ.∇b + U h ψ∇v T ∇(∇u T )∇b + U h ψ∇u T ∇(∇v T )∇b + U h ψ(∇u.∇v)∆b = U h (∇u.∇v)∇ψ.∇b + U h ψ∇v T D 2 u∇b + U h ψ∇u T D 2 v∇b + U h ψ(∇u.∇v)∆b.
Also, we have:

∂Ω (∇u.∇b)∇b.∇v = ∂Ω ψ(∇u.∇b)∇v.n = Ω div [ψ(∇u.∇b)∇v] = U h div [ψ(∇u.∇b)∇v] = U h (∇u.∇b)∇ψ.∇v + U h ψ∇(∇u.∇b).∇v + U h ψ(∇u.∇b)∆v = U h (∇u.∇b)∇ψ.∇v + U h ψ∇b T ∇(∇u T )∇v + U h ψ∇u T ∇(∇b T )∇v + U h ψ(∇u.∇b)∆v = U h (∇u.∇b)∇ψ.∇v + U h ψ∇b T D 2 u∇v + U h ψ∇u T D 2 b∇v + U h ψ(∇u.∇b)∆v.
Therefore, due to cancellation of some terms, we get:

∂Ω ∇ τ u.∇ τ v = U h ψ∇u T D 2 v∇b + U h ψ (∇u.∇v)∆b + U h (∇u.∇v)∇ψ.∇b - U h ψ∇u T D 2 b∇v - U h ψ (∇u.∇b)∆v - U h (∇u.∇b)∇ψ.∇v.
Thus, we have:

∂Ωn ∇ τ u n ∇ τ v - ∂Ω ∇ τ u∇ τ v = U h ψ∇u T n D 2 v∇b n - U h ψ∇u T D 2 v∇b + U h ψ(∇u n .∇v)∆b n - U h ψ (∇u.∇v)∆b - U h ψ∇u T n D 2 b n ∇v + U h ψ∇u T D 2 b∇v - U h ψ(∇u n .∇b n )∆v + U h ψ(∇u.∇b)∆v + U h (∇u n .∇v)∇ψ.∇b n - U h (∇u.∇v)∇ψ.∇b - U h (∇u n .∇b n )∇ψ.∇v + U h (∇u.∇b)∇ψ.∇v = (A n -A) + (B n -B) -(C n -C) -(D n -D) + (E n -E) -(F n -F ).
Let us study the convergence of each of these six terms:

1) Convergence of A n -A to 0:

We have:

U h ψ∇u T n D 2 v∇b n - U h ψ∇u T D 2 v∇b = U h ψ   d i=1 d j=1 ∂ i u n ∂ ij v∂ j b n - d i=1 d j=1 ∂ i u∂ ij v∂ j b   = d i=1 d j=1 U h ψ [∂ i u n ∂ ij v∂ j b n -∂ i u∂ ij v∂ j b] . As ∂ i u n n --→ ∂ i u and ∂ j b n n --→ ∂ j b in L 2 (U h ), we get ∂ i u n ∂ j b n n --→ ∂ i u∂ j b in L 1 (U h ). Since ψ∂ ij v ∈ L ∞ (U h ), we obtain ψ∂ i u n ∂ ij v∂ j b n n --→ ψ∂ i u∂ ij v∂ j b in L 1 (U h ), therefore we get U h ψ∇u T n D 2 v∇b n - U h ψ∇u T D 2 v∇b = d i=1 d j=1 U h ψ [∂ i u n ∂ ij v∂ j b n -∂ i u∂ ij v∂ j b] n --→ 0.
Hence, we get the aimed convergence:

A n -A n --→ 0. (41) 
2) Convergence of B n -B to 0:

In this point, we have: (42)

3) Convergence of C n -C to 0:

Applying the same procedure as before, we have:

U h ψ∂ i u n ∂ ij b n ∂ j v - U h ψ∂ i u∂ ij b∂ j v = U h ψ   d i=1 d j=1 ∂ i u n ∂ ij b n ∂ j v - d i=1 d j=1 ∂ i u∂ ij b∂ j v   = d i=1 d j=1 U h ψ [∂ i u n ∂ ij b n ∂ j v -∂ i u∂ ij b∂ j v] .
As

∂ i u n n --→ ∂ i u and ∂ ij b n n --→ ∂ ij b in L 2 (U h ), we get ∂ i u n ∂ ij b n n --→ ∂ i u∂ ij b in L 1 (U h ). Since ψ∂ j v ∈ L ∞ (U h ), we obtain ψ∂ i u n ∂ ij b n ∂ j v n --→ ψ∂ i u∂ ij b∂ j v in L 1 (U h ), thus we get U h ψ∂ i u n ∂ ij b n ∂ j v - U h ψ∂ i u∂ ij b∂ j v = d i=1 d j=1 U h ψ [∂ i u n ∂ ij b n -∂ i u∂ ij b] ∂ j v n --→ 0.
Therefore, we reach our target:

C n -C n --→ 0.
(43) 4) Convergence of D n -D to 0:

We have: Step 2. Uniform bound of v n in H(Ω):

By the uniform bound C shown in Proposition 3.2, we can deduce a uniform bound with respect to the parameter n ∈ N, with the necessity of Ω to be in O defined in section 4, so that we have ∥v n ∥ H(Ω) ≤ C.

Step 3. Showing the convergence of v n to v (the solution on Ω) in H(Ω):

Assume that it is not the case. Then there exists a subsequence (v k ) k∈N of the sequence (v n ) n∈N , and there exists β > 0, such that ∥v k -v∥ H(Ω) ≥ β > 0. But we know that v k is bounded in H(Ω), hence there exists v ∞ ∈ H(Ω) and a subsequence (v p ) p∈N of the sequence (v k ) k∈N , such that v p ⇀ v ∞ weakly in H(Ω) as p → ∞. 

+ ∂Ω ∇ τ v ∞ .∇ τ φ = Ω f φ,
since A p and B p converge to Id and J p goes to 1 when p → ∞. Therefore, v ∞ is a solution of (1) in H(Ω). By uniqueness of the solution and since v is the only accumulation point, it says that v ∞ = v. Thus ∀β > 0, we have ∥v p -v∥ H(Ω) ≤ β, which leads to a contradiction.

Proof of Theorem 2

To start the proof, we have to gather Lemma 5.5 with Proposition 7.1, so that we get

- ∂Ω ∂ n u v = ∂Ω ∇ τ u.∇ τ v,
by the uniqueness of the limit. Moreover, making integration by parts on the right-hand side, we obtain: ∀v ∈ W 2,∞ (B), ∂ n u = ∆ τ u on ∂Ω.

Hence, we deduce that u is the unique solution of problem [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] in Ω. Furthermore, as u is the only accumulation point of the sequence (u n ) n , we deduce from Corollary 4.2 that the whole sequence converges strongly to u in H 1 (B).

3 2 (

 2 Ω) (see Propositions 3.2 and 4.1). Then in Proposition 4.2, we show the existence of an extension operator from H
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 3 
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 22233 We define the extension vector ∇ τ u ∈ L 2 (B) outside ∂Ω as ∇ τ u := ∇u -(∇u.∇b)∇b. ♢ For a fixed ε > 0, let us introduce the class of open sets: O ε = {Ω open set, Ω has the ε-cone property}. ♢ One can refer to [2, p.54] to see more details about this set. Moreover, we have the following theorem proved in [2, p.56]. An open set Ω with a bounded boundary has the ε-cone property if and only if it has a Lipschitz boundary. Let us now state a result in A. Henrot and M. Pierre book (see [2, Theorem 2.4.10, p.59]). Theorem 4 Let Ω n be a sequence of open sets in the class O ε . Then there exists an open set Ω ∈ O ε and a subsequence Ω n k that converges to Ω in the sense of Hausdorff, in the sense of characteristic functions, and in the sense of compacts. Moreover, Ω n k and ∂Ω n k converge in the sense of Hausdorff respectively to Ω and ∂Ω. Let us introduce the following domains: Definition 2.4 (Sobolev domains).

3 2 3 2Proposition 4 . 2 3 2 (Ω) into H 3 2

 334233 (Ω) (with a uniform constant in the Lipschitz norm of Ω). Proposition 4.1 On the set O, there exist M > 0 such that ∥u∥ H (Ω) ≤ M . Proof: We use the uniform bound in H(Ω) and Necas property. □ Let Ω ∈ O. Then there exists an extension operator from H (B).

Corollary 4 . 1 3 2 3 2 3 2 3 2

 413333 Let Ω ∈ O. Then there exists M > 0 and ũ an extension in H (B) of u the solution of (1) in Ω, such that ∥ũ∥ of Corollary 4.1, we have Corollary 4.2 Assume, for a given topology T on O, that Ω n n --→ Ω, where Ω n and Ω are included in B and belong to the set O. Let u n be the solution of (1) on Ω n and ũn its extension to B. Then ∥ũ n ∥ H (B) is uniformly bounded. By consequence, there exists ũ ∈ H (B) such that ũn ⇀ ũ in H (B).

Remark 4 . 1 H 3 2 3 2

 4133 In the following, we will denote by u n (respectively u) the restriction to Ω n (respectively Ω) of ũn ∈ (B) (respectively ũ ∈ H (B)), where Ω n and Ω are in O.

□ 5 . 2

 52 Localization in Ω (the limit set) As a consequence of Theorem 4, we can derive this lemma: Lemma 5.2 Let (Ω n ) n be a sequence of uniformly Lipschitz open bounded sets that converges in the Hausdorff sense to a Lipschitz open bounded domain Ω. Let f ∈ L 2 (B) and v ∈ L 2 (B). Then we have B

Proposition 6 . 1

 61 Let (Ω n ) n be a sequence of uniformly Lipschitz open bounded sets, that converges to a uniformly Lipschitz open bounded set Ω, in the Hausdorff distance sense, and let B be a large ball containing Ω n and Ω. Then we have: b Ωn L ∞ (B) ----→ b Ω . In particular, for p ≥ 1 we have b Ωn L p (B) ----→ b Ω .

6. 3

 3 W 1,p convergence of the signed distance functions for uniformly Lipschitz domains, 1 ≤ p < ∞ Proposition 6.3 Let (Ω n ) n be a sequence of uniformly Lipschitz open bounded sets in R d , that converges to a Lipschitz open bounded set Ω, in the Hausdorff distance sense. Let B be a large ball containing all these domains. Then, we have for 1 ≤ p < ∞ b Ωn W 1,p (B) -----→ b Ω .

  and Θ := arg min y∈∂Ω d(x, .) = {y ∈ ∂Ω | d(x, y) = d(x, ∂Ω)}, and define the functions g n , n ∈ N, on B, such that: ∀x ∈ B, g n (x) := inf yn∈Θn, y∈Θ d(y n , y).

Figure 2 :

 2 Figure 2: The projection of point x on ∂Ω n and ∂Ω.

Figure 3 :

 3 Figure 3: Tabular neighborhood of the boundary ∂Ω n locally.

Figure 4 :

 4 Figure 4: Curvatures of ∂Ω n0 and ∂Ω at points x n0 and x 0 respectively.

Figure 5 :

 5 Figure 5: The perturbed domain

  0 . . . . . . 0 0 1 . . . . . . operator in the same basis can be written as

ψ

  (∇u n .∇v)∆b n -U h ψ (∇u.∇v)∆b = U h ψ [(∇u n .∇v)∆b n -(∇u.∇v)∆b] .As ∇un n --→ ∇u in L 2 (U h ) (hence in L 1 (U h )) and ψ∇v ∈ L ∞ (U h ), we get ψ∇u n .∇v n --→ ψ∇u.∇v in L 1 (U h ). Since ∆b n n --→ ∆b in L ∞ (U h ), we obtain ψ [(∆b n ∇u n -∆b∇u).∇v] n --→ 0 in L 1 (U h ), therefore we have U h ψ (∇u n .∇v)∆b n -U h ψ (∇u.∇v)∆b = U h ψ [(∆b n ∇u n -∆b∇u).∇v] n --→ 0.Thus, we get the desired convergence:B n -B n --→ 0.

ψ- 5 )

 5 (∇u n .∇b n )∆v -U h ψ (∇u.∇b)∆v = U h ψ [∇u n .∇b n -∇u.∇b] ∆v. As ∇u n n --→ ∇u and ∇b n n --→ ∇b in L 2 (U h ), we get ∇u n .∇b n n --→ ∇u.∇b in L 1 (U h ). Since ψ∆v in L ∞ (U h ), we obtain ψ [∇b n .∇u n -∇b.∇u] ∆v n --→ 0 in L 1 (U h ), therefore we have U h ψ (∇u n .∇b n )∆v -U h ψ (∇u.∇b)∆v = U h ψ [∇u n .∇b n -∇u.∇b] ∆v n Convergence of E n -E to 0:In this point, we have:U h (∇u n .∇v)∇ψ.∇b n -U h (∇u.∇v)∇ψ.∇b = U h ∇ψ. [(∇u n .∇v)∇b n -(∇u.∇v)∇b] . As ∇u n n --→ ∇u in L 2 (U h ) (hence in L 1 (U h )) and ∇v ∈ L ∞ (U h ), we get ∇u n .∇v n --→ ∇u.∇v in L 1 (U h ). Since ∇b n n --→ ∇b in L ∞ (U h ), we get ∇ψ.∇b n n --→ ∇ψ.∇b in L ∞ (U h ).Hence, we obtain (∇u n .∇v)∇ψ.∇b n -(∇u.∇v)∇ψ.∇b n --→ 0 in L 1 (U h ). Therefore we get U h (∇u n .∇v)∇ψ.∇b n -U h (∇u.∇v)∇ψ.∇b n --→ 0.

  Now, writing (48) as∀φ ∈ H(Ω), Ω A p ∇v p .∇φ + ∂Ω B p ∇ τ v p .∇ τ φ = Ω J p f φ,and passing to the limit when p -→ ∞, we get:∀φ ∈ H(Ω), Ω ∇v ∞ .∇φ

)

  Lemma 5.5 Let (Ω n ) n be a sequence of uniformly Lipschitz open bounded sets that converges in the Hausdorff sense to a Lipschitz open bounded set Ω. Let (u n ) n≥1 be a sequence of solutions of (1) defined in H

	3
	2

Hence we have (Ω n ), and let u be its limit in H 3 2 (Ω). Then, for all v in W 1,∞ (B), we have:

where X Ωn and X Ω are the classical characteristic functions defined in L 1 (B). (Ω n ), and let u be its limit in H 3 2 (Ω). Then, for all v in W 1,∞ (B), we have:

by Lemmas 5.2 and 5.3

□ To end this subsection, we prove the following lemma which will be crucial in the proof of Theorem 2:

Hence, we get the aimed convergence:

(45) 6) Convergence of F n -F to 0:

We have:

Therefore, we deduce that

Hence, we get:

□ 8 The proofs

Proof of Theorem 1

Consider the sequence of vector fields

We define the sequence of diffeomorphisms (Φ n ) n , by Φ n : R d -→ R d with Φ n := Id + h n , so that we have

The proof is divided into 3 steps:

Step 1. Transforming the solutions onto the fixed domain Ω: First of all, let us give the variational formula of (1) on the moving domains Ω n :

Then, we transform the solutions of (1) into a fixed domain Ω, using the inverse of the transformation function Φ n . Let us set the following notations:

where J n and J σ n are the volume and the surface Jacobian, respectively. Then, transforming the integrals in equation (47) from Ω n into the fixed domain Ω, we get: (48)