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A post processing method to solve the problem of Disjoint Component Analysis in the case of Secondary Surveillance Radar replies separation

Nous proposons une méthode de post-traitement pour résoudre le problème de séparation par analyse en composantes disjointes (DCA) dans le cas de signaux SSR complexes. DCA est un critère de séparation aveugle de sources réelles qui minimise de la disjonction entre des sources. L'adaptation pour des données complexes du critère a montré de bonnes performances en cas de mélange de signaux SSR, mais l'algorithme utilisé est coûteux en calcul. Nous avons donc proposé d'utiliser une des versions réelle de l'algorithme qui présente parfois a un des problèmes suivants : la répétition d'une des sources estimées, l'ajout d'une relation linéaire entre les sources estimées et donc la perte d'une source en fin de séparation, voire deux sources non-séparées. Nous ajoutons donc une étape finale basée sur des considérations d'algèbres linéaire pour récupérer les signaux perdus. Cette méthode est comparée à d'autres algorithmes de la littérature.

Introduction

Blind Source Separation (BSS) consists of separating a set of mixed signals into their original source signals without knowing the sources nor the mixing processes. BSS is used in a variety of applications, such as speech recognition, image processing, and biomedical signal analysis. Separation can be based on different measures such as source independence as in ICA [START_REF] Comon | Independent component analysis, a new concept[END_REF] and its enhanced version fast-ICA [START_REF] Hyvarinen | A fast fixed-point algorithm for independent component analysis[END_REF], or the temporal correlation as in [START_REF] Cardoso | Blind beamforming for non-gaussian signals[END_REF], Constant-modulus property as in [START_REF] Van Der Veen | Separation of zero/constant modulus signals[END_REF] and finally the Disjointness of signals [START_REF] Anemüller | Maximization of component disjointness: A criterion for blind source separation[END_REF].

Our research focuses on the source separation from the secondary surveillance radar (SSR), which operates in a questionresponse mode. The radar operates with two types of response, namely mode A/C that allows the exchange of the aircraft's identity and altitude, and mode S that enables the transmission of longer messages (i.e. more information). Nowadays, the two modes co-exist and have different characteristics, making the separation problem quite difficult.

P. Comon was the first to apply source separation to mode A/C using ICA [START_REF] Chaumette | ICA-based technique for radiating sources estimation: application to airport surveillance[END_REF], while AJ. van der Veen later proposed the AZCMA algorithm that use the Zero/Constant Modulus properties of the replies to separate two or more mode S replies [START_REF] Van Der Veen | Separation of zero/constant modulus signals[END_REF]. An extension of the AZCMA algorithm, the MS-ZCMA, and an algorithm based on the Manchester encoding of the data, the MDA, were later proposed to solve a mixture of only mode S replies [START_REF] Petrochilos | Algebraic algorithms to separate overlapping secondary surveillance radar replies[END_REF]. In [START_REF] Zhou | Improved blind separation algorithm for overlapping secondary surveillance radar replies[END_REF], M. Zhou proposed an extension to overcome the MDA's weakness for large time delays between the leading and trailing reply, then a simplified version was proposed in [START_REF] Eg | Improved MDA, a case for de-garbling SSR mode S replies[END_REF]. Note that these algorithms can only separate a mixture of mode S. In [START_REF] Petrochilos | Separation of SSR signals by array processing in multilateration systems[END_REF], the problem of a mixture of various modes (A/C +S) was resolved via an oblique projection method based on non-fully overlapping replies using the Extended Projection Algorithm (EPA), and later in [START_REF] Belloir | Application du DCA aux radar secondaires de surveillance[END_REF], an exhaustive method based on DCA and Givens rotations was proposed to solve the same problem, which is more robust than EPA but computationally intensive.

DCA is a criterion for measuring the overlap between signals, this criterion is designed for real-valued signals separation. The implementation uses either a gradient based optimizer [START_REF] Anemüller | Maximization of component disjointness: A criterion for blind source separation[END_REF] to converge to the separation parameters or suite of a Givens rotations [START_REF] Kenji | On disjoint component analysis[END_REF] to find the optimal direction of separation. In this paper we propose a post processing method to solve the SSR signals separation problem when using the real version algorithm of DCA [START_REF] Anemüller | Maximization of component disjointness: A criterion for blind source separation[END_REF] on the complex-valued signals by converting the complex-valued signals into real-valued signals.

The following section presents the data model and the different DCA algorithms as well as our proposed method. We then compare the performance of the different algorithms via simulation.

Data Model

We consider the linear mixing model of p sources received on p antennas as follow:

X = M S + N (1) 
X, S and N made up of k samples and p sources (size of the matrices equal to p × k), where X is the observed mixed signals, S is the original signals, N is the noise vector and M is an unknown mixing matrix of size p × p. The reconstruction of the estimated source from the observation X is performed as follow:

Y = W X ≃ S (2)
with W is the separation matrix of size p × p and Ŝ are the estimated sources.

In SSR Mode S, the message transmitted is either 56 (short) or 112(long) bits of information encoded by a Manchester code with a symbol period equal to 1 µs A bit equal to 0 is coded by a rising edge [0,1], and a bit equal to 1 by a falling edge [START_REF] Comon | Independent component analysis, a new concept[END_REF]0]; preceded by an 8 µs preamble: p = [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0] followed by the encoded data : b S = [p, b 1 , b 2 ,..., b 56 / b 112 ] of total length equal to 128 (short) or 240 (long) bits corresponding to 64 or 120 µs. The preamble is used to synchronize the received signal in time (detection of the start of a packet). The signal is then modulated by pulse amplitude modulation (PAM) and has the following form:

b S (t) = 127/239 n=0 b[n]p S (t -nT ) (3) 
where T=1 µs and ps(t) is a rectangular pulse. Before emitting the signal, the ICAO requires to up-convert the signal to the frequency f o = 1090 MHz, with a ±1 MHz tolerance. After down-conversion to base band, a residual frequency f r remains, adding a progressive phase rotation to the transmitted symbols. The received base band signal become:

s(t) = gb(t)exp(j2πf r t) (4) 
where g contains the received power and a phase which is the bulk delay at the reception of the first symbol.

Algorithms for the DCA criteria

In [START_REF] Anemüller | Maximization of component disjointness: A criterion for blind source separation[END_REF] a source separation method is proposed for real signals which is based on the maximization of the disjointness between each sources (the minimization of the overlap between the sources):

H(W ) = 1 2 i̸ =j O ij = 1 2 i̸ =j E(|Y i ||Y j |) (5) 
with E(.) the mathematical expectation. If two estimated sources {i, j} are disjoint, then O ij will be equal to 0. The criterion to be minimized will be the sum of all the O ij . The minimization is performed based on gradient descent optimizer (DCA-RGD) with a renormalization to avoid converging to the zero solution.

Another algorithm for real-valued signals was proposed in [START_REF] Kenji | On disjoint component analysis[END_REF], this algorithm is based on real Givens rotations (DCA-RGR). It minimize the DCA criterion in one direction at each time by rotating the data pairwise, where it uses the Golden section method to estimate the rotation angle that minimize O ij .

In [START_REF] Belloir | Application du DCA aux radar secondaires de surveillance[END_REF] the criterion was extended to complex-valued data, this algorithm is based on complex Givens rotations (DCA-CGR) which parameters are estimated by an exhaustive search. Due to this, the algorithm is computationally expensive but it demonstrates the effectiveness of DCA complex criterion in separating SSR signals.

The DCA performs well for SSR sources because H(W), eq.5, is time-independent. Assume two overlapping SSR replies, as in fig. 1: on the left side, the replies are represented as they are received, while on the right side we reshuffles the time axis so that when one source is null, it is pushed to either side. By doing so, the value of H(W) remains unchanged, but the right representation reveals partially disjoint sources. 

Proposed Method

We consider the case of two complex-valued mixed signals, i.e SSR. Since DCA-RGD only deals with real-valued signals, we convert each complex signal into two real signals by separating their real and imaginary components. This yields a total of four real signals, two for each complex signal, on which we apply DCA-RGD.

It delivers either the desired output or one of the problems: missing source or correlated sources, signal loss which can be seen as a repeated output or the rest of a mixed signal, and correlated signal that can be seen as a linear dependency.

We propose a post-processing method based on linear algebra, that use singular value decomposition (SVD) to ensure the linear independence of the separated signals (in case of correlated sources), and Gram-Schmidt orthogonalization (QR decomposition) to recover any lost signals.

First, to detect any remaining mixed signal, as in fig.

(2.c), we have a test that counts the number of zeros in each signal. Mixed signals are distinguished by their relatively higher number of non-zeros, typically higher than ≈ 500 compared to separated signals. If a mixed signal is detected, we remove it from Y and we form Y S of size (3×k) containing only the desired output. We recover the missing output by performing a QR on the compound matrix [Y T S X T ] (see eq. 6). Then, we subtract from a basis space of X, a basis of the space spanned by the separated signal, Y S , to obtain the lost signal. The resulting matrix X 4 (of rank one), which main vector is orthogonal to the previously obtained sources (eq.7), this vector is combined with Y S to obtain the correct four separated signals. 

QR = [Y T S X T ] = Q 1 Q 2 R 1 R 2 0 R 4 (6) 
Y S = Q 1 R 1
X = Q 2 R 4 + Q 1 R 2 X = Q 2 R 4 + Y S R -1 1 R 2 X 4 = X -Y S R -1 1 R 2 = Q 2 R 4 (7) 
The second test calculates the cross-correlation between output signals. Depending on its value, we either detect a repeated signal (see fig. In the later case, we simply remove the repeat to form Y S (3 × k). In the former case, We use a SVD on the three linearly dependant sources to extract a basis of the space range, which is used with the last output signal to form again Y S . The last output source is recovered by the means of a QR with eq. (6-7) in a similar fashion as in the test 1. 

Simulation

We simulate two long mode S responses where its real and imaginary parts can be represented by a chopped cos(.) and sin(.) functions, with residual frequencies of ±50 kHz, received on a 2-elements antenna array with a direction of arrival (DOA) of {60,120}. We set a threshold of 6 dB for the output Signal-to-Interference-and-Noise-Ratio (SINR), considering the algorithms fail if the SINR falls below this threshold.

Comparing both real implementations, DCA-RGD and DCA-RGR, on SSR signals with a SNR equal to 20 dB for 1000 runs, the failure rates of these two algorithms (see tab.1), are categorized. Most of DCA-RGR failure are signals not separated (computationally expensive to fix), whereas in DCA-RGD the failure is mostly a repetition or a linear relation between the estimated source (easy and cheap to fix), therefore we use our post-processing method on the DCA-RGD result. The high failure rate of the real-data DCA is due to the fact that the algorithms are feed the cosine and sine versions of the same chopped complex source, therefeore the criteria H(W) cannot resolve them properly since they have the exact same time support (and no disjointness). 4 shows the failure rates of Fast ICA, Fold MDA, DCA-CGR, DCA-RGD and our proposed method DCA-RGD+PP in function of the input SNR. We calculate the Zero-Forcing method which can serve as a reference method, by knowing the exact separation matrix. All methods fail for input SNRs lower than 5 dB. However, the success rate gradually increases as the SNR becomes higher, eventually resulting in a complete success for high SNRs. DCA-RGD fails constantly at a rate of 30% for all SNR which confirms the improvement between DCA-RGD and DCA-RGD+PP. Fig. 5 presents the subtraction of the output SINR from the input SNR for all methods. Except of Fast-ICA, all algorithms performs well for separating mode S responses. Moreover, as shown in [START_REF] Petrochilos | A zero-cumulant random variable and its applications[END_REF], the mode S of SSR is pseudo-gaussian, which leads to additional failures for ICA-based algorithms depending on the experimental conditions. Since Fold-MDA cannot handle mode A/C, we conclude that DCA-CGR and DCA-RGD+PP are the most effective algorithms with a difference of less than 1.1 dB from the reference method. 

DCA-RGD

Conclusion

In this paper we propose a post-processing technique that improves the DCA-RGD failure rate when used with complex data mode S SSR signals. Moreover, when compared with DCA-CGR [START_REF] Belloir | Application du DCA aux radar secondaires de surveillance[END_REF], we reduce by half the processing time, while losing less than one dB for SINR; We therefore manage a good trade-off between processing time and signal quality. We plan to further optimize the processing time by revisiting complex data algorithms such as those in [START_REF] Belloir | Application du DCA aux radar secondaires de surveillance[END_REF], which will naturally incorporate the A/C mode into our algorithm.
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Figure 3 -

 3 Figure 3 -Our method flow chart

Figure 4 -Figure 5 -

 45 Figure 4 -Failure rate as function of input SNR

Table 1 -

 1 The failure rate of DCA-RGD and DCA-RGR categorized into three cases: mixed signals, signal loss, and addition of linear relation Fig.

	DCA-RGR