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Abstract

Introduction

Magnetic resonance imaging (MRI) shows slight spatial variations in brain white matter

(WM). We used quantitative multi-parametric MRI to evaluate in what respect these inho-

mogeneities could correspond to WM subtypes with specific characteristics and spatial

distribution.

Materials and methods

Twenty-six controls (12 women, 38 ±9 Y) took part in a 60-min session on a 3T scanner

measuring 7 parameters: R1 and R2, diffusion tensor imaging which allowed to measure

Axial and Radial Diffusivity (AD, RD), magnetization transfer imaging which enabled to com-

pute the Macromolecular Proton Fraction (MPF), and a susceptibility-weighted sequence

which permitted to quantify R2* and magnetic susceptibility (χm). Spatial independent com-

ponent analysis was used to identify WM subtypes with specific combination of quantitative

parameters values.

Results

Three subtypes could be identified. t-WM (track) mostly mapped on well-formed projec-

tion and commissural tracts and came with high AD values (all p < 10−18). The two other

subtypes were located in subcortical WM and overlapped with association fibers: f-WM

(frontal) was mostly anterior in the frontal lobe whereas c-WM (central) was underneath

the central cortex. f-WM and c-WM had higher MPF values, indicating a higher myelin

content (all p < 1.7 10−6). This was compatible with their larger χm and R2, as iron is

essentially stored in oligodendrocytes (all p < 0.01). Although R1 essentially showed the

same, its higher value in t-WM relative to c-WM might be related to its higher cholesterol

concentration.

PLOS ONE | https://doi.org/10.1371/journal.pone.0196297 June 15, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Foucher JR, Mainberger O, Lamy J,

Santin MD, Vignaud A, Roser MM, et al. (2018)

Multi-parametric quantitative MRI reveals three

different white matter subtypes. PLoS ONE 13(6):

e0196297. https://doi.org/10.1371/journal.

pone.0196297

Editor: Quanquan Gu, University of Virginia,

UNITED STATES

Received: September 27, 2017

Accepted: April 10, 2018

Published: June 15, 2018

Copyright: © 2018 Foucher et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The full volume of z-

maps underlying the findings of this study are

available for download in zip-format at figshare

using the following DOI: 10.6084/m9.figshare.

5946781 or can be downloaded directly at http://

www.cercle-d-excellence-psy.org/fileadmin/cep_

files/Neurocrypto/3mapsWM.zip.

Funding: This work was supported by the French

national funding scheme for clinical research

(PHRC 2002 - HUS n˚2898, "Étude anatomique et
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Conclusions

Thus, f- and c-WMs were less structured, but more myelinated and probably more metaboli-

cally active regarding to their iron content than WM related to fasciculi (t-WM). As known

WM bundles passed though different WM subtypes, myelination might not be uniform along

the axons but rather follow a spatially consistent regional variability. Future studies might

examine the reproducibility of this decomposition and how development and pathology dif-

ferently affect each subtype.

Introduction

Although grossly homogeneous, brain white matter (WM) is known for its macro-organiza-

tion in fasciculi and inhomogeneous signal in several magnetic resonance imaging (MRI)

contrasts such as T1, T2
�, and magnetization transfer (MT) weighted images [1,2]. Moreover,

some WM diseases seem to have a tropism for specific regions, e.g. multiple sclerosis for peri-

ventricular WM, adrenoleucodystrophy for the corpus callosum or lysosomal storage disease

for posterior WM except for metachromatic leukodystrophy which affects anterior WM [3].

Lastly, several post mortem biochemical measurements have reported significantly different

lipid content dependent on WM location [4–6]. Thus, there might well be different subtypes

of WM.

Using multi-parametric magnetic resonance (MR) imaging, we looked for these possible

specific subtypes of WM of distinct spatial distribution by a data driven approach. Each

MR parametric map was considered as a kind of "staining" of the same tissue [7]. However,

whereas classical staining is determined by the chemical properties of a tissue, MR parameter

probe its biophysical properties. If different subtypes of WM have a different spatial distribu-

tion, they might be distinguished from one to another by different combinations of these MR

"staining" contrasts. The combination of MR parameter values specific to one such subtype

will be further referred to as "fingerprint".

Standard MRI is difficult to use for this purpose: it gives only a relative signal intensity, the

signal is weighted by various MR parameters, and is biased by B0 and/or B1 field inhomogenei-

ties and sometimes other hardware imperfections. Conversely, quantitative MRI allows the

absolute measurement of selected MR parameters, e.g. R1 or R2, without bias from other

instrumental or tissue parameters. In other words, it allows quantifying physical properties of

a tissue. Beside R1 and R2, other physically independent parameters are of interest for WM. In

our case, diffusion tensor imaging (DTI) was first used to calculate axial and radial diffusion

(AD and RD). These two parameters are supposed to be related to tissue microstructure which

has already been shown to be inhomogeneous [8,9]. Second, a gradient echo sequence was

used to measure R2
� from magnitude images which is especially sensitive to static local mag-

netic field inhomogeneity [10]. Phase images of the same sequence allowed to compute

magnetic susceptibility (χm), i.e. the extent to which a material is magnetized by an applied

magnetic field [11]. In WM, χm is known to be negative, i.e. diamagnetic, in proportion to the

myelin and its phospholipids content; conversely iron is paramagnetic and increase χm [11].

Last, MT imaging was used to work out the macromolecular bound proton fraction (MPF)

which reflects the proportion of protons bound to macromolecules in a tissue. In WM this

mostly reflects the amount of myelin [12–14].
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In order to find spatially segregated WM voxels that might share the same fingerprint, spa-

tial independent component analysis (sICA) was used [15]. sICA searched in every voxel the

combination of independent component (IC) accounting for the observed distribution of tis-

sue parameters. Each IC was a specific combination of parameters, i.e. a fingerprint, which lin-

early combines in one voxel to get to the observed tissue parameters and is supposed to be a

subtype of WM. To define these IC, the method assumed that they were spatially independent

from one another. However, "spatial independency" did not precluded that WM IC could par-

tially overlap, i.e. a same voxel being a mix of different WM subtypes. The relative contribution

of each parameter to the subtyping and the redundancy between them have been examined.

The differential effect of age and gender on the observed subtypes was also addressed.

Some above-mentioned parameters were already known to vary in WM according to these

variables. If one or both of these factors, which were not taken into account in this exploratory

analysis, differently affected one or several parameter values of these WM subtypes, this would

strengthen the validity of this decomposition. Such "external validators" are classically used in

psychiatry as a proxy to validate the separation of different clinical categories [16]. We also

explored in what respect this WM subtypes co-segregated with known WM fasciculi. The

meaning of WM subtypes’ fingerprint will be discussed in terms of myelin content and

constitution.

Materials and methods

Participants

This study received ethical approval from the "Comité de protection des personnes—Est IV",

of Strasbourg (n˚05/27 d). It has been performed in accordance with the Code of Ethics of

the World Medical Association (Declaration of Helsinki). Twenty-six controls were recruited

with the aim to represent at best a normal right-handed population: 12 women, age 38 ±9

Y, range 20–58 Y, years of education 13.8 ±2.5 Y, all right handed 90 ±9% according to the

Edinburgh inventory [17]. Subjects were screened to exclude history of neurological or psychi-

atric disorders. Participants gave written informed consent and were remunerated for their

participation.

Imaging protocol

Participants took part in a single multi-parametric imaging session on a 3T Verio system (Sie-

mens, Erlangen, Germany) with a 32-channel receiver head coil. Higher-order shimming was

employed. An automated positioning and alignment of slices using anatomical landmarks

(AAHScout) was used to ensure reproducible slice positioning from one subject to the other.

First, a high-resolution 3D MP-RAGE image was performed: FOV = 224x224x157 mm3,

matrix size = 320x320x224 (0.7 mm isotropic resolution), GRAPPA = 2, TR/TE/TI = 2400/

2.41/1000 ms and flip angle θ = 8˚. Acquisition scan time was 7 min 40 s.

Quantitative R2
� and susceptibility mapping were then conducted using an axial 3D Multi

Echo Gradient Echo (MGRE) sequence. Parameters were: FOV = 256×168×128 mm3, matrix

size = 256×168×128, partial Fourier = 6/8. This protocol resulted in an isotropic resolution

with a voxel size of 1×1×1 mm3. Parallel imaging (GRAPPA) reconstruction factor of 2

was used in the phase encoding direction (R-L) to speed up the acquisition (TR = 37 ms,

TE1 = 2.21 ms up to TE8 = 28.11 ms with delta TE = 3.7 ms, monopolar read-outs, band-

width = 400 Hz/px, θ = 20˚). Acquisition scan time was 5 min 45 s.

R1 mapping was performed using the variable flip angle (VFA) method based on the spoiled

3D GRE (SPGR) sequence [18,19]: FOV = 240x240x160 mm3, matrix size = 192x192x128, i.e.
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1.25 mm isotropic resolution, GRAPPA = 2. TR/TE = 20/2.25 ms and θ = 4 and 25˚. Acquisi-

tion scan time was 7 min 30 s.

For quantitative MT mapping, a whole brain MT-weighted image was acquired using a sagit-

tal 3D Gradient Echo (GRE) sequence (FOV = 240x240x160 mm3, matrix size = 192x192x128,

i.e. 1.25 mm isotropic resolution, GRAPPA = 2, TR/TE1/TE2 = 28/2.25/6.90 ms and θ = 6˚).

Saturation MT pulse was a 12 ms Gaussian pulse, FAMT = 560˚ and Δ = 6 kHz. Reference image

(no-MT) for data normalization was obtained without saturation pulse. To increase signal-to-

noise ratio, averaging of individual echo images was used for MT and reference image. For B0

mapping, we measured the phase difference between TE2 and TE1 MT images [20]. Acquisition

scan time was 8 min 40 s.

R2 mapping was performed using the partially spoiled Steady State Free Precession (pSSFP)

technique [21,22]. Imaging was performed in 3D (with sagittal orientation, H>>F for phase

orientation) and with FOV = 240x240x180 mm3, matrix size = 192x192x144, i.e. 1.25mm iso-

tropic resolution. Scans were performed with non-slice selective excitation pulses (300 μs dura-

tion) of 60˚ nominal flip angle and partial RF spoiling increments of 1 and 20 degrees (TR/

TE = 7/3 ms and bandwidth = 500 Hz/Pixel). Acquisition scan time was 5 min 30 s.

Additionally, whole-brain 3D B1+ maps were acquired to correct for transmit field hetero-

geneities. B1+ maps were obtained using the actual flip-angle (AFI) imaging method based

on a modified spoiled 3D GRE sequence (FOV = 260x260x180 mm3, matrix size = 48x48x36.

FA = 60˚ (300 μs length hard pulses), TR2 = 5TR1 and TR1 + TR2 = 111 ms. TE = 2.75 ms,

bandwidth = 240 Hz/pixel) [23]. Optimal spoiling of transverse relaxation was ensured by

using an improved RF and gradient spoiling scheme as described in [24], assuming an isotro-

pic scalar water diffusion coefficient D = 2.2 μm2/ms. Relevant parameters for spoiling were:

diffusion damping = 0.300, RF spoil phase increment = 129.3˚. Acquisition scan time was 3

min 13 s.

Whole brain DTI was conducted using a 2D RESOLVE sequence with TR/TE1/TE2 =

9400/83/108 ms, α = 90˚, EPI factor = 55, bandwidth = 1136 Hz/Pixel, 20 gradient directions,

and two b values of 0 and 1500 s/mm2. RESOLVE is based on a readout-segmented EPI strat-

egy, allowing minimization of susceptibility distortions and T2
� blurring [25]. Images were

acquired with FOV = 220×220 mm, matrix = 110×110, in-plane resolution 2.0×2.0 mm2, slice

thickness 2 mm, 64 slices, one signal average, and a scan time of 20 min 14 s.

Total scan time was about 60 minutes.

Image preprocessing

All MP-RAGE were visually screened to exclude any anatomical abnormalities and T2 for

white matter hyperintensities, i.e. ARWMC scale score = 0 [26]. All the computations were

performed in MATLAB 12 (The MathWorks, Inc., Sherborn, MA, USA).

R2
� maps were obtained with the 3D MGRE images acquired for QSM evaluation. The

voxel-by-voxel R2
� parameter was evaluated in a two-step procedure. Each R2

� relaxation rate

(in s-1) was calculated with a linear fit on the log-transformed data.

Quantitative susceptibility mapping (QSM) calculation was conducted from the phase of

3D MGRE images in STI Suite version 2.2 (http://people.duke.edu/~cl160/). Before QSM pro-

cessing, complex images from multiple coils were combined in order to obtain a coherent

phase image [27,28]. Mask images were generated from magnitude images by thresholding for

background phase removal. Local phase evolution was estimated by a linear fitting of the phase

images obtained at the 8 different TEs. A 3D-Laplacian operator was then used to perform

phase unwrapping [29]. Background phase removal was performed using V-SHARP method

[29]. Quantitative susceptibility mapping was then calculated from each local tissue phase

Multi-parametric MRI of white matter
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by solving an inverse problem using the iLSQR method [30]. According to previous works

[31,32] susceptibility values were not calibrated on CSF.

R1 (= 1/T1) was estimated voxel-wise by fitting the VFA-model equation [18] to experimen-

tal image data (Section A in S1 Text), with corrections for B1+ inhomogeneities. To account

for insufficient spoiling of transverse magnetization, the correction described in [33] was

applied.

MPF map was obtained using the single-point method [34]. MPF was estimated on a voxel-

by-voxel basis by fitting MT-model equation (Eq. [1], Yarnykh, 2012, Section B in S1 Text) to

experimental MT-weighted and reference image data, with corrections for B0 and B1+ inho-

mogeneities and constrained values of other model parameters: R1f = R1b = R1 = 1/T1, T2b =

9.7μs, T2f = 0.022 T1, k(1-f)/f = 19 cps.

R2 (= 1/T2) was derived from pSSFP image data, using eqs. [3] and [6] from [22] with

corrections for B1+ inhomogeneities (Section C in S1 Text). A rough global T1 = 1.25 s was

assumed for T2 computation [21,22]. T2 maps were thresholded at 150 ms. The relaxometric

value R2’ (= R2
�—R2) was introduced to specifically look for losses due to local field inhomoge-

neities [10,35].

AD, RD, ADC and FA were computed from the diffusion images after rigid registration [9].

Only AD and RD were used in the analysis in order to avoid dependence between the paramet-

ric maps. But ADC and FA could thus be extracted from the region of interest (ROI) of each

subtype defined by the analysis.

All parametric images were spatially normalized using the MP-RAGE for parameter estima-

tion using the Statistical Parametric Mapping toolbox 2012 (Welcome Department of Cogni-

tive Neurology, London, UK). Images were generated without modulation by the Laplacian

and resliced to the lowest resolution, i.e. 2 mm isotropic. Segmentation of WM and GM was

performed on MP-RAGE images. Last, parameters maps, GM and WM images were mildly

smoothed using a 5-mm isotropic kernel, as a compromise between the compensation of

imperfection in the normalization process and the preservation of a reasonable resolution.

Group Independent Component Analysis (ICA)

In order to give the same weight to each parameter map in the multivariate analysis, pictures

from the different modalities were normalized in intensity. Since parametric maps gave abso-

lute measurements, intensity normalization was performed at the group level in order to pre-

serve inter-subject global variance over cohort. Accordingly, for each parameter, the group

average and the group standard deviation of all in-brain voxels were used to scale the image

between -4 to +4 times the standard deviations. These maximal values aimed at avoiding to

give too much weight to possible outliers. Then all parameters’ images of all the participants

were merged together, i.e. the 7 parametric images of each subject, in order to perform a group

analysis (26 subjects x 7 parametric map—7 missing data = 175).

This 4D set was unfolded in order to get a 2D matrix by vectorizing the spatial dimension

as input to the sICA. It was decomposed into N independent spatial maps using the INFO-

MAX algorithm as implemented in the FMRLAB software 2.3 (Swartz Center for Computa-

tional Neuroscience, University of San Diego, San Diego, CA, USA) [36].

As other ICA algorithm, INFOMAX is based on an iterative optimization function and

thus its results might slightly depend on parameter initialization [37]. Moreover, there were

no strong a priori regarding the number of components to extract [38]. Thus, to test for the

consistency of the results, the same analysis was run for N = 20, 40, 60, 80, 100, 120 and 140

components.

To be retained as a WM subtype, the components had to fulfill two properties:
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• To have a distribution of its positive component that spatially overlapped the WM.

• The component had to be shared by the subjects and should not be significantly influenced

by the differences between them. That for we computed the ratio of between-parameters

standard deviation over between-subjects standard deviation. It had to be above 1.5 for the

component to be selected.

Reproducibility among the different decompositions using different number of compo-

nents was evaluated using Fleiss’s kappa (κ) coefficient, which is a generalization of the

Cohen’s kappa for cases with more than 2 judges [39]. WM subtypes of each analysis, i.e. for

different extracted component, were thresholded and converted to binary maps which were

considered as a judgment: WM subtype / not WM subtype. Fleiss κ was computed on these

binary maps which gives us an evaluation of the reproducibility at the voxel level. The proce-

dure was repeated for z� 2 and z� 3.2, the two thresholds used for display and parameter

extraction respectively.

WM subtypes spatial map of each analysis performed at different extracted components

were then averaged to define what would be further referred to as t-WM, f-WM and c-WM.

The "xjView" function was used to display them using z > 2, k > 200 vx, i.e. 1.6 cm3 (http://

www.alivelearn.net/xjview).

To get each component absolute values in their purest form, average fingerprints parameter

values were extracted from the region of interest (ROI) defined by the average spatial compo-

nent thresholded at a z-score� 3.2. Moreover, to minimize the risk of getting mixed values

due to the smoothing process, i.e. GM mixed up with WM values, only non-smoothed maps

were used and were masked by the subject WM segmentation map to keep only voxels with a

probability > 0.8 to be WM.

The contribution of each parameter in the difference between the subtypes was assessed

using Cohen’s d. The cumulative sum of them gave an estimation of the distance between

the subtypes and allowed to estimate the relative contribution of each parameter in their

separation.

In order to see if some parameters were redundant, a cross-correlation was performed

between them within each subtype. We used 2 exploratory thresholds uncorrected for multiple

comparison: α = 0.5, i.e. r� 0.38 for bilateral test, and α = 0.01, i.e. r� 0.48.

The fingerprints of each WM subtype, i.e. their specific combination of parameter values,

were represented on a radar plot together with the one of GM for comparison. Direct compari-

sons between their parameter values were performed using a paired t-test. All p-value below α
= 0.05 will be displayed, but because of multiple testing, only p-values below p� 0.011 should

be considered as significant after correction for multiple comparisons (α = 0.05, 7x3 indepen-

dent tests, Bonferroni method, i.e. family wise error rate correction).

The effect of WM subtype (within subject factor), age and gender, together with the interac-

tions of WM subtype with age and gender, was assessed on each parameter using the general-

ized linear model (GLM) module of Statistica v.10 (StatSoft, Tulsa, OK, USA). We posit that

the decomposition would be further legitimated if one interaction with an external validator

was significant at α = 0.05 for the global analysis. For parameter-wise analysis, although all

p-value below α = 0.05 will be displayed, because of multiple testing, only p-values below

p� 0.019 should be considered as significant after correction for multiple comparisons

(α = 0.05, 7 independent tests, Bonferroni method, i.e. family wise error rate correction).

Last, superposition with known WM fasciculi was achieved using the average white-matter

tractography atlas from 10 adults from Johns Hopkins University [40] of the anterior thalamic

radiations, the corticospinal tract, the inferior fronto-occipital fasciculus, the superior and

inferior longitudinal fasciculus, the uncinate fasciculus, frontal and occipital forceps of the
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corpus callosum. The proportion of track superposition with each WM subtype was computed

using a more permissive threshold of z > 2.

Results

For technical reasons, data were missing. Susceptibility, R2
� and MPF maps were missing for 2

subjects, R1 map for one, and R2 map for another one.

Three white matter subtypes

Three components fulfilled the above-mentioned criteria. These three WM subtypes will be

further referred to as t-WM, f-WM and c-WM for track-, frontal- and central-WM according

to their spatial distribution (see later). The reproducible partitioning in 3 WM components

was obtained for all ICA decompositions when the number of components to be extracted was

set between 60 and 120, tested on every tens. κ values for t-WM were 0.85 and 0.88 (for z� 2

and 3.2 respectively), f-WM had 0.70 and 0.72 and c-WM 0.66 and 0.64, which range from

substantial to perfect agreement at the voxel level on the 4 measurements.

For a number of extracted components between 60 and 120, t-WM explained 4.9 ±0.4% of

the total variance, i.e. all voxels included in the analysis, f-WM: 8.3 ±1% and c-WM: 2.4 ±0.4%.

This made them in the first ten components explaining the largest amount of variance. The

inter-parameter/inter-subject ratios were 4.8 ±2 for t-WM, 6.7 ±2 for f-WM and 2.5 ±0.7 for c-

WM, overly corresponding to a population outcome. The contribution of each parameters to

the separation in the different subtypes is presented in Fig 1. The average relative contribution

of each parameter was between 10–12% except two larger ones for AD and MPF (31% and

21% respectively) and a smaller one for χm (7%). Regarding the cross-correlation tables, there

were no overwhelming redundancy although AD and RD, and RD and R2� were consistently

correlated (see Table 1).

Fig 1. Contribution of the different parameters in separating the subtypes. For each pairs of subtypes, the bars

represent the distance between the subtypes expressed in the cumulative sums of Cohen’s d. The contribution of each

parameter is shown in different color. t-WM showed the largest absolute difference with f- and c-WM essentially

because of large differences in the AD parameter. However, it was virtually of no value to separate f-WM from c-WM.

MPF was also a substantial contributor to subtyping, especially between f-WM from c-WM.

https://doi.org/10.1371/journal.pone.0196297.g001
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The spatial distribution of t-WM (in red, Fig 2) clearly mapped on well-formed parts of

projection and commissural tracts in deep WM, e.g. corpus callosum, corona radiata, extreme,

external and internal capsule. Conversely f-WM (in blue) overlapped with superficial or sub-

cortical WM mainly corresponding to association tracts in the centrum semiovale and was

especially prominent in the frontal lobes. Last, c-WM (in green) corresponded to subcortical

WM arising from the central cortex which essentially mapped the cortico-bulbar and cortico-

spinal tract. All subcomponents were essentially symmetrical and did only marginally overlap

with one another. Full volume of z-maps are available for download (http://www.cercle-d-

excellence-psy.org/fileadmin/cep_files/Neurocrypto/3mapsWM.zip and has a DOI 10.6084/

m9.figshare.5946781).

Fingerprints of white matter subtypes

The fingerprints of each WM subtypes looked very similar in comparison with GM fingerprint

except on diffusion and susceptibility (see radar plot in Fig 3). Nevertheless, the differences

between WM subtypes were very significant on nearly all parameters (see Table 2). t-WM had

the largest AD, ADC, FA, R2
� and R2’ values. f-WM had the largest R1, R2, RD, χm and MPF

values, it was also more likely to be recognized as WM according to SPM segmentation. t-WM

had larger R1, AD, FA, R2
�, R2’ and MPF values than c-WM, whereas the latter had larger RD

values, it was also less likely to be classified as WM. Last, f-WM had larger R1, R2, R2
�, MPF

and FA values than c-WM.

Population averages ± standard deviations of the parameters were computed from the sub-

jects average within the ROIs defined by the average component maps, i.e. t-WM, f-WM and

c-WM thresholded at z = 3.2 (see text). R1, R2, R2� and R2’ are expressed ms-1, AD, RD and

Table 1. Correlation matrix between the parameters within each WM subtypes.

t-WM R1 R2 AD RD Xm R2�

R2 -0.05

AD -0.21 -0.14

RD -0.19 -0.20 0.70

Xm 0.19 -0.17 -0.02 0.10

R2� 0.11 0.32 -0.40 -0.65 -0.36

MPF 0.10 0.44 -0.19 -0.50 -0.34 0.54

f-WM R1 R2 AD RD Xm R2�

R2 -0.21

AD 0.29 0.02

RD -0.03 -0.11 0.50

Xm 0.32 0.02 -0.20 -0.06

R2� 0.00 0.37 -0.42 -0.49 -0.28

MPF 0.34 0.26 0.23 -0.53 -0.27 0.23

c-WM R1 R2 AD RD Xm R2�

R2 -0.53

AD -0.21 0.03

RD -0.11 -0.04 0.63

Xm 0.01 -0.18 0.05 -0.27

R2� 0.02 0.36 -0.48 -0.53 0.08

MPF -0.27 0.42 -0.08 -0.28 -0.09 0.12

Significant values at α = 0.5, i.e. r� 0.38 for bilateral test are in non-shaded boxes, and α = 0.01, i.e. r� 0.48 are shown in black bold font.

https://doi.org/10.1371/journal.pone.0196297.t001
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ADC in μm2/sec, volume susceptibility χm is given in ppb (part per billion), MPF is in percent-

age of bound protons, FA is a fraction, and the probability of WM (pWM) is expressed in per-

centage. The p-values refer to the paired t-test t-WM and f-WM, t-WM and c-WM and f-WM

and c-WM.

The effect of age and gender on the three WM subtypes

The effects of age and gender on the parameters of the different WM subtypes are given in

Table 3. Not only age had a global effect, i.e. an effect that was independent of the WM type,

(F(7,13) = 4.1, p = 0.014) but it also had a differential effect depending on the specific WM

type, i.e. an interaction between age and WM type (F(14,6) = 4.7, p = 0.033). There was no gen-

der effect on the parameters selected for the analysis.

Fig 2. Spatial distribution of the average t-WM (red), f-WM (blue) and c-WM (green). Positive components are displayed on the average MPF map (not

smoothed). z� 2, k� 200 vx (1.6 cm3). t-WM encompassed deep WM regions of well-structured tracts: the corpus callosum, the extreme, external and internal

capsules, the corona radiata, the cerebellar peduncles (superior, middle and inferior), the pons and the mesencephalon. f-WM and c-WM mainly corresponded to

subcortical WM regions: the centrum semiovale including U-fibers in some places. f-WM was mostly frontal while c-WM was essentially central corresponding to

the cortico-bulbar and cortico-spinal tracts.

https://doi.org/10.1371/journal.pone.0196297.g002
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Age had a global effect on MPF showing decreasing values with increasing age (see Fig 4a,

F(1,21) = 10.6, p = 3.8 10−3). FA, which was not part of the original analysis, also came with a

significant age-related reduction (F(1,23) = 9.2, p = 0.006).

Specific effect of age, i.e. significant WM subtype x age interaction, was significant

on R1 and R2
� (F(2,22) = 11.2, p = 1.2 10−4 and F(1,22) = 3.3, p = 0.047 respectively).

Whereas R1 decreased from 20 to 58 years in f-WM, it increased with aging in t-WM and

c-WM (see Fig 4b, f-WM vs. t-WM: F(1,22) = 16.6, p = 5.0 10−4; f-WM vs. c-WM: F(1,22) =

15.9, p = 6.2 10−4). R2
� decreased with aging from 20 to 58 years in t-WM, increased in

c-WM while it remained stable in f-WM (see Fig 4b—t-WM vs. c-WM: F(1,22) = 7.9,

p = 0.010).

Fig 3. Fingerprints of each WM subtypes and GM. The "absolute values" of population average are shown in thick lines and standard deviation in dotted lines on

the polar plot in the middle. Center is 0 except for susceptibility (-20 ppb) and maximal values are displayed on each axis. t-WM is shown in red, f-WM in blue, c-

WM in green and GM in shown as a comparator in black. Boxplots around the central graph give the standard error (SE—solid box) and the standard deviation

(SD—whiskers) of each WM subtype according to the parameter.

https://doi.org/10.1371/journal.pone.0196297.g003
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Although not part of the original analysis, ADC was affected by gender as a general effect

and a specific effect. Average diffusivity was larger in women (F(1,23) = 5.2, p = 0.031). But

gender interacted also with WM type (F(2,23) = 3.5, p = 0.036) with t-WM having larger ADC

values in women than men whereas this factor had impact neither on f-WM (WM1 vs. f-WM:

F(1,23) = 5.7, p = 0.025) nor on c-WM (ns) (see Fig 4c).

Table 2. Parameter values of WM subtypes.

Absolute measurements Comparisons (p-values) Order

t-WM c-WM c-WM t vs. f t vs c f vs c

R1 1.01 ±0.05 1.07 ±0.05 0.98 ±0.05 1.0 �10−7 1.7 �10−5 9.0 �10−11 f-WM > t-WM > c-WM

R2 16.6 ±1.1 17.9 ±0.6 17.2 ±0.8 4.4 �10−6 0.002 1.0 �10−5 f-WM > c-WM > t-WM

AD 1066 ±40 863 ±22 859 ±26 7.0 �10−20 2.4 �10−19 ns t-WM > f-WM = c-WM

RD 441 ±31 497 ±26 482 ±31 2.0 �10−10 1.2 �10−6 4.1 �10−4 f-WM > c-WM > t-WM

Xm -10.4 ±8.7 -1.3 ±2.7 -6.3 ±10.9 6.9 �10−5 0.009 0.048 f-WM� c-WM > t-WM

R2� 21.7 ±0.8 21.1 ±0.6 20.4 ±0.8 1.0 �10−4 2.7 �10−8 1.6 �10−8 t-WM > f-WM > c-WM

MPF 12.4 ±0.5 13.8 ±0.4 12.8 ±0.4 3.5 �10−19 3.7 �10−7 3.2 �10−15 f-WM > c-WM > t-WM

ADC 668 ±36 625 ±23 614 ±28 7.1 �10−7 5.8 �10−8 5.4 �10−4 t-WM > f-WM > c-WM

FA 0.52 ±0.02 0.39 ±0.02 0.40 ±0.02 8.2 �10−24 6.3 �10−21 3.1 �10−5 t-WM > c-WM > f-WM

R2’ 5.0 ±1.2 3.2 ±0.7 3.2 ±0.9 9.5 �10−7 9.5 �10−9 ns t-WM > f-WM = c-WM

pWM 99% ±0.1 100% ±0.1 98% ±0.2 3.0 �10−21 9.3 �10−18 4.5 �10−23 f-WM > t-WM > c-WM

https://doi.org/10.1371/journal.pone.0196297.t002

Table 3. Global and specific effect of age and gender on WM subtypes.

Omnibus

F-value p-value
Age F(7,13) = 4.1 0.014

Gender F(7,13) = 0.6 ns

Type F(14,6) = 891 9.3 �10−9

Type x Age F(14,6) = 4.7 0.033

Type x Gender F(14,6) = 0.9 ns

R1 R2 AD RD Xm R2� MPF

F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value
Age F(1,22) = 0 ns 3.7 ns 0.8 ns 2.7 ns 0.7 ns 0.0 ns 10.6 0.004

Gender F(1,22) = 2.3 ns 0.1 ns 3.5 ns 1.2 ns 0.2 ns 0.1 ns 0.6 ns

Type F(2,22) = 31.4 3.4 �10−9 0.2 ns 21.6 2.4 �10−7 7.5 0.001 2.4 ns 12.7 4.5 �10−5 26.3 4.0 �10−8

Type x Age F(2,22) = 11.2 1.2 �10−4 1.1 ns 2.7 ns 1.4 ns 1.5 ns 3.3 0.047 1.9 ns

Type x Gender F(2,22) = 0.2 ns 0.4 ns 1.9 ns 1.6 ns 0.1 ns 0.8 ns 0.1 ns

ADC FA R2’

F-value p-value F-value p-value F-value p-value
Age F(1,23) = 2.6 ns 9.2 0.006 2.1 ns

Gender F(1,23) = 5.2 0.031 0.6 ns 0.1 ns

Type F(2,23) = 0.1 ns 46.2 1.0 �10−11 2.6 ns

Type x Age F(2,23) = 2.7 ns 2.2 ns 0.6 ns

Type x Gender F(2,23) = 3.6 0.036 0.6 ns 0.7 ns

First row is the GLM omnibus test which took into account all the parameters used in the decomposition, i.e. the one of the second row. Second row gives the result of

the analysis for each of these parameters independently. On the last row, the same analysis was performed on the parameters that were not used in the decomposition.

Global effect, i.e. effect that affected all WM subtypes, are in the white rows. Specific effects were assessed by WM subtype x age and gender interaction (lower rows in

gray). ns: non-significant.

https://doi.org/10.1371/journal.pone.0196297.t003
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Co-segregation of WM subtypes with classical fasciculi

Strikingly, the spatial distribution of WM subtype did not segregate with fasciculi (see Table 4

and Fig 2). The pyramidal tracts for example first ran through c-WM subpart just below the

cortex before getting through t-WM at the level of the corona radiata up to the pons. Similarly,

most anterior callosal fibers were part of t-WM while passing in f-WM areas when approaching

Fig 4. Age and gender effect on MPF, R1, and ADC. a. Upper left graph: Age effect on MPF. All subtypes showed a

similar decrease with aging (F(1,22) = 10.6, p = 4 10−3, no interaction). b. Lower left graph: Age effect on R1. Whereas

R1 decreased with aging in f-WM as for MPF, it increased in t-WM and c-WM (f-WM vs. t-WM: F(1,22) = 16.6,

p = 5.0 10−4; f-WM vs. c-WM: F(1,22) = 15.9, p = 6.2 10−4). There was a differential effect of aging on MPF and R1 in t-

WM and c-WM only. c. Right graph: Gender effect on ADC. Gender had a selective effect on t-WM with females

having larger ADC than males, whereas it had virtually no effect on f-WM and c-WM (t-WM vs. f-WM: F(1,23) = 5.7,

p = 0.025; t-WM vs. c-WM: F(1,23) = 2.3, ns).

https://doi.org/10.1371/journal.pone.0196297.g004

Table 4. Proportion of WM subtype in the main fasciculi.

Track L/R t-WM (%) f-WM (%) c-WM (%)

Antenior Thalamic Radiation R 22% 37% 11%

L 24% 36% 10%

Corticospinal Tract R 58% 1% 50%

L 59% 18% 41%

Inferior Fronto-occipital Fasciculus R 54% 35% 6%

L 45% 55% 1%

Inferior Longitudinal Fasciculus R 45% 15% 9%

L 35% 32% 1%

Superior Longitudinal Fasciculus R 19% 37% 15%

L 18% 35% 9%

Uncinate Fasciculus R 45% 25% 0%

L 35% 52% 1%

Corpus callosum—Frontal forceps 28% 57% 1%

Corpus callosum—Occipital forceps 62% 8% 3%

https://doi.org/10.1371/journal.pone.0196297.t004
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the cortex. There were however exceptions to this rule, e.g. most fibers in the occipital forceps

of the corpus callosum remained within t-WM.

The inferior fronto-occipital, the inferior longitudinal, and the uncinate fasciculi had bal-

anced belonging to t-WM and f-WM. The anterior thalamic radiation and the superior longi-

tudinal fasciculi were more mixed with f-WM predominance while the cortico-spinal tract

was balanced between t-WM and c-WM. The case of the transcallosal fibers was very different

between the frontal forceps (mainly f-WM) and the occipital one (mostly t-WM).

Discussion

The sICA revealed very consistent components which only marginally spatially overlapped

with one another. These spatially congruent WM areas had very reproducible fingerprints

from one subject to another, such that their parameter values were significantly different.

Moreover, some WM subtypes also varied differently according to gender and age on specific

parameters, further suggesting that they might be of distinct kinds. Intriguingly, their spatial

distribution did not segregate with fasciculi, but fibers from the same fasciculi could run gener-

ally through at least two different subtypes.

Interpretation of the different WM fingerprints

Regarding the diffusion parameters, t-WM had the larger AD, ADC, but also the larger FA

which is compatible with well-organized WM bundles [9]. Accordingly it mapped with well-

organized part of known fasciculi. In contrast, both subcortical WM subtypes, the frontal f-

WM, and the central c-WM were located in regions where fibers cross and where the tracks

might be mixed with one another including U-fibers at least underneath the central cortex.

Their higher RD might be best interpreted as fiber crossing rather than reduced myelination

[8]. Both had similar AD but c-WM had a higher FA and a smaller RD which could be inter-

preted as a more organized section of subcortical WM mainly composed of cortico bulbar or

cortico-spinal tracts.

MPF gives the fraction of macromolecular protons in a voxel [34]. Although, myelin mac-

romolecules also consist in proteins [41], lipids seem to be responsible for most of the magneti-

zation transfer contrast [12]. Whatsoever, MPF increases in proportion to the amount of

myelin [42]. Thus both f-WM and c-WM had more myelin relative to t-WM’s organized WM

tracts according to their higher MPF. This is consistent with ex-vivo measurements in humans,

showing 12% more myelin per gram of WM in the frontal WM (f-WM) than the callosal WM

(t-WM) [6].

In WM, susceptibility is primarily determined by two constituents which have opposite

effects. First, the phospholipids of the myelin have a mild diamagnetic property concordant

with the negative χm values of each WM subtypes [11]. Second, the iron atoms unbound to

oxygen have a strong paramagnetic property [11] which partially counterbalance the diamag-

netism of phospholipids and explains most of the differences in χm. The higher χm values of f-

WM fits well with the ex-vivo measurements of higher iron content in U-fibers which are spe-

cially prominent in the frontal WM [4]. Brain’s iron storage proteins, i.e. ferritin and transfer-

rin, are known to be primary stored in oligodendrocytes, the cells that makes myelin [43].

Thus this result suggest that f-WM might contain either more oligodendrocytes or oligoden-

drocytes with higher iron content. Considering that iron content is supposed to be propor-

tional to the metabolism needed to maintain myelin membranes [44], higher χm values of

f-WM are in line with a richest myelin content in agreement with its higher MPF values. c-

WM values might be interpreted similarly, having an intermediate status between f-WM and

t-WM.

Multi-parametric MRI of white matter
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Longitudinal relaxation R1 is an energy dissipative process by which protons’ spins having

been put in a high energy state by the RF pulse will return to their low energy state. Myelin-

rich and/or iron-rich surroundings are known to speed up the process, i.e. to increase R1 [45].

f-WM had the largest R1 which again points toward its higher myelin content and its higher

iron content. However, t-WM had a significantly larger R1 value than c-WM which point

toward the opposite direction relative to MPF and χm results. Thus we might consider other

factors such as the chemical constitution of the myelin. Considering its lipid component, R1 is

especially sensitive to its cholesterol and galactocerebroside content [13,46]. Although MT,

and thus MPF, seems to be impacted in the same proportion by galactocerebroside [13], the

impact of cholesterol appears to be smaller on this parameter [14] which makes it a good can-

didate to explain this MPF / R1 discrepancy. Considering that cholesterol represent about a

third of the myelin lipids and that its molar fraction, i.e. cholesterol / phospholipids, is 20%

larger in t-WM regions, i.e. brain stem and cerebellum, than in c-WM regions, i.e. semioval

center [5], this could well account for the larger R1 in t-WM.

R2 relaxation rate refers to transverse magnetization dephasing which is a pure entropic

process without energy loss. R2 is affected both by macromolecule as it increases with

increased myelination [13]. R2 has also been showed to be closely correlated with brain iron

content although the correlation seemed to be weaker for WM than for GM [47]. Since we

observed the same ordering for R2 values than for MPF and χm values, this strengthens the

idea of increasing macromolecular content from t-WM, c-WM to f-WM and/or oligodendro-

cytic iron content from t-WM, c-WM to f-WM.

R2
� relaxation shares all R2 factors but adds an important one: the role of inhomogeneous

static local magnetic field. This factor played a sufficiently prominent role for R2
� and R2 not

to be significantly correlated. The specific contribution of static local magnetic field is captured

by the parameter R2’ which is the difference between R2
� and R2 [10]. Paramagnetic atoms

such as iron are generally considered to play a fundamental role [47]. But this does not fit with

the present observations as t-WM had the highest R2
� and R2’ values. These higher R2

� values

have already been reported to be unrelated to iron concentration in WM bundle such as the

corpus callosum and optical radiations [1]. Indeed t-WM’s lowest χm values might well explain

this observation: as t-WM had the largest absolute χm value, its static local magnetic field

might be more inhomogeneous than in f-WM and c-WM. This could well account for the larg-

est R2’ of this subtype. Thus, in WM, the nature of this R2’ effect might be related to the dia-

magnetic property of the myelin sheath [11], uncompensated by the paramagnetic effect of

iron.

The contrasting effect of age and gender on WM subtypes

For all WM subtypes, FA values decreased with increasing age in line with previous litera-

ture [48]. As neither AD nor RD were significant, both a slight decrease in AD and an

increase in RD contributed to the decrease in FA. Similarly, MPF values decreased with

aging in accordance with a previous observation [49]. There was no difference between sub-

types. Although age has been reported to impact R1 [50], R2 [51] and ADC [52], these were

non-significant in our analysis. The present failure to detect age-related changes might be

related to the WM regions where age-related changes were assessed. The significant WM

subtype x age interaction showed that R1 reduction could only be observed in f-WM

regions. Thus R1 and MPF pointed toward a myelin loss in f-WM, but there was again a

MPF / R1 dissociation regarding the age effect in t-WM and c-WM. This could fit with the

ex-vivo measurement of cholesterol fraction in human brains, which has been described to

increase with aging [53].
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Although not part of the original analysis, ADC was affected by gender as a general effect

and a specific effect. Average diffusivity was larger in women, an effect that has been inconsis-

tently reported in the literature [54,55]. But this effect was even larger for t-WM. Interestingly

this interaction could explain the above-mentioned inconsistencies between studies as the gen-

der effect appears to depend on the WM subtype.

Significance of WM subtypes

t-WM appeared to be specific to WM implicated in well-organized fasciculi (AD, FA). This

subtype was however the less rich in myelin (MPF), which replicates previous observations of

poor correlation between WM organization and its macromolecular content [42]. According

to its lowest iron content (χm), it might also be the less metabolically active subtype, having the

lowest membrane turnover. According to its position in core pathways, it makes sense for t-

WM to be the more stable subtype. This "organized and stable myelin" might also be richer

in cholesterol (MPF / R1 discrepancy) which also makes sense as cholesterol promotes closer

membrane to membrane contact and allows myelin to be more tightly packed [56] together as

increasing its electrical insulating role [57].

f-WM was the less organized at a macroscopic level (AD, FA), but the richest subtype

in myelin (MPF). According to its highest iron content (χm), it might also be the most meta-

bolically active which might go with a high membrane turnover. The latter might include

cholesterol synthesis (R1) as myelin cholesterol is quite entirely synthesized de novo by the

oligodendrocyte and is energetically costly [57]. This "frontal subcortical WM" was dense but

changing, i.e. adaptive, in line with the fact that they are the latest to mature and are supposed

to be important in the development of higher cognitive functions [58].

Last, c-WM shared some similarity with f-WM. This "central subcortical WM", was also

poorly organized (AD) but more intermediate in its myelin richness (MPF) and its iron con-

tent (χm), which might point toward a slightly lower membrane turnover. It might be poorer

in cholesterol (MPF / R1 dissociation) even though this might increase with age.

Although spatially independent "in essence", WM subtypes slightly overlap, probably not

only due to the image smoothing. This suggests that oligodendrocytes from one or another

subtype might share the same space. Thus, there might be no border but rather a smooth gra-

dation between one subtype to another explaining why high-resolution WM explorations did

not report them already.

Strikingly, the spatial distribution of the WM subtypes did not segregate with fasciculi.

Thus, myelination subtypes appeared to change along the tracts. Within the cortex, using elec-

tron microscope reconstruction of single axons, myelination has already been shown to be

non-uniform along the length of axons [59]. This has led to the assumption that myelination

of one axon was not an all-or-nothing phenomenon but rather dependent on the surrounding

oligodendrocytes. The present results suggest that this might also be true within white matter

areas where the axon might be more tightly wrapped with dense and stable myelin and within

other areas with less packed, but richer and more rapidly renewed or changing myelin.

Limitations should be considered however. First as these results were mainly derived from

an exploratory analysis, they need to be replicated in an independent cohort. This should be

especially considered when studying development or pathologies. Moreover, the decomposi-

tion might be dependent on the parameter maps used as input. Here, AD played a prominent

role in separating t-WM from f-WM and c-WM, but it was virtually of no value to separate f-

WM from c-WM. MPF was also a substantial contributor to subtyping, especially between f-

WM from c-WM. However, all other parameters contributed for at least 10% on average,

except χm which average contribution was of 7% and the redundancy between them was
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limited. Yet it is probable that including other parameters such as proton density [60], multi-

compartment relaxometry [61], neurite density and orientation dispersion index [62] and

perhaps even conductivity and permittivity [63], might further refine WM subtyping. Our

"external validators" can only be considered as poor proxies for the validity of these subtypes.

Appropriate validation might come from the use of high resolution WM explorations.

Last, it has been estimated that one 2x2x2 mm voxel contains between 0.5 to 5 million

axons, and about 0.7 million oligodendrocytes [64]. Accordingly, the above MRI measure-

ments only gave an average for each voxel whereas within the voxels, the discrepancies

between association fibers and projection fibers remain. The disentangling of these two

hypotheses will need histological approaches.

Conclusions

Multi-parametric quantitative MRI allowed to separate three subtypes of WM. t-WM, con-

sisted in the most compact and structured parts of projection and commissural tracts. It was

less myelinated and less renewed but with a myelin that might be richer in cholesterol, more

compact and isolating. Conversely f-WM, the frontal subcortical WM, was less macroscop-

ically structured, but the richest in myelin and its iron richness pointed toward a high mem-

brane turnover which might favor plasticity. c-WM, the central subcortical WM, shared many

properties with the frontal subtype, although it was less prone to renewal and possibly less rich

in cholesterol. Although age had a general impact on myelination, the structured and the cen-

tral subcortical WM might increase their cholesterol content which might not be the case for

the frontal subtype.

The quantitative nature of these measures can potentially allow inter-scanner reproducibility

and inter-subject comparison for developmental and pathological studies. Although next move

should be to replicate these results, it opens the perspective to refine our understanding of WM

in development and pathologies not as a single entity but according to different subtypes.
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