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Direct Numerical Simulation of Adverse Pressure Gradient

Turbulent Boundary Layer up to Reθ ≃ 8000
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A direct numerical simulation of a moderate adverse pressure gradient turbulent boundary layer
flow on a flat plate was performed on a fairly long domain with a Reynolds number from Reθ ≃ 2000
to Reθ ≃ 8000. The mean streamwise velocity profile does not exhibit a clear log region even at
the highest Reynolds number. The Reynolds stresses exhibit a well defined peak in the outer
region which moves away from the wall before to stabilise at a wall distance y of 0.45 boundary
layer thickness after evolving over 20 local boundary layer thicknesses. These outer peaks are the
consequences of an excess of production over dissipation and they all scale with the shear stress
velocity for wall distance 0.2δ < y < 0.85δ. The different terms of the Reynolds stresses equations
are analysed in the outer region and the analysis confirms that the leading terms are the same as
for a zero pressure gradient turbulent boundary layer except that the production and dissipation
are not negligible in the outer region. The most significant contribution of scales smaller than two
Taylor scales is on the pressure strain term of the shear stress equation. The probability of the
occurrence of small scale vortices conditioned by the presence of an ejection or a sweep shows that
the shear stress contained in ejections is associated with the production and transport of near wall
vortices away from the wall. The local mean shear generated by the sweeps increases the production
of near wall vortices. Lastly, the large scale structures analysed by means of two point correlations
of the streamwise fluctuating velocity are shown to be strongly modified by the adverse pressure
gradient. The correlation reveals a decoupling between the near wall streaks and the large scale
streamwise structures enhanced by the adverse pressure gradient.
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I. INTRODUCTION

The accurate prediction of a turbulent boundary layer (TBL) remains a significant challenge in many practical
problems including the engineering design of vehicles, internal aerodynamics or turbomachinery. In order to better
understand the physics of such flows, it is natural to first concentrate on flat plate zero pressure gradient (ZPG)
TBL. However, ZPG conditions are nearly never encountered in real-life applications as the majority of flow problems
encounter the effect of complex pressure gradient on flat or curved walls. The applicability of the knowledge from
ZPG TBLs to decelerating boundary layers is still rather limited. Despite many simulations and experiments on
adverse pressure gradient (APG) TBLs, there is still no consensus and clear understanding of the main effects of the
magnitude and upstream history of a streamwise adverse pressure gradient on turbulence statistics and the shape of
large scale coherent structures. Despite many proposals, no universal velocity and length scale are able to successfully
re-scale the turbulence statistics for a wide range of flow parameters. In order to study the effect of these APG flow
parameters, a large variety of experimental and numerical data are needed to cover a wide range of pressure gradients
and Reynolds numbers. A summary of the most important studies is given in Fig. 1. Each case is plotted in a Rotta
Clauser pressure gradient (β = δ1Ue

u2
τ

dUe

dx
) and Reynolds number parameter space.

Most of the detailed databases have been obtained for adverse pressure gradient flows in equilibrium (see [1–3])
either for weak pressure gradient or very strong pressure gradient to focus on the condition before or at the edge of
separation. One of the first DNS of APG TBL was performed by Skote et al [1] but the two cases are restricted to
low Reynolds numbers and weak pressure gradients (β ≃ 0.24 and (β ≃ 0.65). Lee & Sung performed DNS with
3 approximately constant pressure gradients for momentum Reynolds numbers Reθ of the order of 1300 [2]. The
evolution of the pressure gradient in the transition region is documented and the Reynolds stress profiles are analysed
in the near-equilibrium region. An outer peak of streamwise root mean square velocity fluctuation was observed for
the largest pressure gradient case (β ≃ 1.68) but this peak does not exceed the inner peak. Gungor et al [4] compared
APG TBL evolving from a moderate to a strong adverse pressure gradient (small to large defect cases) with ZPG
TBLs and channels. The momentum Reynolds number reached in this DNS of non-equilibrium APG TBL is around
5800 in the downstream region where the pressure gradient is β = 40. The Reynolds stress budget is analysed in the
near wall and the outer region. One of the conclusions is that the magnitude of the mean shear appears to be the main
reason for the increase, in relative importance, of the outer layer activity in APG TBLs. The authors also conclude
that the ”big outer-layer structures dominate the inner layer in the large-defect case in a way that the spectra do not
exhibit the streak-related inner peak, but the streaks would nonetheless be present”.
The numerical simulations with the highest Reynolds can only be reached by LES. A recent wall resolved LES of

near equilibrium APG TBL at Reynolds number up to Reθ ≃ 8700 with mild adverse pressure gradient (β = 1.4)
has been performed by [5]. The self-similarity of the outer region using the Zagarola-Smits and an alternative scaling
based on edge velocity and displacement thickness was investigated. A large enough Reynolds number is necessary to
decouple the effect of the pressure gradient in the buffer region from the outer region. Marquillie et al [6] have shown
that a strong peak of production in the adverse pressure gradient region was due to the strengthening of the near-wall
streaks instability [7] but the Reynolds number was too low and the pressure gradient was evolving too rapidly to
study the evolution of the peak of turbulent kinetic energy.
The aim of the present work is to generate a new DNS database of APG TBL at a moderate pressure gradient

at the highest possible Reynolds number in order to analyse the origin, the evolution and the scaling of the peak of
the Reynolds stresses and to analyse how the streamwise large scale structures are affected by the APG. The present
DNS of APG TBL is at the largest Reynolds number achieved by DNS for a moderate APG. The APG is strong
enough to generate a clear outer peak but is not too strong to preserve a significant wall shear stress and turbulence
production in the near wall region. As can be seen in Fig. 1, several experiments are available at higher Reynolds
numbers and similar pressure gradients (see [8–10]). The present DNS was designed to have approximately the same
APG magnitude as the experiment of Cuvier et al [10] but with a wider range of almost constant β. The fact that
the turbulence is documented along all the APG regions allows us to compare the DNS and the experimental case of
Cuvier et al which encounter a different history but a similar magnitude of APG.

II. NUMERICAL SIMULATION

A DNS of APG turbulent boundary layer on a flat plate was performed on a fairly large domain with a Reynolds
number up to Reθ ∼ 8000. The DNS was simulated using an inlet condition for velocity from a precursor DNS
of ZPG TBL at Reθ ∼ 2200 (see [18]). As the ZPG DNS used to generate the inlet conditions was on a smaller
domain, the inlet velocity fields have been extrapolated in the normal direction and periodized by a factor of 4 in the
spanwise direction. However, to avoid the exact repetition in the results because of the duplication of inlet planes,
a spatial-temporal noise of small amplitude was added to the inlet velocity components similar to the numerical
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FIG. 1. Summary of the important experimental and numerical studies of turbulent boundary layers in a pressure gradient (β)
vs. Reynolds (Reθ) parameter space [1, 2, 4, 5, 8–17]. The list is not exhaustive and the parameters of each dataset have been
extracted from the information of the corresponding papers. The (β, Reθ) curve is however indicative as the evolution of the
two quantities is not always documented. When the (β, Reθ) range was not available, the case is represented by a single symbol
with the parameters at the location at which the statistics are provided. The DNS are indicated with solid circle symbols, the
LES with solid square symbols and the experiments with open diamond symbols. Each line corresponds to a single case.

forcing used by Schlatter et al [19]. The temporal and spanwise cutoff scales of the added random signal were fixed
at ts = 3.7δo/U

o
e and zs = 0.6 where δo and Uo

e are the boundary layer thickness and the external streamwise velocity
at the entrance of the simulation domain. Ue is computed from the mean spanwise vorticity as in Kitsios et al. [3]
and the boundary layer thickness is defined as the wall distance at which mean streamwise velocity represents 99% of
the external velocity Ue.
In order to generate the adverse pressure gradient, a wall-normal suction velocity has been prescribed at the far-field

boundary condition parallel to the wall. This boundary condition has been proposed by Kitsios et al.[3] based on a
potential flow solution in an expanding duct and then it was corrected to compensate for the boundary layer growth.
The streamwise (UPF = ∂yψPF ) and wall-normal (VPF = −∂xψPF ) components of the potential flow were calculated
by derivation of the stream function ψPF = Arm+1sin(γ) along with the centerline of the duct where the constant
A is a scaling parameter, r2 = x̂2 + ŷ2, m is the exponent of the power law, and γ = (m + 1)arctan(ŷ/x̂), x̂ and ŷ
being the streamwise and wall-normal coordinates respectively (please note that equation (2.2) in Kitsios et al.[3] has
a typographic error but other equations defining the boundary conditions in their paper are in fact correct). Then
the potential flow coordinates (x̂, ŷ) are substituted by the DNS coordinates (x, y) using

x̂ = x− xo, and ŷ = y −K(x− xo) (1)

where K is the growth rate of the displacement thickness, and xo is the virtual origin of the boundary layer which
is estimated by extending back the streamline from the inlet boundary layer edge. Finally, the far-field wall-normal
boundary condition as a function of the streamwise direction (x) is given as

V∞(x) = VPF (x− xo, y∞ −K(x− xo)) (2)

where the subscript ∞ represents the far-field location. The parameter K is the slope of the increasing curve of the
displacement thickness, and the exponent m is obtained by the relationship of m and β proposed by Skote et al.
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(1998) [1]. The scaling parameter A is chosen to ensure that the streamwise potential flow velocity at the edge of
the boundary layer is coherent with the velocity used in the inlet condition. However, this method does not allow
to obtain a perfect constant pressure gradient β along the full simulation domain due to the ZPG TBL inlet which
creates a transition region and to the effect of the outlet in the downstream part of the domain. Neumann Boundary
conditions are used for the streamwise velocity by imposing a zero spanwise vorticity. A fringe region has been applied
on the last 3% of the computational domain in order to force the laminarity of the outgoing flow. For the reason
explained earlier, we choose a moderate pressure gradient comparable in magnitude with an APG TBL experiment
from [10] on a long ramp in the LMFL wind tunnel at Reynolds number up to Reθ ∼ 23000.

The DNS has been simulated using the open-source code Incompact3D developed by Laizet et al [20]. Sixth-order
compact finite difference schemes are used for the spatial discretization and the third-order Adams-Bashforth scheme
for the time advancement using a time step ∆t+ = 0.0125 based on friction velocity at the outlet. The main parameters
of the simulation are given in Table I. The simulation is well resolved on the full boundary layer thickness (the normal
grid resolution at the top of the TBL ∆y+δ is of the order of 4.7). This allows us to perform detailed and accurate
statistics of both large scales and small dissipative scales. A large database of 100TB was recorded with the results
on 70 characteristic times T = δmax/Ue after the transient. It is composed of 211 three-dimensional velocity and
pressure fields as well as a time evolution (every 1.37 wall unit time) of a 3D restricted domain in the downstream
region of the flow (6818 < Reθ < 7582) and three normal-spanwise planes. A snapshot of the spanwise vorticity in
the full simulation domain is shown in Figure 2.

FIG. 2. Snapshot of the spanwise vorticity in a streamwise wall-normal plane on the full simulation domain normalised by
δmax and Ue (the maximum boundary layer thickness at the end of the simulation domain (before the fringe region) and the
external velocity at this location).

Throughout the paper, the streamwise, wall-normal and spanwise directions are referred to as x, y and z, or 1, 2
and 3 for index notation. The corresponding instantaneous velocity components are ũ, ṽ and w̃. The brackets 〈·〉
denote ensemble and spanwise averaging. Furthermore, uppercase and lowercase letters denote the mean value and
the fluctuations, respectively. Thus ũ = 〈ũ〉+ ui = Ui + ui.

TABLE I. Parameters of the APG TBL normalised by the quantities (δmax, uτ ) at the outlet. Nx, Ny and Nz are the
number of grid points in the streamwise, normal and spanwise directions, Lx, Ly and Lz are the dimensions of the domain and
∆x+, ∆y+, ∆z+ the grid resolution in wall unit (∆y+

δ being the normal grid size at the top of the boundary layer of size δmax).
The range of pressure gradient β and shape factor H are given for the streamwise positions such that 2250 < Reθ < 7660.

Reθ 2200− 8000

Reτ 750− 1400

β = δ1Ue

u2
τ

dUe

dx
[1.8− 3.3]

Shape factor H [1.43− 1.83]

Nx, Ny, Nz 6401, 1025, 1280

Lx, Ly, Lz 23.3 δmax, 2.9 δmax, 2.33 δmax (86.8 δo, 10.8 δo, 8.7 δo)

∆x+, ∆y+

min, ∆y+

δ , ∆z+ 5.1, 1.0, 4.7, 2.4
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III. REYNOLDS STRESSES

The mean streamwise velocity profiles of APG TBL are plotted in Fig. 3 at several streamwise positions and
compared with the profiles of ZPG TBL at comparable Reynolds numbers. As already observed, the APG leads
to a reduction of the log region and an extension of the wake region as compared to the ZPG case at the same
Reynolds (either Reθ or Reτ ) [21]. A detailed analysis of the log-law scaling using a diagnostic plot indicates that the
profiles exhibit no clear plateau but rather a maximum that moves toward the wall for the lowest Reynolds numbers
(Reθ < 3000) and then moves away from the wall like the square root of Reθ when moving downstream. This peak
does not seem to flatten for any Reynolds numbers indicating that no log region can be identified even at Reθ > 7000.
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FIG. 3. Evolution of the mean velocity profiles at several streamwise positions (a) and the equivalent diagnostic plots to
visualise the “log” region (b). The statistics from ZPG TBL of Sillero et al [22] at Reθ = 4000 (Reτ = 1307) and Reθ = 6500
(Reτ = 2000) are plotted for comparison.

As already noticed for APG turbulent boundary layers (see e.g. [21, 23]) a second outer peak of the streamwise
Reynolds stresses increases with the Reynolds and with pressure gradient to exceed the first inner peak in our case.
The inner peak is only weakly affected by the APG as can be seen in Figure 4a) which includes a comparison of
Reynolds stresses of zero pressure gradient TBL at equivalent Reynolds numbers. The same behaviour has been
observed by Gungor et al [4] with their low deficit (moderate APG) case which is comparable to the present case.
It is only with a stronger APG that the outer structures and the reduction of the mean shear starts to significantly
affect the turbulence statistics of the inner region. The three normal stresses and the shear stress components are
presented in Figure 4. The position of the outer peak seems to evolve identically when moving downstream which
indicates a common physics for all velocity components. The magnitude of the outer peaks of each Reynolds stresses
increases and stabilises at the streamwise location at which Reθ > 6500. Lozano et al [24] have hypothesised that
the wall is not the element that organises the momentum-carrying eddies in wall turbulence, whose intensities and
sizes are controlled instead by the mean production rate of turbulent kinetic energy with no explicit reference to
the distance to the wall. As a consequence, they proposed a characteristic velocity scale based on the shear stress
u∗ =

√

−〈uv〉 and tested this scaling on channel flows with different mean velocity profiles obtained by different
boundary conditions. In the present results of APG TBL, the Reynolds stress profiles normalised by the shear stress
velocity u∗ are constant for wall distances 0.15 < y/δ < 0.8 and for all streamwise positions. These constant values
2, 1.3 and 1.8 for the streamwise, wall-normal and spanwise Reynolds stresses respectively are the same as for zero
pressure gradient TBL of Sillero et al [22] at similar Reynolds numbers (not shown).

In order to understand the physics associated with the growth of the outer peak, the Reynolds stress tensor budget
has been computed along the full simulation domain. Starting from the Navier-Stokes equations, the Reynolds stress
transport equations can be obtained in the form

∂〈uiuj〉

∂t
+ Uk

∂〈uiuj〉

∂xk
= Pij + Tij +Dij +Dρ,ij +Φij − ǫij (3)



6

(a)

100 101 102 103

y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u
+

(c)

100 101 102 103

y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

v
+

Reθ = 2250, β= 1.75
Reθ = 3000, β= 2.68
Reθ = 4500, β= 3.15
Reθ = 6500, β= 2.87

Reθ = 7000, β= 2.75
Reθ = 7660, β= 1.80
Reθ =4000, ZPG (Sillero et al)
Reθ =6500, ZPG (Sillero et al)

(b)

100 101 102 103

y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

−u
v
+

(d)

100 101 102 103

y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
+

FIG. 4. Reynolds stresses profiles at several streamwise positions. The statistics from ZPG TBL of Sillero et al [22] at
Reθ = 4000 (Reτ = 1307) and Reθ = 6500 (Reτ = 2000) are plotted for comparison.

where the left-hand term is the advection and the right-hand terms are defined as follows:

Pij = −〈ujuk〉
∂Ui

∂xk
− 〈uiuk〉

∂Uj

∂xk
, (4)

Tij = −
∂〈uiujuk〉

∂xk
, (5)

Dij = ν
∂2〈uiuj〉

∂xk∂xk
, (6)

Dρ,ij = −
1

ρ

(

∂〈ujp〉

∂xi
+
∂〈uip〉

∂xj

)

, (7)

Φij =

〈

p

ρ

(

∂ui
∂xj

+
∂uj
∂xi

)〉

, (8)

ǫij = 2ν

〈

∂ui
∂xk

∂uj
∂xk

〉

. (9)

Pij is the production, Tij is the turbulent transport, Dij and Dρ,ij are the viscous and pressure diffusion, Φij is the
pressure strain and ǫij is the dissipation. The budget of the turbulent kinetic energy (TKE) equation k = 1

2
〈uiui〉 is

obtained by contracting i and j in the above equations.
The two main components of the turbulent kinetic energy budget (production and dissipation) and their sum (the

TKE source) are plotted in Fig. 6 for 3000 < Reθ < 7000. As the production is mainly controlled by 〈uv〉∂U/∂y the
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outer peak of the production starts to form at Reθ = 4000 at the same time as the peak of 〈uv〉 and other Reynolds
stresses components. The emergence of an outer peak of dissipation is delayed to Reθ > 5000 which corresponds
to 7 local boundary layer thicknesses downstream. Further downstream, both production and dissipation exhibit an
outer peak but the production always exceeds the dissipation on a wide range of wall distances from 0.2δ to 0.85δ.
The source terms (production + dissipation) which supply the outer peak of kinetic energy corresponds to 20% of
the production in this range. Due to a slight vertical shift of the production peak (y ≃ 0.5δ) with respect to the
dissipation peak (y ≃ 0.4δ), the maximum source peak stabilises near 0.55δ.

As can be seen from the Reynolds stress profiles, the outer peak appears near y+ = 100 at Reθ = 3000 and moves
away from the wall to stabilise before the end of the simulation. For mild APG TBL in equilibrium, the outer peak of
turbulence intensity has been located at 1.3 displacement thickness (δ1) or 0.4 to 0.5 boundary layer thickness (δ) from
the wall (see e.g. [3]). In the present case of APG out of equilibrium, the peaks of all Reynolds stresses profiles are
shown to evolve similarly to reach this wall distance at a streamwise position of the order of 20 local boundary layer
thicknesses defined by xδ(x) =

∫ x

0
δ(x′)−1dx′ (see figure 7a) after the start of the adverse pressure gradient (x = 0 in

our case). This evolution is in accordance with the experimental results of Cuvier et al [10] for a similar APG TBL
over a long ramp at higher Reynolds numbers (Reθ ≃ 23000) although the evolution and magnitude of the pressure
gradient are not exactly the same. As the two APG flows do not encounter the same history of pressure gradient
which extends over a long domain, on which the boundary layer thickness evolves significantly, the choice of local
boundary layer thicknesses to normalise the streamwise position seems more pertinent than the averaged one. The
extent of the simulation being larger than the experimental one (based on xδ), the peaks of Reynolds stresses profiles
continue to move away from the wall to stabilise near 1.5 displacement thickness or 0.45 boundary layer thickness
despite the fact that the pressure gradient starts to decrease at xδ = 20. These results show that, for a mild pressure
gradient, a minimum of 20 local boundary layer thicknesses is needed for the outer peak position to stabilise even
when the pressure gradient does not evolve significantly as in the present DNS case. Even if the streamwise extend
to stabilise the peak of the Reynolds stresses observed for these two cases is similar it would be interesting to check
if it depends on the intensity of the pressure gradient.

The adverse pressure gradient in a TBL creates an inflectional point in the mean velocity profile. This inflection
point has been observed in many experimental and numerical studies [25, 26]. In the large defect case (strong pressure
gradient) Schatzman & Thomas [27] and Kitsios et al. [3] invoked the similarity with mixing layers (see also [28]). It
has been shown that the position of the outer peaks of the Reynolds stresses in APG flows is very close to the most
external inflection point of the mean velocity profile (see [25], [29],[30]). However, Maciel et al [31] reported some
flow regions with small mean velocity defects (corresponding to a shape factor H < 2) where the Reynolds stresses
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0
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have an outer maximum while the mean velocity profile does not have an inflection point. In [32], Maciel et al
report no evidence for the coherent structures indicative of an inflectional instability and suggest that the inflectional
velocity profiles and the outer Reynolds stress peaks could be simply correlated, without sharing a cause-and-effect
relationship. Schatzman & Thomas proposed new length and velocity scales, based on the shear and velocity at the
inflection point [27]. This embedded shear layer scaling was tested by Balantrapu et al [28] in a highly decelerated
axisymmetric turbulent boundary layer. In the present case with moderate pressure gradient (H < 1.82), the mean
velocity gradient being almost constant in a wide range of wall distance, this inflection point is not well defined and it
is not possible to conclude that it coincides with the normal position of the Reynolds stresses outer peak. The scaling
proposed by Schatzman & Thomas was investigated but the uncertainty on the position of the inflection point leads
to a very large uncertainty on the length and velocity scales.

We now analyse in more detail the kinetic energy budget and the Reynolds stress budget at the streamwise position
x ≃ 32δloc (Reθ ≃ 7000) which corresponds to the largest Reynolds number such as the APG is still significant (β of
the order of 3) before to drop. The different terms of the kinetic energy budget and the Reynolds shear stress budget
are shown in Figures 8 and 9. As for the ZPG TBL of Sillero et al at a similar Reynolds number [22], the kinetic
energy budget in the outer region is dominated by the production and dissipation terms which are however larger than
in the ZPG case. The presence of an outer peak of production also leads to a significant negative peak of turbulent
transport surrounded by two positive peaks. The picture for the Reynolds shear stress is simpler as the budget is
dominated by a positive pressure strain term compensated by a negative production of 〈uv〉 (mainly −v2∂U/∂y).

It has been shown in Figs. 4 and 5 that all the Reynolds stress components evolve simultaneously in the outer
region and exhibit the same peak at the same y position which leads to constant profiles over a large wall distance
when normalised with the shear stress velocity profile u∗. As for the ZPG case, the production and pressure strain
terms are responsible for the transfer between the normal components of the Reynolds stresses and the shear stress
and governs the inter-component energy transfer. The leading terms (production, dissipation and pressure strain) of
each component of the Reynolds stress budget in the outer region are compared in Fig. 10a). The shear stress and
〈v2〉 are linked by the production term −〈v2〉∂U/∂y and −〈uv〉∂U/∂y is the mean production term for 〈u2〉. As for
the ZPG case, the evolution of the normal and spanwise Reynolds stresses is dominated by the pressure strain and
dissipative terms. The pressure strain of 〈uv〉 is of the same order as the pressure strain of 〈u2〉 and approximately
twice the same term for 〈v2〉 and 〈w2〉. The 2D spectra of the pressure strain have been analysed by Gungor et al [4].
They conclude that the 2D spectra have similar features in the outer regions of flows with a different pressure gradient,
such as shape and wavelength aspect ratios, as well as relative sizes between energy, production and pressure-strain
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FIG. 7. Evolution of outer peak wall normal position of the Reynolds stresses with respect to the boundary layer thickness
(δ) and the displacement thickness (δ1) for the present DNS of APG TBL (left) and the experimental results of a TBL flow
(Reθ = 23000) over a ramp (right) at −5◦ from [10] with comparable magnitude (although different evolution of adverse
pressure gradient β = δ1Ue

u2
τ

dUe

dx
plotted with dash lines, right axis). xδ is the position in local boundary layer thicknesses from

the start of the APG (x = 0).
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FIG. 8. Kinetic energy budget for the present APG TBL case at the streamwise position x such that Reθ ≃ 7000. (Reτ = 1120)
(a) and for the ZPG TBL case of Sillero et al [22] at Reθ ≃ 6500 (Reτ = 2000).

structures.

In order to distinguish between the contribution of small scales and large scales on each leading term of the Reynolds
stress budget, the same terms have been computed from the large scales u and p obtained by a streamwise-spanwise
2D least square 3rd order spline filter of the original velocity and pressure fields using the LSQBivariateSpline routine
from Scipy which is based on the fitpack library [33]. This filtering was selected for its locality in space and the
sharpness of its transfer function (see [34] for more details about the property of this filter). The filter width, which
corresponds to the spacing of the knots used for the 3rd order splines, is of the order of 100 wall units in x and z
(corresponding to 0.09δ, or approximately two Taylor scales λ at y/δ = 0.5). The filter width was chosen to filter out
the small scales vortices smaller than 2λ in order to highlight their contribution in the Reynolds stress budget. When
comparing the terms computed with the large scales only in Fig. 10b with the terms computed with all scales, i.e.
without filtering (Fig. 10a), the most affected term is the pressure strain of 〈uv〉 which is divided by a factor of two
when the three other pressure strain terms remain almost unchanged. The effect is similar to the production terms
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FIG. 9. Reynolds shear stress budget for the present APG case at the streamwise position x such that Reθ ≃ 7000.

as only the production term of 〈uv〉 (i.e. 〈v2〉∂U/∂y) is significantly reduced when computed with the large scales.
These results indicate an important contribution in the outer layer of small scales into the two leading terms of the
shear stress equation.
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FIG. 10. Leading production (Pij), pressure stain (Φij), and dissipation (ǫij) terms of the Reynolds stress equations at
Reθ ≃ 7000; (a) Terms computed with all scales, (b) same terms computed with the largest scales u obtained by applying a
3rd order 2D (streamwise spanwise) least square spline filter with a filter width of approximately 100+ × 100+ corresponding
to the nodes spacing for the least square spline (see [34] for the transfer function of the filter). The statistics are computed
with the 1315 velocity fields saved on a restricted domain (recorded every 1.37 wall unit time).

The smallest scales in turbulence are usually associated with small scale vortices. In order to make the link between
the ejection and sweep, which are the main components of the shear stress, and the small scales, the two point
correlations between the ejections (respectively sweeps) and the intense vortices, defined as the location where the
Q-criterion (based on the second invariant of the velocity gradient tensor) is larger than a given positive value, have
been evaluated and plotted in Fig. 11 (respectively Fig. 12 ). The ejections (respectively sweeps) are defined as the
regions where −uv > 1.75σu(xo, yo)σv(xo, yo) and u < 0 (respectively u > 0), σu(xo, yo) and σv(xo, yo) being the
standard deviation of u and v at the fixed point (xo, yo). The probability of having a vortex is increased by a factor
of two in a region downstream and above an ejection and reduced below an ejection near the wall for all yo positions
of the ejection. The second column of Fig. 11 demonstrates that this higher probability of having a vortex in a region
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downstream and above an ejection is mainly linked to the presence of an ejection and much less associated with the
presence of a low speed streaks. The correlation conditioned by a sweep is rather different. A significant increase
in the probability of having a vortex around a sweep is observed with a higher probability upstream and slightly
below the sweep. This increase is also observed when conditioned by a high speed streak but with a lower magnitude
and restricted to a region below the fixed point. These results illustrate the fact that the shear stress contained in
ejections is associated with the production and transport of near wall vortices away from the wall and the local mean
shear generated by the sweeps and to a lesser extent by the high speed streaks increases the production of near wall
vortices.
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FIG. 11. Left: Probability of being inside a vortex (defined as Q > 0.03) conditioned by an ejection (−uv >

1.75σu(xo, yo)σv(xo, yo) and u < 0) at the fixed point (xo, yo) normalised by the probability of being inside a vortex without
condition at a fixed point. Right: Probability of being inside a vortex (Q > 0.03) conditioned by a low speed streak which is
not part of an ejection (u < −σu(xo, yo) and −uv < 1.75σu(xo, yo)σv(xo, yo)) at the fixed point. The percentage in the upper
right of each plot corresponds to the fraction of the points satisfying the condition at the fixed point. The results are given
at the streamwise position xo such that Reθ ≃ 7000. The statistics are computed with every other velocity field saved on a
restricted domain and averaged in the spanwise direction and over a streamwise distance of 1.5 local boundary layer thickness
centered on xo.
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FIG. 12. Left: Probability of being inside a vortex (defined as Q > 0.03) conditioned by a sweep (−uv >

1.75σu(xo, yo)σv(xo, yo) and u > 0) at the fixed point (xo, yo) normalised by the probability of being inside a vortex without
condition at a fixed point. Right: Probability of being inside a vortex (Q > 0.03) conditioned by a high speed streak which is
not part of a sweep (u > σu(xo, yo) and −uv < 1.75σu(xo, yo)σv(xo, yo)) at the fixed point. The percentage in the upper right
of each plot corresponds to the fraction of the points satisfying the condition at the fixed point. The results are given at the
streamwise position xo such that Reθ ≃ 7000. The statistics are computed with every other velocity field saved on a restricted
domain and averaged in the spanwise direction and over a streamwise distance of 1.5 local boundary layer thickness centered
on xo.



13

IV. LARGE SCALE STRUCTURES

The increase of the outer peak of turbulence intensity in large Reynolds number ZPG TBL is associated with the
presence of large scale structures of the streamwise fluctuating velocity. Lee [13] has shown that the streamwise
coherence of the u′-structures was increased for mild APG and reduced for stronger APG compared to ZPG TBL.
They attribute the increase of the streamwise length scale for the large-scale u′-structures to the more active merging
event between adjacent u′-structures induced by the increased spanwise length scale of the structures for the APG
flows. These structures can be decomposed on wall attached structures (self-similar or not depending on their height
ly with respect to 0.6δ) and wall detached ones (see [35, 36]). From their study at moderate APG (β ≃ 1.43), Yoon
et al [36] have shown that the attached self-similar structures could be more universal wall motions in the logarithmic
region not strongly affected by a pressure gradient and the non-self-similar are responsible for the strong increase of
the outer peak. Such a decomposition of large scale structures requires a large database with sufficient uncorrelated
fields which was not possible for the present study at a larger Reynolds number.

However, in order to further investigate the large-scale motions, the coherent structures of streamwise fluctuating
velocity have been detected separately in space. Different methods have been proposed for such detection. Solak and
Laval [18] used a simple thresholding technique to detect the structures of the streamwise velocity fluctuation where
the threshold was chosen as the standard deviation of streamwise velocity fluctuation at y+ = 100 to retain a large
fraction of the kinetic energy. Yoon et al. [36] detected the same type of coherent structures from a DNS of APG TBL
(β = 1.43) using a threshold variable with the wall-normal distance. Other methods have been used in the literature
to detect different types of coherent structures [16, 37]. Binary images B⊖ and B

⊕ indicative of negative and positive
streamwise fluctuations are obtained respectively by,

B
⊖ =

{

1 if u′<Cthr σ
100

+

u

0 otherwise
(10a)

B
⊕ =

{

1 if u′>Cthr σ
100

+

u

0 otherwise
(10b)

where σ100
+

u is the standard deviation of the streamwise velocity at y+ = 100, and Cthr is the threshold parameter

which was set to 1. The same reference velocity σ100
+

u has been used as in the ZPG case of Solak and Laval [18]. In the
ZPG case, y+ = 100 corresponds approximately to the beginning of the plateau or the smooth peak which is observed
in the outer region of the boundary layer at high Reynolds numbers. In our APG case, the corresponding threshold is
located at the crest between the inner and outer peaks of the streamwise velocity fluctuation and it is always smaller
than the intensity of the outer peak which is related to the large-scale motions. The volume fraction, momentum and
kinetic energy retained for each type of structure are given in Table II. The volume fraction of the two types of struc-

TABLE II. Streamwise energy, momentum and volume fraction inside the detected structures from eq. (10) in the present APG
case (Reθ ≃ 7200) and ZPG cases of Solak et al. [18] (Reθ ≃ 2000).

Cases Energy Momentum Volume

⊕ ⊖ ⊕ ⊖ ⊕ ⊖

ZPG 34% 43% 26% 31% 13% 14%

APG 43% 41% 33% 31% 13% 12%

tures and the kinetic energy of the low speed ones remain almost unchanged but the kinetic energy of the high-speed
streamwise structures is increased from 34% to 43% by the effect of APG. This observation is in agreement with the
results of Ganapathisubramani et al. [38] where an analysis of the small-scale streamwise velocity fluctuations con-
ditioned on high- and low-momentum shows that low-speed quantities dominate the high-speed ones far from the wall.

Another statistic to study the effect of the APG on the streamwise large scale structures is the two-point correlations
of streamwise velocity fluctuations. The results for the current APG TBL have been compared with the DNS results
of a ZPG TBL at a lower Reynolds number (see Figure 13). The effect of APG is shown to increase the inclination and
size of the large scale structures. Moreover, the shape of the correlation function in the buffer layer upstream of the
fixed point indicates a different organisation in this region with respect to the ZPG TBL. When the fixed point is just
above the inner peak of u (y+o > 50) associated with near-wall streaks the iso-contours extend much more upstream
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of the position xo of the fixed point and the near-wall part of the iso-contours linked to the near-wall streaks clearly
detached from the upper part of the structures (associated with the outer peak of u). The iso-contours also extend
further downstream and away from the wall to reach 0.8δ. In Figure 14, the two-point correlation function of the
streamwise velocity fluctuation conditioned by the sign of u(xo, yo) and normalised by uτ at the fixed point is plotted
for different altitudes yo of the fixed point. These results reveal the different behaviours with high-speed large-scale
structures (when conditioned by u(xo, yo) > 0) which extends more downstream for yo < 100+ and more upstream
for yo > 100+. As both conditioned correlations are normalised by uτ the highest iso-contours show that the variance
of positive u is larger than the variance in the negative one for all wall distances yo. More detailed statistics of each
individual structure would be needed to better assess the effect of APG on these large scale structures. However, such
statistics would require many more uncorrelated velocity fields than available for the current DNS database.
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FIG. 13. Comparison of the iso-contours of the two-point correlation of the streamwise velocity fluctuation at yo = 0.08δ
between the present APG case at Reθ = 7240 (continuous lines) and the ZPG case at Reθ = 2068 (dash-dotted lines) from
[18]. The correlation is normalised by σu(xo, yo) at the fixed point.

V. CONCLUSIONS

A new DNS of APG TBL over a flat plate has been presented. This simulation is long enough to study the evolution
of the Reynolds stress profiles and to follow the growth and stabilisation of the outer peak. This outer peak is located
at the same position for all Reynolds stresses and takes more than 20 local boundary layer thicknesses to stabilise
at a wall distance of 1.3 boundary layer displacement thicknesses or 0.45δ. The Reynolds stress profiles scale almost
perfectly with the shear stress velocity profiles u∗ on a wide range of wall distances from 0.2δ up to 0.8δ, independently
of the Reynolds numbers (streamwise position in the TBL). The Reynolds stress budget shows that, for this moderate
adverse pressure gradient, the leading terms of the equation are the same as for a ZPG turbulent boundary layer.
However, the main difference is a significant production and dissipation in the outer region. The pressure strain which
is responsible for the energy exchange between the three components and therefore the similarity of the Reynolds
stress profiles in the outer region is twice bigger for u2 and uv than for v2 and w2. We have also shown that part of
the pressure strain of uv is due to small scales when the pressure strain for the three normal components of Reynolds
stresses is more controlled by the large scales (scales larger than 100 wall units or two Taylor scales). The correlation
between small scale vortices and the ejection/sweep which play a major role in kinetic energy production shows a
preferable concentration of small scales vortices upstream and slightly below a sweep and downstream and above an
ejection.
The two point correlations of streamwise velocity fluctuations show a strong effect of APG on the upstream part of

streamwise fluctuating velocity inclined structures as compared to the ZPG case and this effect is enhanced for high
speed structures. The size and intensity of low and high speed structures are also different, especially for the case
where the fixed point of the two points correlation is close to the wall. It is however difficult to compare the size of
these large scale structures of streamwise fluctuating velocity with the case of ZPG as their size is strongly related to
their kinetic energy which is significantly increased in the outer region and therefore to the choice or normalisation
of the two points correlation. More detailed and accurate statistics to discriminate between attached and detached
structures would require larger databases which is difficult to obtain by DNS.
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FIG. 14. Iso-contours of the two-point correlations of the streamwise velocity fluctuation u conditioned by u(xo, yo) > 0
(continuous lines) and u(xo, yo) < 0 (dash lines) for APG case at xo such that Reθ(xo) = 7240. The correlations are normalised
by u2

τ at the fixed point (xo, yo). The statistics are computed with every other velocity field saved on a restricted domain and
averaged in the spanwise direction and over a streamwise distance 1.5 local boundary layer thickness centered on xo.
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