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Abstract

Medical signal classification often focuses on one representation (raw signal or

time frequency). In that context, recent works have shown the value of exploit-

ing different representations simultaneously. We propose a regularized end-to-

end trained model for classification in a medical context exploiting both the

raw signal and a time-frequency representation (TFR). First, a 2D convolu-

tional neural network (CNN) encoder and a 1D CNN-transformer encoder start

by extracting embedded representations from the TFR and the raw signal, re-

spectively. Then, the obtained embeddings are fused to form a common latent

space that is used for classification. We propose to guide the training of each

encoder by applying two iterated losses. Moreover, we propose to regularize

the fused common latent space using deep embedded clustering. Extensive ex-

periments on three medical datasets and ablation studies show the adaptability

and good performance of our method for medical signal classification. Our

method makes it possible to improve the classification performance from 4%

to 12% MCC on a transcranial Doppler dataset, when compared with single-

feature counterparts, while giving more stable models. The code is available at:

⋆Fully documented templates are available in the elsarticle package on CTAN.
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1. Introduction

In the past few years, signal processing has taken advantage of different

machine learning techniques to solve tasks such as classification, segmentation,

and denoising among others [1]. It is now well known that convolutional neural

networks (CNNs) are very effective for almost all image-related tasks [2]. The5

common component of CNNs is the use of multidimensional convolution kernels

with learnable parameters, which are able to extract features from the input

images by exploiting their spatial context. However, for temporal-dependent

signals there is no such type of model that has proven to be as effective in a

large range of tasks by directly exploiting the raw signal. A common practice10

for handling these signals is to manually extract a time-frequency representation

(TFR) and then pass it through a 2D CNN [3, 4]. Even though this strategy

can achieve state-of-the-art performance in several tasks, it does not always lead

to good results [5].

In this paper, we focus on temporal-dependent signals and, more specifically,15

on medical signals from the monitoring of cerebral blood flow by means of tran-

scranial Doppler (TCD) for the detection of emboli. We also focus on signals to

monitor heart activity (electrocardiograms, ECGs) for heartbeat categorization,

and brain activity (electroencephalograms, EEGs) for epilepsy seizure recogni-

tion (ESR). These three tasks are important for public health since stroke,20

cardiovascular diseases (which are the leading cause of death and disability

worldwide [6]), and epilepsy (one of the most common neurological diseases)

can be detected using TCD, ECG, and EEG, respectively. Some works have
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tried to solve these tasks by using classic signal processing techniques and ma-

chine learning techniques [7, 8, 9]. However, few works have directly exploited25

the raw signal [10, 5] as handcrafted features (or TFR) are often extracted to

be fed to the different models [8, 11, 12, 13, 14].

Furthermore, inspired from natural language processing (NLP), several meth-

ods have been proposed to exploit the temporal context of time-dependent sig-

nals. These models range from recurrent neural networks [15] and 1D CNNs30

[16, 10] to convolutional deep belief networks [17] and transformers [18, 4]. Even

though different representations (TFR or raw signal) are used to solve the task,

the question of the optimal representation remains open. The current trend is

to use multiple representations of a single signal to solve the task [19, 11], but

few works consider the raw signal as a representation itself, and usually only dif-35

ferent handcrafted features or TFRs are used. What is more, these methods are

often designed for a very particular task, do not exploit the temporal/spectral

complementarity, or are not end-to-end trainable.

Inspired by the aforementioned motivations, we propose a regularized hybrid

CNN-transformer capable of exploiting both the temporal and spectral infor-40

mation through the use of the raw signal and a TFR. More specifically, the

model is composed of four main components. First, two encoders, a 1D CNN-

transformer and a 2D CNN, are used to extract features from the raw signal

and the log-magnitude spectrogram, respectively. Second, a fusion layer takes

the extracted encoding of both of the initial representations to create a common45

encoding, which is then passed through a classifier. Third, to guide the learning

of the encodings of each representation, we propose to use an iterated loss [20].

Finally, in order to enforce clustering in the different latent spaces, we propose

to regularize the model using deep embedded clustering (DEC) [21].

Our main contributions can be summarized as follows:50

• End-to-end joint trained multifeature model, capable of simultaneously

exploiting complementary information of different representations.

• Regularization strategy to guide the learning of the encoding of each in-

3



dividual input representation, thanks to the use of an iterated loss.

• Regularization strategy of the common (fused) feature space, encouraging55

more separable and dense clusters based on deep embedded clustering.

• Extensive evaluation using one private dataset and two public datasets,

validating the effectiveness and adaptability of our proposed method.

The rest of the paper is structured as follows. In section 2 we introduce

the works related to our method. In section 3 we present in detail the different60

components of our method. In section 4 we describe the experimental set-up

that we use to validate our approach as well as the results and their discussion.

Finally, in section 5 we conclude and present the guidelines of our future work.

2. Related works

2.1. Machine learning signal classification65

Drawing on 2D convolutions that are able to exploit the spatial context in

an image, several methods propose the use of 1D convolutions on raw signals

or 2D convolutions on TFR [16, 22, 23]. Lee et al. [16] proposed creating a

multilevel representation of the raw signal to perform audio classification using

1D convolutions with residual connections, average pooling, and fully connected70

(FC) layers. Pu et al. [22] proposed using 1D Morlet filters with learnable

parameters to extract a TFR from the raw signal. Then, they used 2D separable

Morlet filters to get an embedding that is passed through a CNN or deep neural

network (DNN) to perform speaker identification and acoustic event recognition.

Sharan et al. [23] showed that combining different TFRs helps increase the75

classification performance of a 2D CNN model.

Moreover, other types of models such as recurrent neural networks (RNNs)

or deep belief networks (DBN) have been used in signal classification [15, 24, 18,

17]. Indeed, RNNs can take into account the temporal dependencies in a signal

better than CNNs can. Okawa et al. [24] proposed two representations based80
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on the binary encoding of the raw signal amplitudes. They input this to dif-

ferent models (2D CNN, LSTM and bidirectional gated recurrent unit) to solve

various tasks: acoustic event detection, music classification, and speech classifi-

cation. Scarpiniti et al. [17] proposed the use of a DBN for audio classification

and construction site monitoring using as input different handcrafted statistic85

features computed from the mel-frequency cepstral coefficients (MFCC) of the

raw signal.

Furthermore, with the rise of transformers [25] in the NLP community, sev-

eral works have applied these types of models to signal classification [18, 20,

10, 4, 26]. Karita et al. [18] carried out a comparative study using 15 different90

audio speech recognition datasets, showing that transformers can be superior

to RNN models (they outperformed the RNNs on 13 of the datasets). Che et

al. [10] used a 1D CNN to extract features from the raw signal before feeding

them to a transformer encoder in a channel-wise manner with respect to the

output of the 1D CNN. Finally, Tjandra et al. [20] suggested a transformer95

model guided by an iterated loss and feature re-presentation to carry out audio

and video classification. To do this, they extract features from the raw signal

using a mel filterbank, which are then fed to a sequence of transformer modules.

At different levels, the authors re-introduce input features of the model (feature

re-presentation) and make intermediate predictions using the learned features100

at that particular level (iterated loss).

2.2. Multimodality and multiple-feature learning

Multimodality is an important and vast topic of research in the machine

learning community [27]. The global aim is to search for strategies to com-

bine data of different nature in a way that complementary information is well105

exploited. For instance, for video action recognition and audio event classifica-

tion, images and audio can be combined [28, 26]. Ortega et al. [28] proposed

performing emotion recognition using three different modalities: video, audio,

and text. They extracted features from each modality using a DNN and then

fused the obtained representations into a joint representation by concatenation.110
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Akbari et al. [26] extracted features from each modality (video, audio, and

text) using an FC layer, and then passed each feature into a transformer en-

coder. Then, the extracted embeddings were projected in different common

spaces with different granularities (data scale) to complete the classification.

Inspired by the benefits that multiple modalities can bring to classification115

problems, several works have applied these methods to different representations

coming from the same modality. On the one hand, in the computer vision

community, several works have tried to combine different features extracted

from a single image [29, 30]. Zhu and Jian [30] extracted global features from

images using 2D PCA and local features using local binary patterns. They then120

fused these features and passed it through a CNN to perform face recognition.

Mao et al. [29] proposed performing object detection using iterative RELIEF

to select the top three color components of an image in order to obtain three

new images. Then, they fed these three images to a multipath CNN to extract

features and fused them by concatenation. Finally, they projected the obtained125

feature using PCA and passed the resulting feature to a support vector machine

(SVM) classifier.

On the other hand, in the signal processing community, several works focus

on extracting TFRs and other handcrafted features to combine them afterward

[31, 32, 33, 11]. Kim and Lee [31] extracted three TFR (spectrogram, mel-130

spectrogram, and MFCC) from the raw signal, concatenated them and passed

the obtained feature through an LSTM model for power signal analysis. Feng

et al. [32] computed different features from the raw signal (wavelet packet

decomposition, gradient extreme value, fast Fourier transform, etc.) which were

fused by concatenation and passed through a DBN. The DBN outputs were then135

selected by removing redundancy via the maximum information coefficient and

were used for the classification step. Finally, Ahmad et al. Ahmad et al. [11]

used ECG signals to classify heartbeats. They created three different images

from the raw signal (Gramian angular field (GAF), recurrent plot (RP), and

Markov transition field (MTF)) and fused them using two different strategies:140

an early fusion approach (images are fused before an AlexNet model), and an
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intermediate fusion approach (feature extraction by AlexNet from each of the

three images and then fusion of the extracted features before an SVM classifier).

2.3. Regularization in deep learning

Building on Kukačka et al. [34], we can identify different regularization145

types.

First, regularization can be achieved through data. This can be done by

adding some noise or perturbations at different levels [35, 36, 37], by using

dropout [38], or by using normalization [39].

Moreover, regularization can be obtained via the model architecture. One150

can use (dilated) convolutions [40] to obtain lighter models without loss of pre-

diction capacity, or add other components such as skip connections [41] and

residual connections [42].

Otherwise, regularization can be performed through a regularization term

in the loss. Different terms can be added, such as weight decay [43], Jacobian155

penalty [44], Hessian penalty [45], or loss-invariant backpropagation [46].

Other regularization approaches are early stopping [47] and mutual exclu-

sivity [48]. Mutual exclusivity uses the unlabeled samples of a partially labeled

dataset to move the classifier decision boundaries in zones with few samples.

For a more detailed explanation of regularization techniques, we refer readers160

to [34].

3. Proposed method

In this work, we propose a regularized end-to-end multifeature joint trained

model exploiting complementary information of different representations. Regu-

larization is done through: (1) two iterated losses allowing to guide the training165

of each single-feature encoder and (2) deep embedded clustering (DEC) on the

joint embedding space and adapted to a supervised-learning context, allowing to

improve generalization and partially handle imbalanced datasets. Even though

we design our method to be suitable to other architectures and representations,
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Figure 1: Global pipeline of the proposed method. The method has five modules: a feature
encoding module (dotted blue box) composed of one encoder for each input representation,
one guided training module to individually guide their training (dotted yellow boxes), a fu-
sion module (dotted orange box) to create a joint embedding space, a classifier (dotted gray
box) using the obtained joint representation, and a deep embedded clustering (DEC) module
(dotted purple box) to regularize the joint embedding space.

we are going to focus on a hybrid CNN-transformer exploiting both the tempo-170

ral information through the raw signal and the spectral information through a

TFR. In this section, we present in detail each stage of our proposed method.

Let us define some notations. Suppose that we have a dataset composed of

N labeled samples {Xi}i∈[1,N ] and K classes. We suppose that each sample has

two different representations, a raw signal Xi
TE ∈ RL×C composed of L samples175

and C channels, and the TFR Xi
TFR ∈ RF×M composed of F frequency bins

and M time bins. The aim is to investigate the classification task improvement

that can be achieved by using both representations instead of a single one.

3.1. Global pipeline

The global pipeline of the proposed method is introduced in figure 1. It is180

composed of five modules: one encoding module, one fusion module, one guided

training module, one classification module, and one deep clustering module.

The encoder module is composed of two encoders, one for each input feature,
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XTE and XTFR. The raw signal input is encoded by the 1D CNN-transformer

encoder part of [5] denoted ETE , whereas the TFR input is encoded by the 2D185

CNN encoder of the same work, denoted ETFR. The detailed architectures of

both encoders can be found in figure 2. To enable the sum of the two encodings

(fusion strategy), two FC layers (FCTE and FCTFR) project them into spaces

of the same dimension dcom. We denote as HTE = FCTE(ETE(X
TE)) ∈ Rdcom

and HTFR = FCTFR(ETFR(X
TFR)) ∈ Rdcom the projected embeddings of the190

raw signal and TFR, respectively. These embeddings are then used in the guided

training and fusion modules.

Furthermore, we guide the training of each projected embedding using an

iterated loss, as in [20]. The main idea is to have a vanilla classifier using the

projected embedding to perform an intermediate classification. This module195

will be detailed in section 3.2.

Moreover, the fusion module combines the projected embeddings, HTE and

HTFR, of each input feature in a joint embedding space. We propose to ex-

plore two fusion methods, concatenation and weighted sum, to form the joint

representation Hfus :200

• Concatenation:

Hfus = HTE ⊕HTFR

where ⊕ is the concatenation operator. In this case, Hfus ∈ R2×dcom .

• Weighted sum:

Hfus = wTE ×HTE + wTFR ×HTFR

where wTE ∈ R and wTFR ∈ R are two learnable parameters between 0

and 1 such that wTE + wTFR = 1. In this case, Hfus ∈ Rdcom .

This joint representation is then fed to the classification module to perform the

final classification, and to a DEC module to cluster the input samples in the205

joint embedded space. This last module will be detailed in section 3.3.

9



(a)

(b)

Figure 2: Encoder models used to extract embeddings from the raw signal and the TFR. (a)
1D CNN-transformer raw signal encoder. (b) 2D CNN TFR encoder.

3.2. Training guidance: iterated loss

We propose to guide the training of each encoder by using an iterated loss as

in [20]. Hence, during training, two vanilla classification models are trained : one

with HTE as input, while the other one is fed by HTFR. It forces the encoders210

to produce structured intermediate embedding spaces (HTE and HTFR) that

are discriminative enough at this stage. Another advantage is that classification
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remains possible even if one of the input representations is not available. Indeed,

even if one input features is not able to learn enough with the global classification

and with DEC, the iterated loss will guide its training to make its projected215

embedding discriminative enough by itself3.

The classifiers used for each input representation are two consecutive blocks

of one normalization layer and one FC layer for HTE , and one FC layer and

dropout for HTFR. Let us denote by ỹTE and ỹTFR the intermediate classi-

fication outputs of the guided trainings of the raw signal projected embedding220

(HTE) and the TFR projected embedding (HTFR), respectively. The iterated

losses are defined as the cross entropy (CE) loss between the intermediate classi-

fication outputs (ỹTE and ỹTFR) and the true labels of the samples. We denote

them as LTE and LTFR (raw signal and TFR, respectively).

3.3. Regularization through feature clustering using deep embedded clustering225

(DEC)

The last module of our proposed method is the clustering module. This

is done by applying DEC [21] to the joint representation embedding space.

The rationale behind this clustering is twofold. First, we want to improve the

generalization of the trained models by creating a more clustered latent space230

that will be used for classification. Second, we want to handle imbalanced

datasets, which can be done by applying robust clustering methods such as

DEC [49].

The main idea of DEC is to form K clusters using the embeddings obtained

by an encoder model instead of using the original samples. In our particular235

case, we propose to apply DEC to the joint representations H1
fus, . . . , H

N
fus

obtained by the encoder and fusion modules, and the number of clusters is the

number of classes K. We denote as c1, . . . , cK the centroids of the different

clusters, and they are initialized using k-means. The objective of DEC is to

jointly optimize these centroids and the weights of the encoder models.240

3This can be seen as a decoupling of the global classification task and the feature encoding
task.
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Moreover, contrary to the original DEC paper, we avoid the pre-training

stage by introducing a hyperparameter einit, corresponding to the epoch from

which DEC will be activated. The DEC regularization term is defined as follows:

L̃DEC(ec) = 1E(ec)× LDEC (1)

where ec is the current epoch number, E = {e ∈ N/e ≥ einit}, and LDEC is the

DEC loss defined in [21].

The influence of einit is discussed in [49], but the main idea is to choose an

epoch where the joint embedded space starts producing some clusters, in order

to avoid a bad initialization of the centroids using k-means.245

3.4. Final loss function

We aim at achieving supervised classification using two representations of a

signal: the raw signal and a TFR. Therefore, we optimize a CE loss function

between the predicted labels, ỹ, obtained by passing the joint representation

through a classifier (as shown in figure 1) and the true labels, y. We denote this

loss as LCE . The final loss function is optimized using gradient descent and is

defined by combining the different terms mentioned in 3.2 and 3.3:

L = LCE + α× LTFR + β × LTE + γ × L̃DEC (2)

where α, β, and γ are hyperparameters regulating the importance of each reg-

ularization term to the final loss.

4. Experiments

4.1. Datasets250

In order to validate our proposed method, we conducted different experi-

ments using three datasets: one private TCD high intensity transient signals

(HITS) dataset for cerebral emboli classification, one ECG dataset for heart-

beat categorization, and one EEG dataset for epileptic seizure recognition. For
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all the experiments and all the datasets, we computed class weights using the255

Scikit Learn implementation. Without loss of generality, the models used on the

different datasets have the same structure, but the hyperparameters of the archi-

tectures were adapted based on the dataset. Moreover, the core of our method

(multifeature fusion, guided training and DEC regularization) was applied in

the same way for all the datasets.260

4.1.1. TCD HITS dataset

Our main interest is the classification of TCD HITS to help clinicians in

preventing stroke. Therefore, we evaluated our proposed method on a HITS

dataset composed of 1680 HITS extracted from 50 subjects, and distributed in

three classes: 608 solid emboli, 616 gaseous emboli, and 456 artifacts. Each265

HITS sample is composed of an audio file representing the raw signal and an

image representing the logarithmic scale spectrogram. We split the dataset

according to the subjects into three subsets (a subject cannot be in the two

subsets at the same time): one for training, with 58% of the samples, one for

validation, with 34% of the samples, and one for testing, with 8% of the samples.270

It is important to note that the test HITS do not necessarily follow the exact

same distribution as the train or validation ones, as some test signals can have

a length greater than 1400 points, the maximal length observed in the train and

validation sets.4

For more details about this dataset and the pre-processing steps, we refer275

the reader to [5].

4.1.2. ECG dataset

The PTB dataset, composed of 14 552 ECG lead-II signal, focuses on the

identification of myocardial infarction and comprises two imbalanced classes: 1

0506 normal and 4 046 abnormal heartbeats. We used the standardized and280

4This has also an impact on the TFR computation, as more points are used to obtain it.
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pre-processed version from [50]5, and the logarithmic scale spectrograms were

computed as in [5].

Moreover, we split the dataset intro three subsets: train (64%), validation

(16%), and test (20%). The hyperparameters were selected using the validation

set, then the model was retrained by regrouping the train and validation sets,285

to make a fair comparison with other state-of-the-art methods which only used

train/test splits. For more details about this dataset and the pre-processing

steps (padding, normalization, and spectrogram computation), we refer the

reader to [50, 5].

4.1.3. EEG dataset290

We used the Epileptic Seizure Recognition dataset (ESR) [51] from the UCI

repository, composed of pre-processed EEG signals6. For the pre-processing

details, we refer the reader to the description in the official UCI repository. The

dataset has 11 500 samples distributed in five classes (equally distributed): (1)

seizure activity, (2)–(5) no seizure activity. As in most other works, we focus295

on binary classification, where the first class is (1) and the second one regroups

(2)–(5), obtaining an imbalanced dataset.

Each EEG signal is sampled at 178 Hz, and the logarithmic scale spectro-

grams were computed using nfft = 32, noverlap = 4 and a Blackman window.

Finally, for a fair comparison, we proposed to randomly split the dataset300

using 90% of the samples for training and 10% of the samples for testing as in

[14]7.

4.2. General experimental set-up

We studied our proposed approach with three experiments. The objective

of experiment 1 is to highlight the advantage of using the proposed regularized305

5We used the public available versions found at https://www.kaggle.com/datasets/

shayanfazeli/heartbeat
6We used the public available version found at https://www.kaggle.com/datasets/

harunshimanto/epileptic-seizure-recognition
7Because of the structure of this dataset, it is very difficult to obtain a subject-wise

train/test split.
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end-to-end training for multifeature models. The objective of the second and

third experiment is to study the influence of the guided training and DEC

regularization (respectively) on the classification performance of the trained

models.

4.2.1. Training and model parameters310

The training and model parameters used in the different experiments can

be found in tables 1 and 2, respectively. Models (a) and (b) are single-feature

models from [5]: (a) a 1D CNN-transformer model taking as input the raw

signal, and (b) a 2D CNN model taking as input the TFR. Model (c) is a

late fusion model as in [5] using the two previous models (a) and (b) as base315

classifiers. Models (d) and (e) are the models that we propose in this paper, with

the difference that model (d) is not regularized whereas model (e) is regularized

with both DEC and guided training. Models (d) and (e) were trained with two

different intermediate fusion strategies: concatenation and weighted sum (c.f.

column Fusion in table 1). Additionally, all the models were trained with Adam320

optimizer and a batch size of 32 except for the late fusion model, which was

trained with a batch size of 16. In experiment 1, all the models are evaluated,

whereas in experiments 2 and 3, only (e) is studied.

For statistical purposes, all the experiments are repeated 10 times.

4.2.2. Evaluation metrics325

In all the datasets, we evaluated the classification performance of the trained

models using three main metrics: the Matthews correlation coefficient (MCC),

the F1 score, and the classification accuracy. The MCC and F1 score are well

suited for evaluating classification models on imbalanced datasets. For the mul-

ticlass datasets, we used the macro-averaged F1-Score.330

4.2.3. Implementation details

All the codes were implemented using Pytorch and Scikit-Learn. The dif-

ferent experiments were executed on two high-performance computing clusters:

one with 25 heterogeneous machines (each machine with between 16 Gb and 128
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Table 1: Training parameters of the different models. α, β, and γ correspond to the importance
of LTFR, LTE , and L̃DEC , respectively. Cat stands for concatenation and Weight. Sum for
weighted sum. Two versions of our end-to-end trained model are evaluated: one without
regularization, named Ours (No Reg.), and another with the proposed regularization, named
Ours (Reg.). The 1D CNN-transformer and 2D CNN models are single/feature models, taking
as input the raw signal and the TFR, respectively. The other models are multifeature models,
taking as input the raw signal and the TFR. The Late Fusion model is the same as that of
[5] but with different hyperparameters.

Dataset Model Epochs
Learning Weight

α β γ einit Fusion
rate decay

HITS

(a) 1D CNN-trans. 150 0.07 1e−7 - - - - -
(b) 2D CNN 50 0.001 1e−7 - - - - -

(c) Late Fusion 15 0.01 1e−8 - - - -

(d) Ours (No Reg.)
150 0.3 1e−7

- - - - Cat.
- - - - Weight. Sum

(e) Ours (Reg.)
0.01 0.1 0.01 50 Cat
0.001 1 0.1 50 Weight. Sum

PTB

(a) 1D CNN-trans. 150 0.1 1e−7 - - - - -
(b) 2D CNN 50 0.0001 1e−7 - - - - -

(c) Late Fusion 15 0.01 1e−8 - - - -

(d) Ours (No Reg.)
150 0.3 1e−7

- - - - Cat.
- - - - Weight. Sum

(e) Ours (Reg.)
0.01 1 0.0001 50 Cat.
0.01 0.1 0.1 50 Weight. Sum

ESR

(a) 1D CNN-trans. 100 0.3 0.0001 - - - - -
(b) 2D CNN 100 0.001 0.00001 - - - - -

(c) Late Fusion 15 0.001 1e−8 - - - -

(d) Ours (No Reg.)
200 0.3 0.0001

- - - - Cat.
- - - - Weight. Sum

(e) Ours (Reg.) 0.01 1 0.0001 50
Cat.

Weight. Sum

Table 2: Parameters of the models based on the dataset used. We refer the reader to figure 2
for the definition of the model parameters. Models (a), (b), (d), and (e) are the same as those
in table 1. Model (c) from table 1 is not presented here since the base models of (c) are (a)
and (b).

Dataset Model nhead dhid nlayers pdropout nproj draw nconv nfilters dcom Pool

HITS

(a) 1D CNN-trans. 8 64 8 0.1 10 128 2 - - -
(b) 2D CNN - - - 0.2 - - - 64 - Max

(d) Ours (No Reg.)
4 64 4 0.1 10 128 2 64 64 Max

(e) Ours (Reg.)

PTB

(a) 1D CNN-trans. 8 64 8 0.1 10 128 4 - - -
(b) 2D CNN - - - 0.2 - - - 64 - Max

(d) Ours (No Reg.)
4 64 4 0.1 10 128 2 64 64 Max

(e) Ours (Reg.)

ESR

(a) 1D CNN-trans. 4 8 4 0.3 4 64 2 - - -
(b) 2D CNN - - - 0.2 - - - 64 - Max

(d) Ours (No Reg.)
4 8 4 0.3 4 64 2 64 64 Max

(e) Ours (Reg.)
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Gb of RAM, CPUs with 8–32 cores, and different types of Nvidia Quadro RTX335

and Tesla GPUs), and another with NVIDIA Tesla V100 GPUs8. The GitHub

for the PTB and ESR experiments can be found at: https://github.com/gdec-

submission/gdec/910.

4.3. Results

4.3.1. Experiment 1: Advantage of end-to-end training340

The objective of this experiment is twofold: (1) to show the increase in

classification performance yielded by our proposed method, and (2) to compare

our method with state-of-the-art methods on different datasets. To this end, we

trained models (a)–(e) on the HITS, PTB, and ESR datasets. The experiment

results are presented in table 3. We also give the number of parameters of each345

model, as well as the number of multiplication and additions (mult-adds) done

per model and per sample (in billions, G).

First, if we compare the single-feature 1D CNN-transformer (a) and 2D

CNN (b) models with our proposed model we can see that, for all datasets,

our regularized multifeature model (e) outperforms the single-feature models.350

Moreover, the variability of the results is reduced by at least 0.32% in terms of

MCC, hence giving more stable models, except for the weighted sum regularized

model in the HITS dataset.

Second, if we compare our proposed models with other state-of-the-art mod-

els [5, 11, 13, 14], we achieve state-of-the-art results on both the HITS and PTB355

datasets. On the HITS dataset, the best performing model is the proposed regu-

larized multifeature model, outperforming the other models by a margin greater

than 3.61% in terms of MCC. In particular, the regularized model using con-

catenation (intermediate fusion) also reduces the variability by a up to 8.35%.

Moreover, on the PTB dataset, this same model outperforms the other models,360

8For a detailed description of this cluster, we the reader to http://www.idris.fr/jean-
zay/jean-zay-presentation.html

9Username gdec-submission and password Gjaq ∗& ∗K7vq44azu
10Mail: gdec.submission@gmail.com, Password: 1#tU6mKAXqGT8#CY
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Table 3: Experiment 1. Test classification performance of our proposed model and other
state-of-the-art models on three medical datasets: HITS, PTB, and ESR. The results confirm
the appeal and adaptability of our method as it can outperform the single-feature models, 1D
CNN-trans. and 2D CNN, on the three datasets. The proposed method achieves state-of-the-
art performance on two datasets, the HITS and PTB datasets, and excellent performance on
the ESR dataset. The number of multiplications and additions (mult-adds) is given in billions
(G).

Dataset Model Modality
Fusion

MCC F1-Score Accuracy
No. No. mult-

method Parameters adds (G)

HITS

1D CNN-trans. Raw signal
-

79.17± 6.64 84.37± 6.62 85.61± 4.74 766 271 0.173
2D CNN TFR 87.09± 4.31 90.98± 2.95 91.29± 2.96 1 681 923 1.23

Late Fusion [5]

Both

Weight. Sum
84.66± 10.99 88.67± 9.32 89.14± 8.35 27 073 416 19.87

Late Fusion (ours) 87.94± 2.60 91.44± 1.91 91.80± 1.83 2 448 072 1.40
Ours (No Reg.) Cat 84.53± 1.58 89.61± 1.06 89.71± 1.02 4 833 727 1.40
Ours (No Reg.) Weight. Sum 85.93± 1.21 90.56± 0.78 90.58± 0.82 4 876 233 1.40
Ours (Reg.) Cat 91.89± 2.64 94.31± 1.66 94.53± 1.74 4 833 727 1.40
Ours (Reg.) Weight. Sum 88.28± 6.91 91.69± 4.81 92.01± 4.73 4 876 233 1.40

PTB

1D CNN-trans. Raw signal
-

98.31± 0.43 99.16± 0.22 99.32± 0.17 765 876 0.026
2D CNN TFR 97.03± 1.22 98.51± 0.61 98.80± 0.50 1 555 842 0.063

[11]
GAF

Weight. Sum - 98 99.2 9 259 427 -MTF
RP

Late Fusion [5]

Both

Weight. Sum
99.29± 0.21 99.65± 0.10 99.71± 0.08 1 156 732 0.119

Late Fusion (ours) 98.45± 0.49 99.22± 0.25 99.38± 0.20 2 321 594 0.089
Ours (No Reg.) Cat 97.11± 0.43 98.6± 0.22 98.84± 0.18 2 128 820 0.236
Ours (No Reg.) Weight. Sum 97.29± 0.50 98.64± 0.25 98.91± 0.20 2 130 366 0.236
Ours (Reg.) Cat 99.28± 0.11 99.64± 0.05 99.71± 0.04 2 128 820 0.236
Ours (Reg.) Weight. Sum 99.18± 0.25 99.59± 0.13 99.67± 0.10 2 130 366 0.236

ESR

1D CNN-trans. Raw signal

-

95.14± 1.67 97.55± 0.87 98.40± 0.59 109 942 0.008
2D CNN TFR 92.81± 3.53 96.33± 1.88 97.59± 1.35 1 555 842 0.062

[13]
Raw signal

99.09 98.89 98.67 - -
[14] − 98.59 99.39 - -

Late Fusion (ours)

Both

Weight. Sum 97.45± 1.49 98.71± 0.77 99.16± 0.51 1 665 724 0.070
Ours (No Reg.) Cat 93.40± 1.32 96.67± 0.68 97.89± 0.45 1 801 590 0.123
Ours (No Reg.) Weight. Sum 93.01± 2.22 96.45± 1.22 97.77± 0.69 1 803 456 0.123
Ours (Reg.) Cat 96.51± 0.46 98.25± 0.23 98.88± 0.15 1 801 590 0.123
Ours (Reg.) Weight. Sum 96.85± 0.70 98.42± 0.35 98.98± 0.23 1 803 456 0.123

and in particular the model of [11], which uses three features as input whereas

only two are required in our model. Additionally, the model achieves the same

performance as our previously published model [5] but it reduces the variability

by half, giving a more stable model. However, on the ESR data our proposed

regularized model is not able to outperform the state-of-the-art models. Indeed,365

the best performing model is that of [13], outperforming our regularized models

by a margin of 2.24% and 0.47% in terms of MCC and F1 score, respectively.

However, despite not being specifically designed for this particular ESR dataset,

our proposed model still achieves excellent (96.85± 0.70 of MCC) performance

that is close to that of the best performing model (99.09 of MCC).370

4.3.2. Experiment 2: Influence of guided training

The objective of this experiment is to study the importance of guided train-

ing (see α and β in equation 5). To this end, we trained different models without
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DEC (γ = 0) and with the guided training applied at different places: (1) in

the latent space of the TFR only (α > 0 and β = 0), (2) in the latent space of375

the raw signal only (α = 0 and β > 0), (3) and in both latent spaces (α > 0 and

β > 0). Moreover, we varied the importance of each regularization term in the

range: {1, 0.1, 0.01, 0.001, 0.0001}. The first two regularization sub-experiments,

(1) and (2), were trained on the HITS and PTB datasets, whereas the third one

(3) was trained only on the HITS dataset due to resources and energy limita-380

tions. The results of (1) and (2) are presented in figures 3 and 4, and the results

of (3) are shown in figure 5.

First, from figure 3 we can observe that, for both datasets, applying guided

training on the latent space of the TFR encoder yields similar results to those of

the unguided model. Indeed, for the HITS dataset and the weighted sum fusion385

strategy, α = 1e−4 achieves an MCC of 90.28±0.77 compared to 90.49±1.21 for

the unguided model. For the PTB dataset and the concatenation fusion strategy,

α = 0.01 achieves 93.31±3.65 MCC versus 91.83±3.13 for the unguided model,

which represents a bigger gap than with the HITS dataset.

Second, from figure 4 we can see that, for both datasets, guiding the training390

of the 1D CNN-transformer encoder has a beneficial effect on the classification

performance of the model. Indeed, this guiding makes it possible to outperform

the unguided model by a margin greater than 0.84% for the HITS dataset and

6.68% for the PTB dataset. In particular, for both datasets, globally, the im-

portance of LTE (value of β) is not crucial, as different values achieve similar395

results.

Finally, using figure 5, we note that globally, when α ≤ β, the performance

of the models increases, achieving better performance than the unguided model.

Furthermore, we can see that the previous results are still valid when both losses,

LTFR and LTE , are applied. Indeed, for a fixed value of α (importance of LTFR),400

we observe that increasing the value of β (importance of LTE) also increases the

classification performance of the trained models. Moreover, for a fixed value of

β, the classification performance of the different models is relatively stable with

respect to α, especially for large values of β.
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(a)

(b)

Figure 3: Experiment 2. Validation classification performance (MCC) of two end-to-end
trained multifeature models using guided training only on the 2D CNN encoder space, without
DEC (i.e, α > 0, β = 0, γ = 0). (a) HITS dataset, (b) PTB dataset. α corresponds to the
importance of LTFR. Globally, guiding the training of the 2D CNN encoder does not improve
the classification performance of the model considerably with respect to the unregularized
model.

4.3.3. Experiment 3: Influence of DEC regularization405

The objective of this experiment is to study the importance of DEC in the

clinical dataset in the application of interest in our project (HITS). To this end,

we trained different versions of model (e) without the guided training (α = β =

0) and with DEC (γ > 0) on the HITS and PTB datasets. Moreover, we varied
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(a)

(b)

Figure 4: Experiment 2. Validation classification performance (MCC) of two end-to-end
trained multifeature models using guided training only on the 1D CNN-transformer encoder
space, without DEC (i.e., α = 0, β > 0, γ = 0). (a) HITS dataset, (b) PTB dataset. β
corresponds to the importance of LTE . We observe that guiding the training of the 1D CNN-
transformer encoder can considerably increase the classification performance of the model
with respect to the unregularized model, especially in the PTB dataset (imbalanced dataset).

the importance of the DEC loss, γ, in the range {1.0, 0.1, 0.01, 0.001, 0.0001}.410

The results are illustrated in figure 6.

First, we can see that the results for the HITS dataset are consistent with

the results in [49]. Indeed, the HITS dataset is a balanced dataset, and thus the

DEC alone achieves similar results to the unregularized method. However, we

can see that both fusion strategies, concatenation and weighted sum, allow us to415
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Figure 5: Experiment 2. Guided training on the two latent spaces (2D CNN TFR encoder and
1D CNN-transformer raw signal encoder) for the model using concatenation as intermediate
fusion strategy on the HITS dataset. α and β correspond to the importance of LTFR and
LTE , respectively. We see that the guiding of the 1D CNN-transformer encoder is more
important than that of the 2D CNN encoder. Indeed, for a fixed α, when β decreases, the
MCC tends to decrease, whereas for a fixed β, when α decreases, the MCC remains relatively
stable.

achieve a similar or better classification performance when DEC regularization

is applied, with 91.09±1.09 (γ = 0.001) and 90.45±1.43 (γ = 0.1) MCC versus

90.18 ± 1.03 and 90.49 ± 1.21 MCC for the concatenation and weighted sum

fusion strategies, respectively.

Second, we observe that the results for the PTB dataset are also consistent420

with the results in [49]. Indeed, as the PTB dataset is an imbalanced dataset,

DEC allows us to achieve better results than the unregularized models. When

we increase γ (importance of DEC), the classification performance also increases

and the variability decreases. By the same token, the best performing models

are the ones using DEC regularization with 95.07± 3.07 and 95.64± 1.52 MCC425

versus 91.83 ± 3.12 and 91.19 ± 5.09 for the unregularized concatenation and

weighted sum strategies models, respectively.
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(a)

(b)

Figure 6: Experiment 3. Validation classification performance (MCC) of two end-to-end
trained multifeature models using DEC on the common fused space, without guided training
(i.e., α = β = 0 and γ > 0). (a) HITS dataset. (b) PTB dataset. γ corresponds to
the importance of L̃DEC . The results are consistent with [49] as DEC can improve the
classification performance on both datasets, especially on the PTB dataset (imbalanced).

4.4. Discussion

4.4.1. Experiment 1: Advantage of end-to-end training

The results of this experiment prove the effectiveness of our proposed regu-430

larized multifeature end-to-end trained model for medical signal classification.

Our proposed regularization makes it possible to have more clustered latent

spaces, especially for the latent space of the raw signal encoder (guided train-
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ing) and the fused latent space (DEC). To show this, we project the embedded

representations of the different latent spaces on a 2D plane using Uniform Man-435

ifold Approximation and Projection (UMAP)11 [52]. Figure 7 shows the 2D

projections of the different latent spaces on the HITS dataset. As the results

showed, the difference in TFR latent spaces between the regularized and unreg-

ularized models is not evident (silhouette scores of 0.21± 0.05 and 0.19± 0.04,

respectively, on the HITS dataset). However, if we focus on the raw signal en-440

coder latent space and on the fused latent space, the difference is more striking.

Indeed, for the raw signal encoder latent space, the regularized model has a

more separable and clustered structure, which is also shown by the silhouette

score (0.38 ± 0.04 for the regularized model versus −0.03 ± 0.01 for the unreg-

ularized one, on the HITS dataset). Moreover, on the fused latent space, we445

do not observe an important difference between the regularized and unregu-

larized models, with silhouette scores on the HITS dataset of 0.36 ± 0.11 and

0.39± 0.05, respectively12. A similar behavior is observed on the PTB dataset

(see supplementary materials).

What is more, our approach is able to perform similarly or outperform other450

state-of-the-art methods because it takes advantage of the complementarity of

different representations thanks to joint training. Indeed, the two used repre-

sentations (raw signal and TFR) are complementary commonly used in signal

processing (and are not specific to a type of medical signal). Using joint training

with these two complementary features allows each encoder to compensate for455

the weaknesses of the other (similar behavior was studied in [53]). However,

as the results in table 3 show it, joint training is not enough, if the individual

features or latent spaces are not discriminative enough.

Furthermore, we observe that, on the three datasets, one of the single-feature

models is able to outperform the unregularized end-to-end trained multifeature460

11We used the default parameters of the umap-learn library, except nneighbors, which was
fixed to 5

12Although, on the validation samples, the regularized model seems to give a more clustered
fused latent space, with a silhouette score of 0.75±0.06 against 0.71±0.05 for the unregularized
model (see supplementary materials).
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models. Indeed, training the multifeature models with the two input features

makes the latent spaces of each single-feature encoder harder to learn, and thus

penalizing the final classification performance, hence the importance of guiding

the training and using semi-supervised DEC.

By the same token, on the ESR data, our proposed regularized end-to-end465

trained model was not able to outperform the state-of-the-art models. Several

factors can explain this. First, the comparison is not easy to make as [13, 14]

do not give the standard deviation of their evaluation metrics, and thus we are

not able to measure how far our results are from their results. Additionally,

the evaluation strategy is not the same between works: some authors use a470

certain train/test split, and others use cross-validation. Another key point is

that, in this ESR dataset, it is very difficult to perform a subject-wise train/test

split or subject-wise cross-validation as not all subjects have samples for all the

classes, and even those having samples for the same classes do not have the same

quantity. This can lead to overconfident evaluation metrics, as samples from475

the same subject can be both in the train and in the test sets. In addition, the

models of [13, 14] were specifically designed for ESR and optimized for the ESR

UCI dataset, whereas our model was designed for emboli classification on TCD

data, and tested on other medical signal classification tasks. Even so, contrary

to the late fusion models, our approach is easier to train as joint training is480

used, and all the encoders and classification models are trained simultaneously,

whereas in the late fusion models, optimization has to be done separately.

Finally, if we compare the number of parameters and number of mult-adds

(in billions, G) of the best performing models on the HITS dataset, we note

some interesting results. First, on the HITS dataset, our regularized end-to-end485

trained model has a total of 4 833 727 to 4 876 233 parameters versus 27 073

416 parameters for the model in [5]. The former models are able to outperform

the latter model by over 4.3% in terms of MCC while reducing its variability

by 2.07%, and this with 5.6 fewer parameters. The same behavior is observed

for the number of mult-adds, as our proposed model reduces the number of490

operations by a factor of 14. However, this is not observed in the PTB or
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Experiment 1. Test embeddings of the regularized and unregularized models on the
HITS dataset. (a) 2D CNN encoder TFR latent space without regularization, (b) 2D CNN
encoder TFR latent space with regularization, (c) 1D CNN-transformer raw signal encoder
latent space without regularization, (d) 1D CNN-transformer raw signal encoder latent space
with regularization, (e) fused common latent space without regularization, (f) fused common
latent space with regularization. For the regularized model we used α = 0.01, β = 0.1,
γ = 0.01, and einit = 50.

ESR datasets, since our proposed models have between 1 801 590 and 2 130

366 parameters versus 1 156 732 and 2 321 594 parameters for the late fusion

models. The same trend is observed for the number of mult-adds.
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4.4.2. Experiment 2: Influence of guided training495

The results of this experiment revealed the influence of guided training on

the classification performance of the trained models on two datasets, HITS and

PTB.

First, the results show the importance of guiding the training, especially

for the raw signal encoder. Indeed, training both encoders (the 2D CNN TFR500

encoder and the 1D CNN-transformer raw signal encoder) jointly makes the

training more difficult. This can be seen by the performance of the unregularized

models on the three datasets and by the 2D projections of the latent spaces

of the same models (figure 7). Unregularized models are not able to learn

discriminative features from the raw signal, but guiding the training of these505

features increases their discriminative power.

Second, this experiment also gives guidelines on how to choose the values of

α and β. Indeed, we see that for α > β, the classification performance of the

guided trained models tends to decrease. In fact, giving too much importance

to the TFR can reduce performance even in cases where the single-feature TFR510

models have a lower performance than the single-feature raw signal models.

Thus, we recommend users choose α and β such that α ≤ β, since the guiding

of the raw signal encoder is more important than that of the TFR in a joint

training context.

Finally, the results showed that the guiding of the 2D CNN TFR model does515

not always have a significant (positive or negative) impact on the classification

performance of the models. However, the guiding of the 1D CNN-transformer

raw signal model can have a significant positive impact on the classification

performance of the models. Thus, keeping both guiding strategies during train-

ing can be mostly beneficial. Moreover, keeping both guiding strategies makes520

it possible to have more robust models against missing features, since one can

deactivate one encoder and still carry out classification. This is indirectly con-

firmed by the learned latent spaces, where for the different datasets we obtain

latent spaces with test silhouette scores higher than 0.2.
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4.4.3. Experiment 3: Influence of DEC regularization525

The results of this experiment were coherent with the results obtained in the

synthetic dataset in [49].

First, this experiment showed that DEC regularization can help to deal with

a real-life imbalanced dataset, improving its generalization capability.

Second, this experiment revealed that DEC regularization alone is able to530

improve the classification performance of a multifeature model on balanced and

imbalanced datasets: by reducing the variability, it produces more stable mod-

els. Thus, with a good choice of hyperparameters, one is able to improve the

classification performance of the models.

Finally, the results showed that in the worst-case scenario, DEC regulariza-535

tion does not degrade considerably the classification performance of the trained

models, especially for imbalanced datasets. This means that, with our proposed

method, adding DEC regularization with guided training is not problematic

because even when the hyperparameters are not precisely optimized, the final

models can benefit from the whole regularization strategy.540

4.4.4. Limitations

Although our proposed method enables end-to-end training of a multifea-

ture model, achieving great classification performance on several datasets, some

limitations can be highlighted.

First, our method has several hyperparameters that need to be optimized545

(α, β, γ, and einit), which makes the training more difficult. We studied the in-

fluence of these hyperparameters on the classification performance of the models

and [49] give some guidelines on how to select them, but more extensive exper-

iments should be carried out to validate the generality of our method.

Second, we only evaluated our proposed method on two type of features550

and one type of model architecture per feature (2D CNN for the TFR and 1D

CNN-Transformer for the raw signal).

Finally, we focused on medical datasets, which is our main interest, but

more extensive studies can be performed on more datasets of different nature
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(environmental sound recognition, voice recognition, music classification, etc.).555

5. Conclusion and future work

In this work, we presented a regularized end-to-end guided trained classifi-

cation model for medical signals, exploiting both the TFR and the raw signal

through intermediate fusion. The method guides the training of the encoder of

each input representation through two iterated losses, and regularizes the fused560

joint common space through deep embedded clustering. Extensive experiments

and ablation studies show the generalizability of our proposed method to differ-

ent medical signal classification tasks, achieving state-of-the-art results on two

of the three datasets tested, without the need for designing a distinct model

with specific inputs for each dataset.565

As future work, we plan on improving the selection of the hyperparameters

(α, β, γ, and einit) using Bayesian optimization. Moreover, we aim to study

the generalizability of our method to a nonmedical context, using nonmedical

datasets as well as other input features and models/architectures. Finally, as

DEC regularization does not depend on the labels of the input samples, we570

intend to combine it with robust loss functions to partially handle noisy-labeled

datasets.

Acknowledgments

This work was carried out in the context of the CAREMB project funded
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