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Medical signal classification often focuses on one representation (raw signal or time frequency). In that context, recent works have shown the value of exploiting different representations simultaneously. We propose a regularized end-toend trained model for classification in a medical context exploiting both the raw signal and a time-frequency representation (TFR). First, a 2D convolutional neural network (CNN) encoder and a 1D CNN-transformer encoder start by extracting embedded representations from the TFR and the raw signal, respectively. Then, the obtained embeddings are fused to form a common latent space that is used for classification. We propose to guide the training of each encoder by applying two iterated losses. Moreover, we propose to regularize the fused common latent space using deep embedded clustering. Extensive experiments on three medical datasets and ablation studies show the adaptability and good performance of our method for medical signal classification. Our method makes it possible to improve the classification performance from 4% to 12% MCC on a transcranial Doppler dataset, when compared with singlefeature counterparts, while giving more stable models. The code is available at

Introduction

In the past few years, signal processing has taken advantage of different machine learning techniques to solve tasks such as classification, segmentation, and denoising among others [START_REF] Purwins | Deep learning for audio signal processing[END_REF]. It is now well known that convolutional neural networks (CNNs) are very effective for almost all image-related tasks [START_REF] Rawat | Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review[END_REF]. The common component of CNNs is the use of multidimensional convolution kernels with learnable parameters, which are able to extract features from the input images by exploiting their spatial context. However, for temporal-dependent signals there is no such type of model that has proven to be as effective in a large range of tasks by directly exploiting the raw signal. A common practice for handling these signals is to manually extract a time-frequency representation (TFR) and then pass it through a 2D CNN [START_REF] Natarajan | A wide and deep transformer neural network for 12-lead ecg classification[END_REF][START_REF] Gong | AST: Audio Spectrogram Transformer[END_REF]. Even though this strategy can achieve state-of-the-art performance in several tasks, it does not always lead to good results [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF].

In this paper, we focus on temporal-dependent signals and, more specifically, on medical signals from the monitoring of cerebral blood flow by means of transcranial Doppler (TCD) for the detection of emboli. We also focus on signals to monitor heart activity (electrocardiograms, ECGs) for heartbeat categorization, and brain activity (electroencephalograms, EEGs) for epilepsy seizure recognition (ESR). These three tasks are important for public health since stroke, cardiovascular diseases (which are the leading cause of death and disability worldwide [START_REF] Organization | The top 10 causes of death[END_REF]), and epilepsy (one of the most common neurological diseases) can be detected using TCD, ECG, and EEG, respectively. Some works have tried to solve these tasks by using classic signal processing techniques and machine learning techniques [START_REF] Guepie | Sequential emboli detection from ultrasound outpatient data[END_REF][START_REF] Sombune | Automated embolic signal detection using deep convolutional neural network[END_REF][START_REF] Wasimuddin | Stages-based ecg signal analysis from traditional signal processing to machine learning approaches: A survey[END_REF]. However, few works have directly exploited the raw signal [START_REF] Che | Constrained transformer network for ecg signal processing and arrhythmia classification[END_REF][START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF] as handcrafted features (or TFR) are often extracted to be fed to the different models [START_REF] Sombune | Automated embolic signal detection using deep convolutional neural network[END_REF][START_REF] Ahmad | Ecg heartbeat classification using multimodal fusion[END_REF][START_REF] Vindas | Semiautomatic data annotation based on feature-space projection and local quality metrics: an application to cerebral emboli characterization[END_REF][START_REF] Hilal | Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder[END_REF][START_REF] Xu | A one-dimensional cnn-lstm model for epileptic seizure recognition using eeg signal analysis[END_REF]. Furthermore, inspired from natural language processing (NLP), several methods have been proposed to exploit the temporal context of time-dependent signals. These models range from recurrent neural networks [START_REF] Nishizaki | Signal classification using deep learning[END_REF] and 1D CNNs [START_REF] Lee | Raw waveform-based audio classification using sample-level cnn architectures[END_REF][START_REF] Che | Constrained transformer network for ecg signal processing and arrhythmia classification[END_REF] to convolutional deep belief networks [START_REF] Scarpiniti | Deep belief network based audio classification for construction sites monitoring[END_REF] and transformers [START_REF] Karita | A comparative study on transformer vs rnn in speech applications[END_REF][START_REF] Gong | AST: Audio Spectrogram Transformer[END_REF]. Even though different representations (TFR or raw signal) are used to solve the task, the question of the optimal representation remains open. The current trend is to use multiple representations of a single signal to solve the task [START_REF] Jin | Attention-block deep learn-ing based features fusion in wearable social sensor for mental wellbeing evaluations[END_REF][START_REF] Ahmad | Ecg heartbeat classification using multimodal fusion[END_REF], but few works consider the raw signal as a representation itself, and usually only different handcrafted features or TFRs are used. What is more, these methods are often designed for a very particular task, do not exploit the temporal/spectral complementarity, or are not end-to-end trainable.

Inspired by the aforementioned motivations, we propose a regularized hybrid CNN-transformer capable of exploiting both the temporal and spectral information through the use of the raw signal and a TFR. More specifically, the model is composed of four main components. First, two encoders, a 1D CNNtransformer and a 2D CNN, are used to extract features from the raw signal and the log-magnitude spectrogram, respectively. Second, a fusion layer takes the extracted encoding of both of the initial representations to create a common encoding, which is then passed through a classifier. Third, to guide the learning of the encodings of each representation, we propose to use an iterated loss [START_REF] Tjandra | Deja-vu: Double feature presentation and iterated loss in deep transformer networks[END_REF].

Finally, in order to enforce clustering in the different latent spaces, we propose to regularize the model using deep embedded clustering (DEC) [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF].

Our main contributions can be summarized as follows:

• End-to-end joint trained multifeature model, capable of simultaneously exploiting complementary information of different representations.

• Regularization strategy to guide the learning of the encoding of each in-dividual input representation, thanks to the use of an iterated loss.

• Regularization strategy of the common (fused) feature space, encouraging more separable and dense clusters based on deep embedded clustering.

• Extensive evaluation using one private dataset and two public datasets, validating the effectiveness and adaptability of our proposed method.

The rest of the paper is structured as follows. In section 2 we introduce the works related to our method. In section 3 we present in detail the different components of our method. In section 4 we describe the experimental set-up that we use to validate our approach as well as the results and their discussion.

Finally, in section 5 we conclude and present the guidelines of our future work.

Related works

Machine learning signal classification

Drawing on 2D convolutions that are able to exploit the spatial context in an image, several methods propose the use of 1D convolutions on raw signals or 2D convolutions on TFR [START_REF] Lee | Raw waveform-based audio classification using sample-level cnn architectures[END_REF][START_REF] Pu | Learning separable time-frequency filterbanks for audio classification[END_REF][START_REF] Sharan | Benchmarking audio signal representation techniques for classification with convolutional neural networks[END_REF]. Lee et al. [START_REF] Lee | Raw waveform-based audio classification using sample-level cnn architectures[END_REF] proposed creating a multilevel representation of the raw signal to perform audio classification using 1D convolutions with residual connections, average pooling, and fully connected (FC) layers. Pu et al. [START_REF] Pu | Learning separable time-frequency filterbanks for audio classification[END_REF] proposed using 1D Morlet filters with learnable parameters to extract a TFR from the raw signal. Then, they used 2D separable Morlet filters to get an embedding that is passed through a CNN or deep neural network (DNN) to perform speaker identification and acoustic event recognition. Sharan et al. [START_REF] Sharan | Benchmarking audio signal representation techniques for classification with convolutional neural networks[END_REF] showed that combining different TFRs helps increase the classification performance of a 2D CNN model. Moreover, other types of models such as recurrent neural networks (RNNs) or deep belief networks (DBN) have been used in signal classification [START_REF] Nishizaki | Signal classification using deep learning[END_REF][START_REF] Okawa | Audio classification of bitrepresentation waveform[END_REF][START_REF] Karita | A comparative study on transformer vs rnn in speech applications[END_REF][START_REF] Scarpiniti | Deep belief network based audio classification for construction sites monitoring[END_REF]. Indeed, RNNs can take into account the temporal dependencies in a signal better than CNNs can. Okawa et al. [START_REF] Okawa | Audio classification of bitrepresentation waveform[END_REF] proposed two representations based on the binary encoding of the raw signal amplitudes. They input this to different models (2D CNN, LSTM and bidirectional gated recurrent unit) to solve various tasks: acoustic event detection, music classification, and speech classification. Scarpiniti et al. [START_REF] Scarpiniti | Deep belief network based audio classification for construction sites monitoring[END_REF] proposed the use of a DBN for audio classification and construction site monitoring using as input different handcrafted statistic features computed from the mel-frequency cepstral coefficients (MFCC) of the raw signal.

Furthermore, with the rise of transformers [START_REF] Vaswani | Attention is all you need[END_REF] in the NLP community, several works have applied these types of models to signal classification [START_REF] Karita | A comparative study on transformer vs rnn in speech applications[END_REF][START_REF] Tjandra | Deja-vu: Double feature presentation and iterated loss in deep transformer networks[END_REF][START_REF] Che | Constrained transformer network for ecg signal processing and arrhythmia classification[END_REF][START_REF] Gong | AST: Audio Spectrogram Transformer[END_REF][START_REF] Akbari | Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text[END_REF]. Karita et al. [START_REF] Karita | A comparative study on transformer vs rnn in speech applications[END_REF] carried out a comparative study using 15 different audio speech recognition datasets, showing that transformers can be superior to RNN models (they outperformed the RNNs on 13 of the datasets). Che et al. [START_REF] Che | Constrained transformer network for ecg signal processing and arrhythmia classification[END_REF] used a 1D CNN to extract features from the raw signal before feeding them to a transformer encoder in a channel-wise manner with respect to the output of the 1D CNN. Finally, Tjandra et al. [START_REF] Tjandra | Deja-vu: Double feature presentation and iterated loss in deep transformer networks[END_REF] suggested a transformer model guided by an iterated loss and feature re-presentation to carry out audio and video classification. To do this, they extract features from the raw signal using a mel filterbank, which are then fed to a sequence of transformer modules.

At different levels, the authors re-introduce input features of the model (feature re-presentation) and make intermediate predictions using the learned features at that particular level (iterated loss).

Multimodality and multiple-feature learning

Multimodality is an important and vast topic of research in the machine learning community [START_REF] Baltrusaitis | Multimodal machine learning: A survey and taxonomy[END_REF]. The global aim is to search for strategies to combine data of different nature in a way that complementary information is well exploited. For instance, for video action recognition and audio event classification, images and audio can be combined [START_REF] Ortega | Multimodal fusion with deep neural networks for audio-video emotion recognition[END_REF][START_REF] Akbari | Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text[END_REF]. Ortega et al. [START_REF] Ortega | Multimodal fusion with deep neural networks for audio-video emotion recognition[END_REF] proposed performing emotion recognition using three different modalities: video, audio, and text. They extracted features from each modality using a DNN and then fused the obtained representations into a joint representation by concatenation.

Akbari et al. [START_REF] Akbari | Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text[END_REF] extracted features from each modality (video, audio, and text) using an FC layer, and then passed each feature into a transformer encoder. Then, the extracted embeddings were projected in different common spaces with different granularities (data scale) to complete the classification.

Inspired by the benefits that multiple modalities can bring to classification problems, several works have applied these methods to different representations coming from the same modality. On the one hand, in the computer vision community, several works have tried to combine different features extracted from a single image [START_REF] Mao | Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion[END_REF][START_REF] Zhu | Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data[END_REF]. Zhu and Jian [START_REF] Zhu | Optimization of face recognition algorithm based on deep learning multi feature fusion driven by big data[END_REF] extracted global features from images using 2D PCA and local features using local binary patterns. They then fused these features and passed it through a CNN to perform face recognition.

Mao et al. [START_REF] Mao | Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion[END_REF] proposed performing object detection using iterative RELIEF to select the top three color components of an image in order to obtain three new images. Then, they fed these three images to a multipath CNN to extract features and fused them by concatenation. Finally, they projected the obtained feature using PCA and passed the resulting feature to a support vector machine (SVM) classifier.

On the other hand, in the signal processing community, several works focus on extracting TFRs and other handcrafted features to combine them afterward [START_REF] Kim | Appliance classification by power signal analysis based on multi-feature combination multi-layer lstm[END_REF][START_REF] Feng | A deep-learning-based oilwell-testing stage interpretation model integrating multi-feature extraction methods[END_REF][START_REF] Chen | Atrial fibrillation detection based on multi-feature extraction and convolutional neural network for processing ecg signals[END_REF][START_REF] Ahmad | Ecg heartbeat classification using multimodal fusion[END_REF]. Kim and Lee [START_REF] Kim | Appliance classification by power signal analysis based on multi-feature combination multi-layer lstm[END_REF] extracted three TFR (spectrogram, melspectrogram, and MFCC) from the raw signal, concatenated them and passed the obtained feature through an LSTM model for power signal analysis. Feng et al. [START_REF] Feng | A deep-learning-based oilwell-testing stage interpretation model integrating multi-feature extraction methods[END_REF] computed different features from the raw signal (wavelet packet decomposition, gradient extreme value, fast Fourier transform, etc.) which were fused by concatenation and passed through a DBN. The DBN outputs were then selected by removing redundancy via the maximum information coefficient and were used for the classification step. Finally, Ahmad et al. Ahmad et al. [START_REF] Ahmad | Ecg heartbeat classification using multimodal fusion[END_REF] used ECG signals to classify heartbeats. They created three different images from the raw signal (Gramian angular field (GAF), recurrent plot (RP), and Markov transition field (MTF)) and fused them using two different strategies: an early fusion approach (images are fused before an AlexNet model), and an intermediate fusion approach (feature extraction by AlexNet from each of the three images and then fusion of the extracted features before an SVM classifier).

Regularization in deep learning

Building on Kukačka et al. [START_REF] Kukacka | Regularization for deep learning: A taxonomy[END_REF], we can identify different regularization types.

First, regularization can be achieved through data. This can be done by adding some noise or perturbations at different levels [START_REF] Bishop | Training with noise is equivalent to tikhonov regularization[END_REF][START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF][START_REF] Miyato | Virtual adversarial training: A regularization method for supervised and semi-supervised learning[END_REF], by using dropout [START_REF] Hinton | Improving neural networks by preventing co-adaptation of feature detectors[END_REF], or by using normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF].

Moreover, regularization can be obtained via the model architecture. One can use (dilated) convolutions [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF] to obtain lighter models without loss of prediction capacity, or add other components such as skip connections [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF] and residual connections [START_REF] He | Deep residual learning for image recognition[END_REF].

Otherwise, regularization can be performed through a regularization term in the loss. Different terms can be added, such as weight decay [START_REF] Plaut | Experiments on learning back propagation[END_REF], Jacobian penalty [START_REF] Rifai | Contractive autoencoders: Explicit invariance during feature extraction[END_REF], Hessian penalty [START_REF] Rifai | Adding noise to the input of a model trained with a regularized objective[END_REF], or loss-invariant backpropagation [START_REF] Lyu | A unified gradient regularization family for adversarial examples[END_REF].

Other regularization approaches are early stopping [START_REF] Collobert | Links between perceptrons, mlps and svms[END_REF] and mutual exclusivity [START_REF] Sajjadi | Regularization with stochastic transformations and perturbations for deep semi-supervised learning[END_REF]. Mutual exclusivity uses the unlabeled samples of a partially labeled dataset to move the classifier decision boundaries in zones with few samples.

For a more detailed explanation of regularization techniques, we refer readers to [START_REF] Kukacka | Regularization for deep learning: A taxonomy[END_REF].

Proposed method

In this work, we propose a regularized end-to-end multifeature joint trained model exploiting complementary information of different representations. Regularization is done through: (1) two iterated losses allowing to guide the training of each single-feature encoder and (2) deep embedded clustering (DEC) on the joint embedding space and adapted to a supervised-learning context, allowing to improve generalization and partially handle imbalanced datasets. Even though we design our method to be suitable to other architectures and representations, we are going to focus on a hybrid CNN-transformer exploiting both the temporal information through the raw signal and the spectral information through a TFR. In this section, we present in detail each stage of our proposed method.

Let us define some notations. Suppose that we have a dataset composed of N labeled samples {X i } i∈[1,N ] and K classes. We suppose that each sample has two different representations, a raw signal X i T E ∈ R L×C composed of L samples and C channels, and the TFR X i T F R ∈ R F ×M composed of F frequency bins and M time bins. The aim is to investigate the classification task improvement that can be achieved by using both representations instead of a single one.

Global pipeline

The global pipeline of the proposed method is introduced in figure 1 

H T E = F C T E (E T E (X T E )) ∈ R dcom and H T F R = F C T F R (E T F R (X T F R )) ∈ R dcom
the projected embeddings of the raw signal and TFR, respectively. These embeddings are then used in the guided training and fusion modules. Furthermore, we guide the training of each projected embedding using an iterated loss, as in [START_REF] Tjandra | Deja-vu: Double feature presentation and iterated loss in deep transformer networks[END_REF]. The main idea is to have a vanilla classifier using the projected embedding to perform an intermediate classification. This module will be detailed in section 3.2.

Moreover, the fusion module combines the projected embeddings, H T E and H T F R , of each input feature in a joint embedding space. We propose to explore two fusion methods, concatenation and weighted sum, to form the joint representation H fus :

• Concatenation:

H fus = H TE ⊕ H TFR
where ⊕ is the concatenation operator. In this case, H fus ∈ R 2×dcom .

• Weighted sum:

H fus = w T E × H TE + w T F R × H TFR
where w T E ∈ R and w T F R ∈ R are two learnable parameters between 0 and 1 such that w T E + w T F R = 1. In this case, H fus ∈ R dcom . This joint representation is then fed to the classification module to perform the final classification, and to a DEC module to cluster the input samples in the joint embedded space. This last module will be detailed in section 3.3. 

Training guidance: iterated loss

We propose to guide the training of each encoder by using an iterated loss as in [START_REF] Tjandra | Deja-vu: Double feature presentation and iterated loss in deep transformer networks[END_REF]. Hence, during training, two vanilla classification models are trained : one with H T E as input, while the other one is fed by H T F R . It forces the encoders 210 to produce structured intermediate embedding spaces (H T E and H T F R ) that are discriminative enough at this stage. Another advantage is that classification remains possible even if one of the input representations is not available. Indeed, even if one input features is not able to learn enough with the global classification and with DEC, the iterated loss will guide its training to make its projected embedding discriminative enough by itself 3 .

The classifiers used for each input representation are two consecutive blocks of one normalization layer and one FC layer for H T E , and one FC layer and dropout for H T F R . Let us denote by ỹTE and ỹTFR the intermediate classification outputs of the guided trainings of the raw signal projected embedding (H T E ) and the TFR projected embedding (H T F R ), respectively. The iterated losses are defined as the cross entropy (CE) loss between the intermediate classification outputs (ỹ TE and ỹTFR ) and the true labels of the samples. We denote them as L TE and L TFR (raw signal and TFR, respectively).

Regularization through feature clustering using deep embedded clustering (DEC)

The last module of our proposed method is the clustering module. This is done by applying DEC [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF] to the joint representation embedding space.

The rationale behind this clustering is twofold. First, we want to improve the generalization of the trained models by creating a more clustered latent space that will be used for classification. Second, we want to handle imbalanced datasets, which can be done by applying robust clustering methods such as DEC [START_REF] Vindas | Deep embedded clustering regularization for supervised imbalanced cerebral emboli classification using transcranial doppler ultrasound[END_REF].

The main idea of DEC is to form K clusters using the embeddings obtained by an encoder model instead of using the original samples. In our particular case, we propose to apply DEC to the joint representations

H 1 f us , . . . , H N f us
obtained by the encoder and fusion modules, and the number of clusters is the number of classes K. We denote as c 1 , . . . , c K the centroids of the different clusters, and they are initialized using k-means. The objective of DEC is to jointly optimize these centroids and the weights of the encoder models.

Moreover, contrary to the original DEC paper, we avoid the pre-training stage by introducing a hyperparameter e init , corresponding to the epoch from which DEC will be activated. The DEC regularization term is defined as follows:

LDEC (e c ) = 1 E (e c ) × L DEC (1)
where e c is the current epoch number, E = {e ∈ N/e ≥ e init }, and L DEC is the DEC loss defined in [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF].

The influence of e init is discussed in [START_REF] Vindas | Deep embedded clustering regularization for supervised imbalanced cerebral emboli classification using transcranial doppler ultrasound[END_REF], but the main idea is to choose an epoch where the joint embedded space starts producing some clusters, in order to avoid a bad initialization of the centroids using k-means. 

Final loss function

We aim at achieving supervised classification using two representations of a signal: the raw signal and a TFR. Therefore, we optimize a CE loss function between the predicted labels, ỹ, obtained by passing the joint representation through a classifier (as shown in figure 1) and the true labels, y. We denote this loss as L CE . The final loss function is optimized using gradient descent and is defined by combining the different terms mentioned in 3.2 and 3.3:

L = L CE + α × L T F R + β × L T E + γ × LDEC (2) 
where α, β, and γ are hyperparameters regulating the importance of each regularization term to the final loss. It is important to note that the test HITS do not necessarily follow the exact same distribution as the train or validation ones, as some test signals can have a length greater than 1400 points, the maximal length observed in the train and validation sets. 4For more details about this dataset and the pre-processing steps, we refer the reader to [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF].

ECG dataset

The PTB dataset, composed of 14 552 ECG lead-II signal, focuses on the identification of myocardial infarction and comprises two imbalanced classes: 1 0506 normal and 4 046 abnormal heartbeats. We used the standardized and pre-processed version from [START_REF] Kachuee | Ecg heartbeat classification: A deep transferable representation[END_REF] 5 , and the logarithmic scale spectrograms were computed as in [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF].

Moreover, we split the dataset intro three subsets: train (64%), validation (16%), and test (20%). The hyperparameters were selected using the validation set, then the model was retrained by regrouping the train and validation sets, to make a fair comparison with other state-of-the-art methods which only used train/test splits. For more details about this dataset and the pre-processing steps (padding, normalization, and spectrogram computation), we refer the reader to [START_REF] Kachuee | Ecg heartbeat classification: A deep transferable representation[END_REF][START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF].

EEG dataset

We used the Epileptic Seizure Recognition dataset (ESR) [START_REF] Andrzejak | Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state[END_REF] from the UCI repository, composed of pre-processed EEG signals 6 . For the pre-processing details, we refer the reader to the description in the official UCI repository. The dataset has 11 500 samples distributed in five classes (equally distributed): [START_REF] Purwins | Deep learning for audio signal processing[END_REF] seizure activity, (2)-( 5) no seizure activity. As in most other works, we focus on binary classification, where the first class is (1) and the second one regroups

(2)-( 5), obtaining an imbalanced dataset.

Each EEG signal is sampled at 178 Hz, and the logarithmic scale spectrograms were computed using n f f t = 32, n overlap = 4 and a Blackman window.

Finally, for a fair comparison, we proposed to randomly split the dataset using 90% of the samples for training and 10% of the samples for testing as in [14]7 .

General experimental set-up

We studied our proposed approach with three experiments. The objective column Fusion in table 1). Additionally, all the models were trained with Adam optimizer and a batch size of 32 except for the late fusion model, which was trained with a batch size of 16. In experiment 1, all the models are evaluated, whereas in experiments 2 and 3, only (e) is studied.

For statistical purposes, all the experiments are repeated 10 times.

Evaluation metrics

In all the datasets, we evaluated the classification performance of the trained models using three main metrics: the Matthews correlation coefficient (MCC), the F1 score, and the classification accuracy. The MCC and F1 score are well suited for evaluating classification models on imbalanced datasets. For the multiclass datasets, we used the macro-averaged F1-Score.

Implementation details

All the codes were implemented using Pytorch and Scikit-Learn. The different experiments were executed on two high-performance computing clusters: one with 25 heterogeneous machines (each machine with between 16 Gb and 128 First, if we compare the single-feature 1D CNN-transformer (a) and 2D

CNN (b) models with our proposed model we can see that, for all datasets, our regularized multifeature model (e) outperforms the single-feature models.

Moreover, the variability of the results is reduced by at least 0.32% in terms of MCC, hence giving more stable models, except for the weighted sum regularized model in the HITS dataset.

Second, if we compare our proposed models with other state-of-the-art models [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF][START_REF] Ahmad | Ecg heartbeat classification using multimodal fusion[END_REF][START_REF] Hilal | Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder[END_REF][START_REF] Xu | A one-dimensional cnn-lstm model for epileptic seizure recognition using eeg signal analysis[END_REF], we achieve state-of-the-art results on both the HITS and PTB datasets. On the HITS dataset, the best performing model is the proposed regularized multifeature model, outperforming the other models by a margin greater than 3.61% in terms of MCC. In particular, the regularized model using concatenation (intermediate fusion) also reduces the variability by a up to 8.35%.

Moreover, on the PTB dataset, this same model outperforms the other models, and in particular the model of [START_REF] Ahmad | Ecg heartbeat classification using multimodal fusion[END_REF], which uses three features as input whereas only two are required in our model. Additionally, the model achieves the same performance as our previously published model [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF] but it reduces the variability by half, giving a more stable model. However, on the ESR data our proposed regularized model is not able to outperform the state-of-the-art models. Indeed, 365 the best performing model is that of [START_REF] Hilal | Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder[END_REF], outperforming our regularized models by a margin of 2.24% and 0.47% in terms of MCC and F1 score, respectively.

However, despite not being specifically designed for this particular ESR dataset, our proposed model still achieves excellent (96.85 ± 0.70 of MCC) performance that is close to that of the best performing model (99.09 of MCC). the importance of the DEC loss, γ, in the range {1.0, 0.1, 0.01, 0.001, 0.0001}.

410

The results are illustrated in figure 6.

First, we can see that the results for the HITS dataset are consistent with the results in [START_REF] Vindas | Deep embedded clustering regularization for supervised imbalanced cerebral emboli classification using transcranial doppler ultrasound[END_REF]. Indeed, the HITS dataset is a balanced dataset, and thus the DEC alone achieves similar results to the unregularized method. However, we can see that both fusion strategies, concatenation and weighted sum, allow us to Second, we observe that the results for the PTB dataset are also consistent 420 with the results in [START_REF] Vindas | Deep embedded clustering regularization for supervised imbalanced cerebral emboli classification using transcranial doppler ultrasound[END_REF]. Indeed, as the PTB dataset is an imbalanced dataset, DEC allows us to achieve better results than the unregularized models. When we increase γ (importance of DEC), the classification performance also increases and the variability decreases. By the same token, the best performing models are the ones using DEC regularization with 95.07 ± 3.07 and 95.64 ± 1.52 MCC 425 versus 91.83 ± 3.12 and 91.19 ± 5.09 for the unregularized concatenation and weighted sum strategies models, respectively. Our proposed regularization makes it possible to have more clustered latent spaces, especially for the latent space of the raw signal encoder (guided train-ing) and the fused latent space (DEC). To show this, we project the embedded representations of the different latent spaces on a 2D plane using Uniform Manifold Approximation and Projection (UMAP)11 [START_REF] Sainburg | Parametric umap embeddings for representation and semisupervised learning[END_REF]. Figure 7 shows the 2D projections of the different latent spaces on the HITS dataset. As the results

showed, the difference in TFR latent spaces between the regularized and unregularized models is not evident (silhouette scores of 0.21 ± 0.05 and 0.19 ± 0.04, respectively, on the HITS dataset). However, if we focus on the raw signal encoder latent space and on the fused latent space, the difference is more striking.

Indeed, for the raw signal encoder latent space, the regularized model has a more separable and clustered structure, which is also shown by the silhouette score (0.38 ± 0.04 for the regularized model versus -0.03 ± 0.01 for the unregularized one, on the HITS dataset). Moreover, on the fused latent space, we do not observe an important difference between the regularized and unregularized models, with silhouette scores on the HITS dataset of 0.36 ± 0.11 and 0.39 ± 0.05, respectively 12 . A similar behavior is observed on the PTB dataset (see supplementary materials).

What is more, our approach is able to perform similarly or outperform other state-of-the-art methods because it takes advantage of the complementarity of different representations thanks to joint training. Indeed, the two used representations (raw signal and TFR) are complementary commonly used in signal processing (and are not specific to a type of medical signal). Using joint training with these two complementary features allows each encoder to compensate for the weaknesses of the other (similar behavior was studied in [START_REF] Cheng | Wide deep learning for recommender systems[END_REF]). However, as the results in table 3 show it, joint training is not enough, if the individual features or latent spaces are not discriminative enough.

Furthermore, we observe that, on the three datasets, one of the single-feature models is able to outperform the unregularized end-to-end trained multifeature models. Indeed, training the multifeature models with the two input features makes the latent spaces of each single-feature encoder harder to learn, and thus penalizing the final classification performance, hence the importance of guiding the training and using semi-supervised DEC.

By the same token, on the ESR data, our proposed regularized end-to-end trained model was not able to outperform the state-of-the-art models. Several factors can explain this. First, the comparison is not easy to make as [START_REF] Hilal | Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder[END_REF][START_REF] Xu | A one-dimensional cnn-lstm model for epileptic seizure recognition using eeg signal analysis[END_REF] do not give the standard deviation of their evaluation metrics, and thus we are not able to measure how far our results are from their results. Additionally, the evaluation strategy is not the same between works: some authors use a certain train/test split, and others use cross-validation. Another key point is that, in this ESR dataset, it is very difficult to perform a subject-wise train/test split or subject-wise cross-validation as not all subjects have samples for all the classes, and even those having samples for the same classes do not have the same quantity. This can lead to overconfident evaluation metrics, as samples from the same subject can be both in the train and in the test sets. In addition, the models of [START_REF] Hilal | Intelligent epileptic seizure detection and classification model using optimal deep canonical sparse autoencoder[END_REF][START_REF] Xu | A one-dimensional cnn-lstm model for epileptic seizure recognition using eeg signal analysis[END_REF] were specifically designed for ESR and optimized for the ESR UCI dataset, whereas our model was designed for emboli classification on TCD data, and tested on other medical signal classification tasks. Even so, contrary to the late fusion models, our approach is easier to train as joint training is used, and all the encoders and classification models are trained simultaneously, whereas in the late fusion models, optimization has to be done separately.

Finally, if we compare the number of parameters and number of mult-adds (in billions, G) of the best performing models on the HITS dataset, we note some interesting results. First, on the HITS dataset, our regularized end-to-end trained model has a total of 4 833 727 to 4 876 233 parameters versus 27 073

416 parameters for the model in [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF]. The former models are able to outperform the latter model by over 4.3% in terms of MCC while reducing its variability by 2.07%, and this with 5.6 fewer parameters. The same behavior is observed for the number of mult-adds, as our proposed model reduces the number of operations by a factor of 14. However, this is not observed in the PTB or ESR datasets, since our proposed models have between 1 801 590 and 2 130 366 parameters versus 1 156 732 and 2 321 594 parameters for the late fusion models. The same trend is observed for the number of mult-adds.

Experiment 2: Influence of guided training

The results of this experiment revealed the influence of guided training on the classification performance of the trained models on two datasets, HITS and PTB.

First, the results show the importance of guiding the training, especially for the raw signal encoder. Indeed, training both encoders (the 2D CNN TFR encoder and the 1D CNN-transformer raw signal encoder) jointly makes the training more difficult. This can be seen by the performance of the unregularized models on the three datasets and by the 2D projections of the latent spaces of the same models (figure 7). Unregularized models are not able to learn discriminative features from the raw signal, but guiding the training of these features increases their discriminative power.

Second, this experiment also gives guidelines on how to choose the values of α and β. Indeed, we see that for α > β, the classification performance of the guided trained models tends to decrease. In fact, giving too much importance to the TFR can reduce performance even in cases where the single-feature TFR models have a lower performance than the single-feature raw signal models.

Thus, we recommend users choose α and β such that α ≤ β, since the guiding of the raw signal encoder is more important than that of the TFR in a joint training context.

Finally, the results showed that the guiding of the 2D CNN TFR model does not always have a significant (positive or negative) impact on the classification performance of the models. However, the guiding of the 1D CNN-transformer raw signal model can have a significant positive impact on the classification performance of the models. Thus, keeping both guiding strategies during training can be mostly beneficial. Moreover, keeping both guiding strategies makes it possible to have more robust models against missing features, since one can deactivate one encoder and still carry out classification. This is indirectly confirmed by the learned latent spaces, where for the different datasets we obtain latent spaces with test silhouette scores higher than 0.2.

Experiment 3: Influence of DEC regularization

The results of this experiment were coherent with the results obtained in the synthetic dataset in [START_REF] Vindas | Deep embedded clustering regularization for supervised imbalanced cerebral emboli classification using transcranial doppler ultrasound[END_REF].

First, this experiment showed that DEC regularization can help to deal with a real-life imbalanced dataset, improving its generalization capability.

Second, this experiment revealed that DEC regularization alone is able to improve the classification performance of a multifeature model on balanced and imbalanced datasets: by reducing the variability, it produces more stable models. Thus, with a good choice of hyperparameters, one is able to improve the classification performance of the models.

Finally, the results showed that in the worst-case scenario, DEC regularization does not degrade considerably the classification performance of the trained models, especially for imbalanced datasets. This means that, with our proposed method, adding DEC regularization with guided training is not problematic because even when the hyperparameters are not precisely optimized, the final models can benefit from the whole regularization strategy.

Limitations

Although our proposed method enables end-to-end training of a multifeature model, achieving great classification performance on several datasets, some limitations can be highlighted.

First, our method has several hyperparameters that need to be optimized (α, β, γ, and e init ), which makes the training more difficult. We studied the influence of these hyperparameters on the classification performance of the models and [START_REF] Vindas | Deep embedded clustering regularization for supervised imbalanced cerebral emboli classification using transcranial doppler ultrasound[END_REF] give some guidelines on how to select them, but more extensive experiments should be carried out to validate the generality of our method.

Second, we only evaluated our proposed method on two type of features and one type of model architecture per feature (2D CNN for the TFR and 1D

CNN-Transformer for the raw signal).

Finally, we focused on medical datasets, which is our main interest, but more extensive studies can be performed on more datasets of different nature (environmental sound recognition, voice recognition, music classification, etc.).

Conclusion and future work

In As future work, we plan on improving the selection of the hyperparameters (α, β, γ, and e init ) using Bayesian optimization. Moreover, we aim to study the generalizability of our method to a nonmedical context, using nonmedical datasets as well as other input features and models/architectures. Finally, as DEC regularization does not depend on the labels of the input samples, we intend to combine it with robust loss functions to partially handle noisy-labeled datasets.

Figure 1 :

 1 Figure 1: Global pipeline of the proposed method. The method has five modules: a feature encoding module (dotted blue box) composed of one encoder for each input representation, one guided training module to individually guide their training (dotted yellow boxes), a fusion module (dotted orange box) to create a joint embedding space, a classifier (dotted gray box) using the obtained joint representation, and a deep embedded clustering (DEC) module (dotted purple box) to regularize the joint embedding space.

  . It is composed of five modules: one encoding module, one fusion module, one guided training module, one classification module, and one deep clustering module. The encoder module is composed of two encoders, one for each input feature, X T E and X T F R . The raw signal input is encoded by the 1D CNN-transformer encoder part of [5] denoted E T E , whereas the TFR input is encoded by the 2D CNN encoder of the same work, denoted E T F R . The detailed architectures of both encoders can be found in figure 2. To enable the sum of the two encodings (fusion strategy), two FC layers (F C T E and F C T F R ) project them into spaces of the same dimension d com . We denote as

Figure 2 :

 2 Figure 2: Encoder models used to extract embeddings from the raw signal and the TFR. (a) 1D CNN-transformer raw signal encoder. (b) 2D CNN TFR encoder.
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  In order to validate our proposed method, we conducted different experiments using three datasets: one private TCD high intensity transient signals (HITS) dataset for cerebral emboli classification, one ECG dataset for heartbeat categorization, and one EEG dataset for epileptic seizure recognition. For all the experiments and all the datasets, we computed class weights using the Scikit Learn implementation. Without loss of generality, the models used on the different datasets have the same structure, but the hyperparameters of the architectures were adapted based on the dataset. Moreover, the core of our method (multifeature fusion, guided training and DEC regularization) was applied in the same way for all the datasets.4.1.1. TCD HITS datasetOur main interest is the classification of TCD HITS to help clinicians in preventing stroke. Therefore, we evaluated our proposed method on a HITS dataset composed of 1680 HITS extracted from 50 subjects, and distributed in three classes: 608 solid emboli, 616 gaseous emboli, and 456 artifacts. Each HITS sample is composed of an audio file representing the raw signal and an image representing the logarithmic scale spectrogram. We split the dataset according to the subjects into three subsets (a subject cannot be in the two subsets at the same time): one for training, with 58% of the samples, one for validation, with 34% of the samples, and one for testing, with 8% of the samples.

of experiment 1 4 . 2 . 1 .

 1421 is to highlight the advantage of using the proposed regularized end-to-end training for multifeature models. The objective of the second and third experiment is to study the influence of the guided training and DEC regularization (respectively) on the classification performance of the trained models. Training and model parameters The training and model parameters used in the different experiments can be found in tables 1 and 2, respectively. Models (a) and (b) are single-feature models from [5]: (a) a 1D CNN-transformer model taking as input the raw signal, and (b) a 2D CNN model taking as input the TFR. Model (c) is a late fusion model as in [5] using the two previous models (a) and (b) as base classifiers. Models (d) and (e) are the models that we propose in this paper, with the difference that model (d) is not regularized whereas model (e) is regularized with both DEC and guided training. Models (d) and (e) were trained with two different intermediate fusion strategies: concatenation and weighted sum (c.f.
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 34334 Figure 3: Experiment 2. Validation classification performance (MCC) of two end-to-end trained multifeature models using guided training only on the 2D CNN encoder space, without DEC (i.e, α > 0, β = 0, γ = 0). (a) HITS dataset, (b) PTB dataset. α corresponds to the importance of L T F R . Globally, guiding the training of the 2D CNN encoder does not improve the classification performance of the model considerably with respect to the unregularized model.

Figure 5 :

 5 Figure 5: Experiment 2. Guided training on the two latent spaces (2D CNN TFR encoder and 1D CNN-transformer raw signal encoder) for the model using concatenation as intermediate fusion strategy on the HITS dataset. α and β correspond to the importance of L T F R andL T E , respectively. We see that the guiding of the 1D CNN-transformer encoder is more important than that of the 2D CNN encoder. Indeed, for a fixed α, when β decreases, the MCC tends to decrease, whereas for a fixed β, when α decreases, the MCC remains relatively stable.

Figure 6 :

 6 Figure 6: Experiment 3. Validation classification performance (MCC) of two end-to-end trained multifeature models using DEC on the common fused space, without guided training (i.e., α = β = 0 and γ > 0). (a) HITS dataset. (b) PTB dataset. γ corresponds to the importance of LDEC . The results are consistent with [49] as DEC can improve the classification performance on both datasets, especially on the PTB dataset (imbalanced).
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 4441 Experiment 1: Advantage of end-to-end training The results of this experiment prove the effectiveness of our proposed regu-430 larized multifeature end-to-end trained model for medical signal classification.

Figure 7 :

 7 Figure 7: Experiment 1. Test embeddings of the regularized and unregularized models on the HITS dataset. (a) 2D CNN encoder TFR latent space without regularization, (b) 2D CNN encoder TFR latent space with regularization, (c) 1D CNN-transformer raw signal encoder latent space without regularization, (d) 1D CNN-transformer raw signal encoder latent space with regularization, (e) fused common latent space without regularization, (f) fused common latent space with regularization. For the regularized model we used α = 0.01, β = 0.1, γ = 0.01, and e init = 50.

  this work, we presented a regularized end-to-end guided trained classification model for medical signals, exploiting both the TFR and the raw signal through intermediate fusion. The method guides the training of the encoder of each input representation through two iterated losses, and regularizes the fused joint common space through deep embedded clustering. Extensive experiments and ablation studies show the generalizability of our proposed method to different medical signal classification tasks, achieving state-of-the-art results on two of the three datasets tested, without the need for designing a distinct model with specific inputs for each dataset.

  

  

Table 1 :

 1 Training parameters of the different models. α, β, and γ correspond to the importance of L T F R , L T E , and LDEC , respectively. Cat stands for concatenation and Weight. Sum for weighted sum. Two versions of our end-to-end trained model are evaluated: one without regularization, named Ours (No Reg.), and another with the proposed regularization, named Ours (Reg.). The 1D CNN-transformer and 2D CNN models are single/feature models, taking as input the raw signal and the TFR, respectively. The other models are multifeature models, taking as input the raw signal and the TFR. The Late Fusion model is the same as that of[START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF] but with different hyperparameters.

	Gb of RAM, CPUs with 8-32 cores, and different types of Nvidia Quadro RTX
	and Tesla GPUs), and another with NVIDIA Tesla V100 GPUs 8 . The GitHub
	for the PTB and ESR experiments can be found at: https://github.com/gdec-
	submission/gdec/ 910 .
	4.3. Results
	4.3.1. Experiment 1: Advantage of end-to-end training
	The objective of this experiment is twofold: (1) to show the increase in
	classification performance yielded by our proposed method, and (2) to compare

our method with state-of-the-art methods on different datasets. To this end, we trained models (a)-(e) on the HITS, PTB, and ESR datasets. The experiment results are presented in table 3. We also give the number of parameters of each model, as well as the number of multiplication and additions (mult-adds) done per model and per sample (in billions, G).

Table 3 :

 3 Experiment 1. Test classification performance of our proposed model and other state-of-the-art models on three medical datasets: HITS, PTB, and ESR. The results confirm the appeal and adaptability of our method as it can outperform the single-feature models, 1D CNN-trans. and 2D CNN, on the three datasets. The proposed method achieves state-of-theart performance on two datasets, the HITS and PTB datasets, and excellent performance on the ESR dataset. The number of multiplications and additions (mult-adds) is given in billions (G).

	Dataset	Model	Modality	Fusion method	MCC	F1-Score	Accuracy	No. Parameters adds (G) No. mult-
		1D CNN-trans. 2D CNN	Raw signal TFR	-	79.17 ± 6.64 87.09 ± 4.31	84.37 ± 6.62 90.98 ± 2.95	85.61 ± 4.74 91.29 ± 2.96	766 271 1 681 923	0.173 1.23
	HITS	Late Fusion [5] Late Fusion (ours) Ours (No Reg.) Ours (No Reg.)	Both	84.66 ± 10.99 88.67 ± 9.32 87.94 ± 2.60 91.44 ± 1.91 84.53 ± 1.58 89.61 ± 1.06 Weight. Sum 85.93 ± 1.21 Weight. Sum Cat 90.56 ± 0.78	89.14 ± 8.35 91.80 ± 1.83 89.71 ± 1.02 90.58 ± 0.82	27 073 416 2 448 072 4 833 727 4 876 233	19.87 1.40 1.40 1.40
		Ours (Reg.)		Cat	91.89 ± 2.64	94.31 ± 1.66	94.53 ± 1.74	4 833 727	1.40
		Ours (Reg.)		Weight. Sum 88.28 ± 6.91	91.69 ± 4.81	92.01 ± 4.73	4 876 233	1.40
		1D CNN-trans. 2D CNN	Raw signal TFR	-	98.31 ± 0.43 97.03 ± 1.22	99.16 ± 0.22 98.51 ± 0.61	99.32 ± 0.17 98.80 ± 0.50	765 876 1 555 842	0.026 0.063
			GAF						
	PTB	[11]	MTF RP	Weight. Sum	-	98	99.2	9 259 427	-
		Late Fusion [5] Late Fusion (ours)		Weight. Sum	99.29 ± 0.21 98.45 ± 0.49	99.65 ± 0.10 99.22 ± 0.25	99.71 ± 0.08 99.38 ± 0.20	1 156 732 2 321 594	0.119 0.089
		Ours (No Reg.) Ours (No Reg.)	Both	Cat Weight. Sum 97.29 ± 0.50 97.11 ± 0.43	98.6 ± 0.22 98.64 ± 0.25	98.84 ± 0.18 98.91 ± 0.20	2 128 820 2 130 366	0.236 0.236
		Ours (Reg.)		Cat	99.28 ± 0.11 99.64 ± 0.05 99.71 ± 0.04	2 128 820	0.236
		Ours (Reg.)		Weight. Sum 99.18 ± 0.25	99.59 ± 0.13	99.67 ± 0.10	2 130 366	0.236
		1D CNN-trans.	Raw signal		95.14 ± 1.67	97.55 ± 0.87	98.40 ± 0.59	109 942	0.008
	ESR	2D CNN [13] [14] Late Fusion (ours)	TFR Raw signal	92.81 ± 3.53 99.09 -Weight. Sum 97.45 ± 1.49 -	96.33 ± 1.88 98.89 98.59 98.71 ± 0.77	97.59 ± 1.35 98.67 99.39 99.16 ± 0.51	1 555 842 --1 665 724	0.062 --0.070
		Ours (No Reg.)		Cat	93.40 ± 1.32	96.67 ± 0.68	97.89 ± 0.45	1 801 590	0.123
		Ours (No Reg.)	Both	Weight. Sum 93.01 ± 2.22	96.45 ± 1.22	97.77 ± 0.69	1 803 456	0.123
		Ours (Reg.)		Cat	96.51 ± 0.46	98.25 ± 0.23	98.88 ± 0.15	1 801 590	0.123
		Ours (Reg.)		Weight. Sum 96.85 ± 0.70	98.42 ± 0.35	98.98 ± 0.23	1 803 456	0.123
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This can be seen as a decoupling of the global classification task and the feature encoding task.

This has also an impact on the TFR computation, as more points are used to obtain it.

We used the public available versions found at https://www.kaggle.com/datasets/ shayanfazeli/heartbeat

We used the public available version found at https://www.kaggle.com/datasets/ harunshimanto/epileptic-seizure-recognition

Because of the structure of this dataset, it is very difficult to obtain a subject-wise train/test split.

For a detailed description of this cluster, we the reader to http://www.idris.fr/jeanzay/jean-zay-presentation.html

[START_REF] Wasimuddin | Stages-based ecg signal analysis from traditional signal processing to machine learning approaches: A survey[END_REF] Username gdec-submission and password Gjaq * & *

K7vq44azu10 Mail: gdec.submission@gmail.com, Password: 1#tU 6mKAXqGT 8#CY

We used the default parameters of the umap-learn library, except n neighbors , which was fixed to 5

Although, on the validation samples, the regularized model seems to give a more clustered fused latent space, with a silhouette score of 0.75±0.06 against 0.71±0.05 for the unregularized model (see supplementary materials).
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Second, from figure 4 we can see that, for both datasets, guiding the training of the 1D CNN-transformer encoder has a beneficial effect on the classification performance of the model. Indeed, this guiding makes it possible to outperform the unguided model by a margin greater than 0.84% for the HITS dataset and 6.68% for the PTB dataset. In particular, for both datasets, globally, the importance of L T E (value of β) is not crucial, as different values achieve similar results.

Finally, using figure 5, we note that globally, when α ≤ β, the performance of the models increases, achieving better performance than the unguided model. Furthermore, we can see that the previous results are still valid when both losses, L T F R and L T E , are applied. Indeed, for a fixed value of α (importance of L T F R ), we observe that increasing the value of β (importance of L T E ) also increases the classification performance of the trained models. Moreover, for a fixed value of β, the classification performance of the different models is relatively stable with respect to α, especially for large values of β.