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 provided an important result regarding the energy decay of Leray solutions u(⋅, t) to the incompressible Navier-Stokes in R n : if the associated Stokes flows had their L 2 norms bounded by O(1 + t) -α for some 0 < α ≤ (n + 2) 4, then the same would be true of u(⋅, t) L 2 (R n ) . The converse also holds, as shown by Z. Skalák [15] and by our analysis below, which uses a more straightforward argument. As an application of these results, we discuss the genericity problem of algebraic decay estimates for Leray solutions of the unforced Navier-Stokes equations. In particular, we prove that Leray solutions with algebraic decay generically satisfy two-sided bounds of the form (1 + t) -α ≲ u(⋅, t) L 2 (R n ) ≲ (1 + t) -α .

Introduction

An important property of Leray solutions u(⋅, t) to the incompressible Navier-Stokes equations is given by Wiegner's theorem ( [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF], p. 305), which says, among other estimates, that u(⋅, t) L 2 (R n ) = O(1 + t) -α when v(⋅, t) L 2 (R n ) = O(1 + t) -α for some 0 < α ≤ (n + 2) 4, where v(⋅, t) is the associated Stokes flow defined in (2.4) below. This property is also valid if external forces are present, under some appropriate assumptions. A natural question is whether the converse property holds, that is, if the knowledge that u(⋅, t) L 2 (R n ) = O(1 + t) -α for some 0 < α ≤ (n + 2) 4 will entail that v(⋅, t) L 2 (R n ) = O(1 + t) -α as well. A positive answer was given by Skalák's "inverse Wiegner's theorem" [START_REF] Skalák | On the characterization of the Navier-Stokes flows with the power-like energy decay[END_REF], using an elaborated argument.

The purpose of this paper is to show a more straightforward approach to obtain inverse Wiegner's theorem, in any dimension n ≥ 2, with or without external forces, and to present some applications. Our applications concern the genericity problem of upper and lower algebraic bounds for solutions of the unforced Navier-Stokes equations.

We will establish two facts: first of all, we prove that the class of solutions with an algebraic decay of the L 2 -norm is Baire-negligible, in the class of Leray's solutions of the unforced Navier-Stokes equations. To do this, we will endow the class of Leray's solutions of the unforced Navier-Stokes equations with a topology that makes it a Baire space (the countable union of closed sets with empty interior has an empty interior) and prove that the subset of solutions with algebraic decay is meager. This will be formalized by Theorem 3.3 below.

The second fact that we will establish is the following: solutions of the unforced Navier-Stokes equations with L 2 -algebraic decay O(1 + t) -α , with 0 < α < (n + 2) 4, generically do satisfy the two-sided bounds

(1 + t) -α ≲ u(⋅, t) L 2 (R n ) ≲ (1 + t) -α .
Proving this second assertion requires endowing a Baire topology to the class of solutions with algebraic decay and establishing that the set of solutions satisfying the corresponding lower bound is residual in the former class. This second stamement will be formalized by Theorem 3.4 below.

The result of Theorem 3.3 is in the same spirit of Schonbek's nonuniform decay result for solutions arising from general L 2 σ data, described in [START_REF] Brandolese | Large time behavior of the Navier-Stokes flow[END_REF]Section 2.3]. Theorem 3.3 should be compared also with the recent result [START_REF] Guerra | Nonlinear open mapping principles, with applications to the Jacobian equation and other scale-invariant PDEs[END_REF]Proposition 5.4], where a similar problem was addressed for distributional (also called very weak) solutions of the Navier-Stokes equations. The method of [START_REF] Guerra | Nonlinear open mapping principles, with applications to the Jacobian equation and other scale-invariant PDEs[END_REF] relies on a subtle, abstract nonlinear open mapping principle: it is completely different than ours, that is essentially based on both direct and inverse Wiegner's theorem and on elementary topological considerations.

The lower bound problem addressed in Theorem 3.4 is closely related to the theory of decay characters, introduced in [START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF] and further developed in [START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF][START_REF] Niche | Decay characterization of solutions to dissipative equations[END_REF]. Theorem 3.4 sheds new light on such a theory. Indeed, this theorem can be applied to quantify how large is, topologically, the set of initial data for which a decay character does exist.

Notations. For a function

w = (w 1 ,..., w n ), writing w ∈ L 2 (R n ) means that w i ∈ L 2 (R n ) for every 1 ≤ i ≤ n, while w ∈ L 2 σ (R n ) denotes that w ∈ L 2 (R n ) and div w = 0 in distributional sense (i.e., div w = 0 in D ′ (R n )). L p norms of w are similarly defined; for example, w 2 L 2 = w 1 O(g(t)) = O(1)g(t), O(g(t)) γ = O(1)g(t) γ , o(g(t) γ = o(1)g(t) γ , etc. The notation A(t) ≲ B(t)
means that there is a constant c > 0, independent on t, such that A(t) ≤ cB(t).

We denote by S ′ (R n ) the space of tempered distributions and by e t∆ the heat semigroup. The integrals over the whole space will be denoted simply by ∫ , instead of ∫ R n , unless the explicit indication of R n seems convenient.

Inverse Wiegner's theorem for the Navier-Stokes equations

Given n ≥ 2, consider the (forced) Navier-Stokes equations in the space R n , (2.1a)

u t + u ⋅ ∇u + ∇p = ∆u + f (⋅, t), (2.1b) ∇ ⋅ u(⋅, t) = 0, (2.1c) u(⋅, 0) = u 0 ∈ L 2 σ (R n ), with f (⋅, t) ∈ L 1 ((0, ∞), L 2 σ (R n )) satisfying, for some constants C f , K f , α > 0, (2.2) f (⋅, t) L 2 (R n ) ≤ C f (1 + t) -α -1 and f (⋅, t) L n (R n ) ≤ K f t -α -n + 2 4
for every t > 0. (In the case n = 2, the second estimate in (2.2) becomes redundant.) Let u = (u 1 , u 2 , ..., u n ) be a Leray solution to the system (2.1), that is, a mapping u(⋅, t)

∈ C w ([ 0, ∞), L 2 σ (R n )) ∩ L 2 ((0, ∞), Ḣ1 (R n ))
with u(⋅, 0) = u 0 that satisfies (2.1) in weak sense and, in addition, the energy estimate in its strong form

(2.3) u(⋅, t) 2 L 2 (R n ) + 2 t s Du(⋅, τ ) 2 L 2 (R n ) dτ ≤ u(⋅, s) 2 L 2 (R n ) + 2 t s J(τ ) dτ
for s = 0 and almost all s > 0, and every t > s, where J(τ ) = ∫ R n u(x, τ ) ⋅ f (x, τ ) dx. Such solutions can be constructed at least for 2 ≤ n ≤ 4, see e.g. [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF][START_REF] Robinson | The three-dimensional Navier-Stokes equations[END_REF][START_REF] Temam | Theory and numerical analysis[END_REF][START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF]. When n ≥ 5, instead of assuming that u satisfies the energy estimate in its strong form (2.3), following [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF], we ask that u is a weak solution obtained as the limit in L 2 ((0, ∞), Ḣ1 (R n )) and in L 2 loc (R n × R + ), of a sequence of approximate solutions u k satisfying (2.3).

Considering the solution v(⋅, t)

∈ C([0, ∞), L 2 σ (R n )) of the associated Stokes problem (2.4) v t = ∆v + f (⋅, t), v(⋅, 0) = u 0 ,
where u 0 , f are given in (2.1), our goal in this section is to derive the following result (originally obtained in [START_REF] Skalák | On the characterization of the Navier-Stokes flows with the power-like energy decay[END_REF] with n = 3, f = 0 using a very different argument).

Theorem 2.1 (Inverse Wiegner). If u(⋅, t) L 2 (R n ) = O(1 + t) -α for some 0 < α ≤ (n + 2) 4, then v(⋅, t) L 2 (R n ) = O(1 + t) -α as well, provided that (2.2) is satisfied.
This result is related to the celebrated Wiegner's theorem [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF], recalled next.

Theorem 2.2 (M. [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF]

. Let f (⋅, t) ∈ L 1 ((0, ∞), L 2 σ (R n )) satisfy (2.2) for some 0 ≤ α ≤ (n + 2) 4. If v(⋅, t) L 2 (R n ) = O(1 + t) -β for some 0 ≤ β ≤ α, then we will also have u(⋅, t) L 2 (R n ) = O(1+t) -β
and, in addition:

(2.5) u(⋅, t) -v(⋅, t) L 2 (R n ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ o(1 + t) -(n-2) 4 if β = 0 O(1 + t) -2 β -(n-2) 4 if 0 < β < 1 2 O(1 + t) -(n+2) 4 log (2 + t) if β = 1 2 O(1 + t) -(n+2) 4 if 1 2 < β ≤ n+2 4 
Proof of Theorem 2.2. See [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF], pp. 305 -311. For an alternative proof when n ≤ 3, see [START_REF] Kreiss | Decay in time of incompressible flows[END_REF][START_REF] Zhou | A remark on the decay of solutions to the 3-D Navier-Stokes equations[END_REF].

Proof of Theorem 2.1. We begin by considering the case of dimension n ≥ 3. Let θ(⋅, t) = u(⋅, t) -v(⋅, t) and let ⋅ stand for ⋅ L 2 (R n ) . Applying (2.5) of Theorem 2.2 with β = 0, we obtain that θ(⋅, t) = o(1 + t) 

with β = (n -2) 4 gives θ(⋅, t) = O(1 + t) -(n+2) 4
, and so we are done.

If n = 4, (2.5) gives θ(⋅, t) = O(1 + t) -(n+2) 4 log (2 + t) = O(1 + t) -1 , so that v(⋅, t) = O(1 + t) -γ with γ = min {1, α} > 1 2. This then gives, using (2.5) again, that θ(⋅, t) = O(1 + t) -(n+2) 4 , which implies v(⋅, t) = O(1 + t) -α , as claimed. Finally, in the remaining case n = 3, v(⋅, t) = O(1 + t) -(n-2) 4 = O(1 + t) -1 4 gives, applying (2.5), θ(⋅, t) = O(1 + t) -3 4 , so that v(⋅, t) = O(1 + t) -γ where γ = min {α, 3 4}. If α ≤ 3 4, we are done; otherwise, v(⋅, t) = O(1 + t) -3 4
and so, by (2.5) again, we have θ(

⋅, t) = O(1 + t) -(n+2) 4 , giving that v(⋅, t) = O(1 + t) -α ,
as claimed. This completes the proof of Theorem 2.1 for any n ≥ 3, as a direct consequence of (2.5) above.

In the remaining case n = 2, letting once more θ(⋅,

t) = u(⋅, t) -v(⋅, t), we have θ(⋅, t) ∈ C([0, ∞), L 2 (R 2 )) and (2.6) θ t = ∆θ -P H [ u(⋅, t) ⋅ ∇u(⋅, t) ], θ(⋅, 0) = 0,
where

P H ∶ L 2 (R 2 ) → L 2 σ (R 2
) denotes the Leray-Helmholtz projector (see e.g. [START_REF] Robinson | The three-dimensional Navier-Stokes equations[END_REF], Chapter 2). Our assumption in this case is that, for some 0

< α ≤ (n + 2) 4 = 1, (2.7) u(⋅, t) = O(1 + t) -α and f (⋅, t) = O(1 + t) -α -1
for all t > 0, where ⋅ denotes the norm

⋅ L 2 (R 2 ) . Now, (2.7) gives (2.8) Du(⋅, t) = O(1 + t) -α t -1 2
(see [START_REF] Guterres | Upper and lower Ḣm estimates for solutions to parabolic equations[END_REF] for a broader discussion). In fact, recalling the energy identity

d dt Du(⋅, t) 2 + 2 D 2 u(⋅, t) 2 = 2 R 2 ⟨ ∇∧(∇∧u), f (x, t) ⟩ dx (for almost all t > 0), we get d dt Du(⋅, t) 2 ≤ 1 2 f (⋅, t) 2
for a.e. t > 0. By (2.7) above, we have, for some constant

C f > 0, that f (⋅, t) ≤ C f (1 + t) -α -1 (cf. (2.
2)), and so the the function z 1 ∈ C 0 (0, ∞) given by

z 1 (t) ∶= Du(⋅, t) 2 + 1 4α + 2 C 2 f (1 + t) -2 α -1 is monotonically decreasing in the interval (0, ∞). Because u(⋅, t) 2 + 2 t t 2 Du(⋅, τ ) 2 dτ = u(⋅, t 2) 2
(for all t > 0), we then have

t Du(⋅, t) 2 ≤ tz 1 (t) ≤ 2 t t 2 z 1 (τ ) dτ = 2 t t 2 Du(⋅, τ ) 2 dτ + C 2 f 2α + 1 t t 2 (1 + τ ) -2α -1 dτ ≤ u(⋅, t 2) 2 + C 2 f 2α + 1 2 2α 2α (1 + t) -2α ≤ 2 2α C 2 0 (1 + t) -2α + C 2 f 2α + 1 2 2α 2α (1 + t) -2α
where in the last step we have used that (by (2.7) above): u(⋅, t) L 2 (R 2 ) ≤ C 0 (1 + t) -α for some constant C 0 > 0. This produces (2.8), as claimed. Now, from (2.6) we have

θ(⋅, t) = - t 0 e ∆(t -s) P H [ u ⋅ ∇u ](⋅, s) ds = - t 0 P H e ∆(t -s) [ u ⋅ ∇u] ds,
for every t > 0, which gives 

θ(⋅, t) ≤ t 0 e ∆(t -s) [ u ⋅ ∇u ](⋅, s) ds = t 2 0 e ∆(t -s) [ u ⋅ ∇u ](⋅, s) ds + t t 2 e ∆(t -s) [ u ⋅ ∇u ](⋅, s) ds ≤ t 2 0 (t -s) -1 u(⋅, s) 2 ds + t t 2 (t -s) -1 2 u(⋅,
θ(⋅, t) = O(t -1 ) t 2 0 (1 + s) -2α ds + O(t -2α
).

This gives θ(⋅, t) = O(t -2α ) if α < 1 2, θ(⋅, t) = O(t -1 ) log (2 + t) if α = 1 2, and θ(⋅, t) = O(t -1 ) if 1 2 < α ≤ (n + 2) 4 = 1. Since θ = u -v, it then follows from u(⋅, t) = O(t -α ), cf. (2.7), that v(⋅, t) = O(t -α ).
This concludes the proof of Theorem 2.1.

Remark 2.3. Let 2 ≤ n ≤ 4, u 0 ∈ L 2 σ (R n ). Given f (⋅, t) ∈ L 1 ((0, ∞), L 2 σ (R n )) satisfying (2.2) and, in addition, f (⋅, t) Ḣm = O(1 + t) -α -1-m 2
for some m ≥ 0, then it follows from Wiegner's theorems above and ([6], Theorem 1.1) that, for t ≫ 1:

D u(⋅, t) L 2 (R n ) = O(t -α -2 ) and u(⋅, t) -v(⋅, t) Ḣ (R n ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ o(t -(n-2) 4 -2 ) if α = 0 O(t -2 α -(n-2) 4 -2 ) if 0 < α < 1 2 O(t -(n+2) 4 -2 ) log t if α = 1 2 O(t -(n+2) 4 -2 ) if 1 2 < α ≤ n+2 4 for every 0 ≤ ≤ m + 1, provided that we have u(⋅, t) L 2 (R n ) = O(1 + t) -α or v(⋅, t) L 2 (R n ) = O(1 + t) -α .
As before, v(⋅, t) denotes the solution of (2.4), Ḣ (R n ) stands for the homogeneous Sobolev space of order ([1], p. 25),

and w Ḣ (R n ) = D w L 2 (R n ) .
See also [START_REF] Oliver | Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in R n[END_REF][START_REF] Schonbek | On the decay of higher-order norms of the solutions of Navier-Stokes equations[END_REF].

Remark 2.4. Under the same conditions given in Remark 2.3, but assuming more strongly that f (⋅, t)

L 2 (R n ) = o(1 + t) -α -1
, it follows from Wiegner's theorems and

([6], Theorem 1.5) that lim inf t → ∞ t α + 2 D u(⋅, t) L 2 (R n ) > 0 for all 0 ≤ ≤ m+1, provided that one has λ(α) ≡ lim inf t → ∞ t α u(⋅, t) L 2 (R n ) > 0 or else that 0 ≤ α < (n + 2) 4 and lim inf t → ∞ t α v(⋅, t) L 2 (R n ) > 0, where v(⋅, t)
is the Stokes flow given in (2.4) above. Moreover (cf. [START_REF] Guterres | Upper and lower Ḣm estimates for solutions to parabolic equations[END_REF], Theorem 1.5),

lim inf t → ∞ t α + 2 D u(⋅, t) L 2 (R n ) ≥ K(α, , r) ⋅ lim inf t → ∞ t α u(⋅, t) L 2 (R n ) where r = λ(α) lim sup t → ∞ t α u(⋅, t) L 2 (R n )
, for some constant K(α, , r) > 0 which depends only on α, and r, and not on u 0 (⋅) or the solution u(⋅, t).

For other results related to this discussion, see e.g. [START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF][START_REF] Brandolese | Large time behavior of the Navier-Stokes flow[END_REF][START_REF] Hagstrom | On two new inequalities for Leray solutions of the Navier-Stokes equations in R n[END_REF][START_REF] Schonbek | On the decay of higher-order norms of the solutions of Navier-Stokes equations[END_REF]].

Applications

3.1. Two-sided algebraic estimates. A first application of both Wiegner and inverse Wiegner theorem in the case of the unforced Navier-Stokes equations, is the following complete characterization of solutions satisfying two-sided algebraic decay estimates.

Corollary 3.1. Let 0 < α < (n + 2) 2, u 0 ∈ L 2 σ (R n
) and u(⋅, t) be a Leray solution arising from u 0 , with f ≡ 0. Then the two following properties are equivalent:

(i) (1 + t) -α ≲ u(⋅, t) 2 L 2 (R n ) ≲ (1 + t) -α . (ii) (1 + t) -α ≲ e t∆ u 0 2 L 2 (R n ) ≲ (1 + t) -α .
This is immediate. The fact that (ii) implies (i) just relies on direct Wiegner's (Theorem 2.2). The inverse Wiegner theorem is needed to prove that the upper bound in (i) implies the upper bound in (ii). Then one uses once more the direct Wiegner theorem to prove that the lower bound in (i) implies the lower bound in (ii).

The main interest of Corollary 3.1 is that one can completely caracterize the initial data such that (ii) holds.

Theorem 3.2. Let α > 0, u 0 ∈ L 2 (R n ). The following properties are equivalent ∶ (i) (1 + t) -α ≲ e t∆ u 0 2 L 2 (R n ) ≲ (1 + t) -α , (ii) lim inf ρ→0+ ρ -2α ξ ≤ρ û0 (ξ) 2 dξ > 0 and lim sup ρ→0+ ρ -2α ξ ≤ρ û0 (ξ) 2 dξ < ∞, (iii) u 0 ∈ Ȧ-α 2,∞ .
The definition of Ȧ-α 2,∞ , which is a suitable subset of the classical Besov space Ḃ-α 2,∞ (R n ), is provided below. Theorem 3.2 was obtained in [START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF] as an application of the theory of decay characters, first introduced in [START_REF] Bjorland | Poincaré's inequality and diffusive evolution equations[END_REF]. Here we would like to propose a shorter and self-contained proof of the above theorem, that does not require any knowledge of decay characters.

Let ϕ be a smooth radial function with support contained in the annulus

{ξ ∈ R n ∶ 3 4 ≤ ξ ≤ 8 3}, such that ∑ j∈Z ϕ(ξ 2 -j ) = 1 for all ξ ∈ R n {0}.
Let ∆ j be the Littlewood-Paley localization operator around the frequency ξ ≃ 2 j , j ∈ Z, namely, ∆ j f = ϕ(⋅ 2 j ) f . Let α > 0. We recall that the homogeneous Besov space Ḃ-α 2,∞ (R n ) can be defined as the space of all tempered distributions f , such that f = ∑ j∈Z ∆ j f in S ′ (R n ), and, for some C ≥ 0 and all j ∈ Z,

(3.1) ∆ j f ≤ C2 αj .
The Ḃ-α 2,∞ -norm is then the best constant C in inequality (3.1). See [1, Chapt. 2]. By definition, Ȧ-α 2,∞ is the subset of Ḃ-α 2,∞ (R n ) such that the corresponding lower bound in (3.1) does hold, at least for an affine-type sequence j k → -∞. More precisely, in addition to (3.1), the elements of Ȧ-α 2,∞ must satisfy

(3.2) ∃c, M > 0, ∀k ∈ N, ∃j k ∈ [-(k + 1)M, -kM ] such that c2 αj k ≤ ∆ j k f 2 .
Let us now prove Theorem 3.2.

Proof. "(ii) ⇒(i)". The lower bound is immediate. Indeed, let g(t) =

(1 + t) -1 2 . For some t 0 > 0 and all t ≥ t 0 , we get from assumption (ii), e t∆ u 0 ≳ ∫ ξ ≤g(t) û0 (ξ) 2 dξ ≳ g(t) 2α . The upper bound is an application of Schonbek's Fourier splitting method [START_REF] Elena | L 2 decay for weak solutions of the Navier-Stokes equations[END_REF].

We have ∫ ξ 2 e -2t ξ 2 û0 (ξ) e -2t ξ 2 û0 (ξ) 2 dξ.

By assumption (ii), the right-hand side is bounded, for some t 0 ≥ 0 and all t ≥ t 0 , by g(t) 2 g(t) 2α = (1 + t) -1-α . The upper bound for e t∆ u 0 2 then follows after multiplying the differential inequality by (1 + t) 2α .

"(i) ⇒(iii)". We rely on the well known fact that a tempered distribution u 0 belongs to the Besov space Ḃ-α 2,∞ (R n ) if and only if sup t>0 t α 2 e t∆ u 0 < ∞, the latter quantity being an equivalent norm to u 0 Ḃ-α

2,∞ . See [1, Chapter 2].
So, assumption (i) implies that 0 < u 0 Ḃ-α 2,∞ < ∞. Let t > 0 and p ∈ Z such that 4 p ≤ t < 4 p+1 . We have, for some constant c > 0 independent on t,

0 < c ≤ t α e t∆ u 0 2 ≤ j∈Z t α e -(2 3) 2 4 j t ∆ j u 0 2 ≤ 4 α j∈Z 4 pα e -(2 3) 2 4 j ∆ j-p u 0 2 ≤ 4 α j∈Z e -(2 3) 2 4 j 4 αj u 0 2 Ḃ-α 2,∞
.

As (e -( 23) 2 4 j 4 jα ) ∈ 1 (Z), there exists M > 0 such that

4 α j >M e -(2 3) 2 4 j 4 jα < c (2 u 0 2 Ḃ-α 2,∞
).

So, 4 α j ≤M

4 pα e -( 2 
3) 2 4 j ∆ j-p u 0 2 ≥ c 2.
This implies the existence of a constant δ = δ(α, c, M ) > 0 such that, for all p ∈ Z, max

j ≤M ∆ j-p u 0 2 ≥ δ4 -pα .
This implies (3.2) and so u 0 ∈ Ȧ-α 2,∞ . "iii) ⇒ii)". From the fact that u 0 ∈ Ȧ-α 2,∞ , we can find a constant c > 0 and a sequence (j k ) of integers, such that j k → -∞ and for all k

∆ j k u 0 2 L 2 ≥ c4 j k α , with M ≡ (j k -j k+1 ) ∞ < ∞. Let ρ 0 = 2 j 0 . For any 0 < ρ ≤ ρ 0 , let j k be the largest integer of the sequence (j k ) such that 2 j k ≤ ρ. Then, 2 j k ≤ ρ ≤ 2 j k +M . Hence, ( 8 3 ρ) -2α ∫ ξ ≤ 8 3 ρ û0 (ξ) 2 dξ ≥ ( 8 3 ) -2α 2 -2(j k +M )α ∆ j k u 0 2 ≥ c2 -2M ( 8 
3 ) -2α . This implies the lim inf condition in (ii). Moreover, for ρ > 0, let j ∈ Z such that 2 j-1 ≤ ρ ≤ 2 j . Then,

( 2 3 ρ) -2α ∫ ξ ≤ 2 3 ρ û0 (ξ) 2 ≲ ( 2 3 ρ) -2α ∑ k≤j ∆ k u 0 2 L 2 ≤ C u 0 Ḃ-α 2,∞
, for some constant C > 0 independent on ρ. Hence, the lim sup condition in (ii) just follows from the fact that u 0 ∈ Ḃ-α 2,∞ .

3.2. On the generecity of algebraic decays. We will apply the previous results to the genericity problem of algebraic estimates, from above and below, for solutions of the Navier-Stokes equations.

First of all, we prove that, in the class of Leray's solutions of the unforced Navier-Stokes equations, the subclass of solutions with a L 2 -algebraic decay is negligible, in a topological sense. To do this, let us consider the class L of all Leray's solutions to the unforced Navier-Stokes equations. We endow L with the initial topology induced by the map I∶ L → L 2 σ , where I is the map u ↦ u 0 , that associates, to a solution u, the corresponding initial datum.

Theorem 3.3. With the above topology, L is a Baire space and the set of unforced Leray's solutions with algebraic decay is meager in L.

The second fact that we will establish is the following: almost all solutions (in a topological sense) of the unforced Navier-Stokes equations with L 2algebraic decay O((1 + t) -α ), with 0 < α < (n + 2) 4, do satisfy the two sided bounds

(1 + t) -α ≲ u(⋅, t) L 2 (R n ) ≲ (1 + t) -α .
To make this rigorous, for 0 < α < (n + 2) 4, we introduce the class D α of all Leray's solution of the unforced Navier-Stokes equations such that

u(⋅, t) L 2 ≲ (1 + t) -α .
Let us endow D α with a natural topology. By Theorem 2.1, we know that u ∈ D α implies e t∆ u 0 L 2 = O((1 + t) -α ). The Besov space theory [1, Chapter 2] then implies that u 0 ∈ Ḃ-2α

2,∞ (R n ). So, we can endow D α with the initial topology induced by the map

I ∶ D α → Ḃ-2α 2,∞ ∩ L 2 σ (R n )
, where I(u) = u 0 , as before, and the topology of Ḃ-2α

2,∞ ∩ L 2 σ (R n ) is that induced by the norm u 0 ↦ u 0 Ḃ-2α 2,∞ + u 0 L 2
σ . Then we have the following: Theorem 3.4. Let 0 < α < (n + 2) 4. The set of Leray's solutions of the unforced Navier-Stokes equations, such that the two sided estimates

(1 + t) -α ≲ u(⋅, t) L 2 ≲ (1 + t) -α do hold, is residual in the Baire space D α .
The above theorems rely on the two propositions below and on a simple lemma in general topology which we now state. Lemma 3.5. Let I∶ X → Y be a surjective map from a set X to a topological space Y . Endow X with the initial topology of the map I. Then:

-If Y is a Baire space, then X is a Baire space. -If B ⊂ Y is residual (resp. meager) in Y , then I -1 (B) is residual (resp. meager) in X.
Proof. The open sets of X are, by definition, the sets of the form

I -1 (U ), where U is open in Y . Now, let V ⊂ Y and A = I -1 (V ).
Let us first observe the following simple fact:

(OD)
A open and dense in X ⇐⇒ V open and dense in Y .

Indeed, if

V is an open dense set in Y and A were not dense, then there would exist a non-empty open set W of X such that A ∩ W is empty. But

W = I -1 (U ) for some open set U of Y . Therefore, I -1 (V ∩ U ) = A ∩ W = ∅.
But I is surjective, hence V ∩ U = ∅ and so U = ∅ because V is dense. Thus, W = ∅ and we get a contradiction.

Conversely, if A is open and dense in X, then there exists an open set U in Y such that I -1 (U ) = A = I -1 (V ). By surjectivity, U = V and so V is open. But V must be dense in Y , otherwise there would exist W = ∅ open in Y such that V ∩ W is empty. Hence, by the surjectivity,

∅ = I -1 (V ∩ W ) = A ∩ I -1 (W ). This is a contradiction because I -1 (W ) is open, non-empty, and A is dense in X.
For proving the first assertion of the lemma, let (A n ) be a countable collection of open dense sets in X. Let us prove that ⋂ n A n is dense in X. Indeed, let W = ∅ be an open set in X. We have

A n = I -1 (V n ) where V n is open and dense in Y by (OD). Moreover W = I -1 (V ) with V open and non-empty in Y . So, W ∩ (⋂ n A n ) = I -1 (V ∩ (⋂ n V n )). But V ∩ (⋂ n V n ) = ∅
by the assumption that Y is a Baire space (and so ⋂ n V n is dense in Y ). Moreover, I is surjective, hence W ∩ (⋂ n A n ) = ∅. This proves that ⋂ n A n is dense in X and so X is a Baire space.

Let us prove the second assertion of the lemma. If B is residual in Y , then B contains a countable intersection ⋂ U n of open and dense sets U n in Y . Then I -1 (B) contains ⋂ n I -1 (U n ), which is a countable intersection of open dense sets of X by (OD). So I -1 (B) is residual in X. The conclusion for meager sets is obtained passing to the complementary. Proposition 3.6. The subspace of L 2 σ (R n )-initial data, such that there exists a Leray solution of the unforced Navier-Stokes equations with an algebraic decay of the energy, is a meager set in L 2 σ (R n ).

Proof. Indeed, if u 0 ∈ L 2 σ (R n ) is such that there exists a Leray solution of the unforced Navier-Stokes equations with an algebraic decay of the energy, then, by the inverse Wiegner theorem, we must have e t∆ u 0 2 ≲ (1 + t) -α , for some α > 0. But, lim sup

ρ→0+ ρ -2α ξ ≤ρ û0 (ξ) 2 dξ < ∞ ⇐⇒ e t∆ u 0 2 ≲ (1 + t) -α .
The implication "⇒" was established in the first part of the proof of Theorem 3.2 and the implication "⇐" is obvious, since ∫ ξ ≤ρ û0 (ξ) 2 ≲ e ∆ ρ 2 u 0 2 ≲ ρ 2α .

For any α, ρ, K > 0, let us consider the closed sets of

L 2 σ F α,ρ,K = u 0 ∈ L 2 σ ∶ ξ ≤ρ û0 2 ≤ Kρ 2α and A α,ρ 0 ,K = ⋂ 0<ρ≤ρ 0 F σ,ρ,K .
Let us show that A α,ρ 0 ,K has an empty interior in L 2 σ . Indeed, let v 0 ∈ L 2 σ , given by

v0 (ξ) = (-iξ 2 , iξ 1 , 0, . . . , 0) ξ -1-n 2 (log ξ ) -1 ,
if ξ ≤ 1 2 and v0 (ξ) = 0 otherwise. Here i is the imaginary unit. The divergence-free condition is ensured by the fact that ξ ⋅ v0 (ξ) = 0. Then, for all 0 < ρ ≤ 1 2, we have ∫ ξ ≤ρ v0 2 dξ ≈ ∫ ρ 0 r -1 (log r) -2 dr ≈ log ρ -1 . Now, let u 0 ∈ A α,ρ 0 ,K and > 0. Then u 0 + v 0 ∈ A α,ρ 0 ,K . Indeed, for some ρ 1 , with 0 < ρ 1 ≤ ρ 0 and all 0 < ρ ≤ ρ 1 :

ξ ≤ρ u 0 + v 0 2 (ξ) 1 2 ≥ ξ ≤ρ v0 (ξ) 2 dξ 1 2 - ξ ≤ρ û0 (ξ) 2 dξ 1 2 ≳ log ρ -1 2 - √ Kρ α ≳ log ρ -1 2 .
Therefore,

ρ -2α ξ ≤ρ u 0 + v 0 2 (ξ) dξ → +∞ as ρ → 0+, which proves that u 0 + v 0 ∈ A α,ρ 0 ,K .
The set of initial data giving rise to Leray's solutions of the Navier-Stokes equations with algebraic decay, which can be characterized as

(3.3) A = u 0 ∈ L 2 σ ∶ ∃α > 0, lim sup ρ→0+ ρ -2α ∫ ξ ≤ρ û0 (ξ) 2 dξ < +∞ ,
can be written as

A = ⋃ α,ρ 0 ,K>0 A α,ρ 0 ,K .
By the previous discussion, A α,ρ 0 ,K is a closed set with empty interior in L 2 σ . But a countable union of these sets is enough to cover A, so A is meager in L 2 σ .

Our next proposition shows that, for α > 0, initial data in Ḃ-2α

2,∞ ∩ L 2 σ (R n ) generically do belong to Ȧ-2α 2,∞ ∩ L 2 σ (R n ). To this purpose, we endow Ḃ-2α 2,∞ ∩ L 2 σ (R n ) with the natural Banach norm w ↦ w Ḃ-2α 2,∞ (R n ) + w L 2 (R n ) . Proposition 3.7. The set Ȧ-2α 2,∞ ∩ L 2 σ (R n ) is residual in Ḃ-2α 2,∞ ∩ L 2 σ (R n ).
Proof. For any j 0 ∈ Z, a norm in Ḃ-2α 2,∞ ∩ L 2 σ (R n ) equivalent to the previous natural norm is (3.4) w ↦ w α,j 0 ∶= sup

j≤j 0 2 -2αj ∆ j w + ∞ j>j 0 ∆ j w 2 1 2 . Let (3.5) V α = u 0 ∈ Ḃ-2α 2,∞ ∩ L 2 σ (R n )∶ ∃δ > 0, ∃j 0 ∈ Z such that, for all j ≤ j 0 , ∆ j u 0 ≥ δ2 2αj . Notice that V α ⊂ Ȧ-2α 2,∞ ∩ L 2 σ (R n ), so it is enough to prove that V α is a dense open set in B -2α 2,∞ ∩ L 2 σ (R n ). Let u 0 ∈ V α , δ > 0 and j 0 ∈ Z such that ∆ j u 0 ≥ δ2 2αj for all j ≤ j 0 . Then the ⋅ α,j 0 -ball of Ḃ-2α 2,∞ ∩ L 2 σ (R n ) centered at u 0 with radius δ 2 is contained in V α . So V α is open in B -2α 2,∞ ∩ L 2 σ (R n ). If u 0 ∈ Ḃ-2α 2,∞ ∩ L 2 σ (R n
) and > 0, then we define, for an arbitrary choice of j 0 ∈ Z and any j ∈ Z,

w j = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ∆ j u 0 , for all j > j 0 or (j ≤ j 0 and 2 -2αj ∆ j u 0 ≥ ) 2 2αj-nj 2 F -1 (-iξ 2 ,iξ 1 ,0,...,0) ξ 1 {2 j ≤ ξ ≤2 j+1 } otherwise,
where F is the Fourier transform and 1 X the indicator function of the set X.

We have sup j∈Z 2 -2αj w j < ∞ and Fw j is supported in a dyadic annulus of radii ≈ 2 j , Hence, w ∶= ∑ j∈Z w j belongs to Ḃ-2α 2,∞ (R n ). (This follows from [1, Lemma 2.23 and Remark 2.24]). Moreover, all these functions w j are divergence free. So one also easily checks that w ∈ L 2 σ (R n ). Moreover, for some c > 0 and for all j ≤ j 0 , we have 2 -2αj ∆ j w ≥ c . So, in fact, w ∈ V α . But, for all integer j ≤ j 0 , we have 2 -2αj ∆ j (u 0 -w) ≤ 2 , which proves that the ⋅ α,j 0 -distance between u 0 and w, is less than 2 . Hence, V α is dense in B -2α 2,∞ ∩ L 2 σ (R n ). Proposition 3.7 could be reformulated in terms of decay characters. Indeed, the elements of A -2α 2,∞ ∩ L 2 σ (R n ), are precisely those for which a decay character (equal to αn 2) does exist. See [START_REF] Brandolese | Characterization of solutions to dissipative systems with sharp algebraic decay[END_REF]Proposition 4.3].

We are now in the position proving Theorem 3.3 and Theorem 3.4.

Proof of Theorem 3.3. Let us consider the class L of all Leray's solutions to the unforced Navier-Stokes equations, endowed with the initial topology induced by the map I∶ L → L 2 σ , where I is the map u ↦ u 0 that associates, to a solution u, the corresponding initial datum. This map is surjective, owing to Leray's theorem. (It is not known yet if the map I is injective or not). But L 2 σ is a complete metric space, hence combining Baire's theorem with Lemma 3.5 implies that L is a Baire space. Moreover, the set of unforced Leray's solutions with algebraic decay is the set I -1 (A), where A ⊂ L 2 σ is the set introduced in Eq. (3.3). But A is meager by Proposition 3.6. This set I -1 (A) is then meager in L, because of Lemma 3.5.

Proof of Theorem 3.4. Let us first observe that the solution-to-datum map 2∞ ∩ L 2 σ ) is precisely the set of Leray's solutions of the unforced Navier-Stokes equations such that the two sided estimates (1+t) -α ≲ u(⋅, t) L 2 ≲ (1+t) -α do hold.

I∶ D α → Ḃ-2α 2,∞ ∩ L 2 σ (R n ) is surjective. Indeed, if u 0 ∈ Ḃ-2α 2 
Due to Remark 2.3, for 2 ≤ n ≤ 4, the topological results of the present section could can be naturally extended to higher derivatives.

  ,∞ (R n ), then e t∆ u 0 = O(t -α ) by the Besov space theory [1,Chapter 2]. But then, foru 0 ∈ L 2 σ ∩ Ḃ-2α 2,∞ (R n ),Wiegner's theorem ensures that a solution u ∈ D α , arising from u 0 does exist. The class D α is a Baire space, owing to Lemma 3.5 and and to the completeness of L 2 σ ∩ Ḃ-2α 2,∞ (R n ). Combining Proposition 3.7 with Lemma 3.5, we see thatI -1 ( Ȧ-2α 2∞ ∩ L 2 σ ) is residual in D α . But,by Theorem 3.2 and Corollary 3.1, I -1 ( Ȧ-2α
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