
HAL Id: hal-04166062
https://hal.science/hal-04166062

Submitted on 19 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electrical Transport Characteristics of Vertical GaN
Schottky-Barrier Diode in Reverse Bias and Its

Numerical Simulation
Vishwajeet Maurya, Julien Buckley, Daniel Alquier, Mohamed-Reda Irekti,

Helge Haas, Matthew Charles, Marie-Anne Jaud, Veronique Sousa

To cite this version:
Vishwajeet Maurya, Julien Buckley, Daniel Alquier, Mohamed-Reda Irekti, Helge Haas, et al.. Elec-
trical Transport Characteristics of Vertical GaN Schottky-Barrier Diode in Reverse Bias and Its Nu-
merical Simulation. Energies, 2023, 16 (14), pp.5447. �10.3390/en16145447�. �hal-04166062�

https://hal.science/hal-04166062
https://hal.archives-ouvertes.fr


Citation: Maurya, V.; Buckley, J.;

Alquier, D.; Irekti, M.-R.; Haas, H.;

Charles, M.; Jaud, M.-A.; Sousa, V.

Electrical Transport Characteristics of

Vertical GaN Schottky-Barrier Diode

in Reverse Bias and Its Numerical

Simulation. Energies 2023, 16, 5447.

https://doi.org/10.3390/en16145447

Academic Editors: Frede Blaabjerg

and Gianluca Brando

Received: 12 May 2023

Revised: 20 June 2023

Accepted: 30 June 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Electrical Transport Characteristics of Vertical GaN
Schottky-Barrier Diode in Reverse Bias and Its
Numerical Simulation
Vishwajeet Maurya 1,2,*, Julien Buckley 1 , Daniel Alquier 2 , Mohamed-Reda Irekti 1, Helge Haas 1,
Matthew Charles 1 , Marie-Anne Jaud 1 and Veronique Sousa 1

1 CEA, Leti, University Grenoble Alpes, 38000 Grenoble, France
2 GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, 37071 Tours, France
* Correspondence: vishwajeet.maurya@cea.fr

Abstract: We investigated the temperature-dependent reverse characteristics (JR-VR-T) of vertical
GaN Schottky-barrier diodes with and without a fluorine-implanted edge termination (ET). To
understand the device leakage mechanism, temperature-dependent characterizations were performed,
and the observed reverse current was modeled through technology computer-aided design. Different
levels of current were observed in both forward and reverse biases for the ET and non-ET devices,
which suggested a change in the conduction mechanism for the observed leakages. The measured
JR-VR-T characteristics of the non-edge-terminated device were successfully fitted in the entire
temperature range with the phonon-assisted tunneling model, whereas for the edge-terminated
device, the reverse characteristics were modeled by taking into account the emission of trapped
electrons at a high temperature and field caused by Poole–Frenkel emission.

Keywords: gallium nitride; vertical Schottky-diode; reverse leakage; TCAD modeling

1. Introduction

Wide band gap (WBG) materials have received increasing attention in recent times,
due to the growing demand for high-power, efficient, and reliable-power semiconductor
devices in various applications, such as transportation, consumer electronics, and renewable
energy. As silicon (Si) is reaching its technological limits, WBG materials, such as silicon
carbide (SiC) and gallium nitride (GaN), are gradually replacing silicon-based technologies.
Although SiC currently dominates the market for high-voltage applications above 1200 V,
GaN devices are being extensively researched to reach this voltage range because of its
superior mobility and critical breakdown field, which offer competitive advantages over
SiC. Currently, commercial GaN high-electron-mobility transistors (HEMTs) are based on
a lateral AlGaN/GaN heterostructure grown on a foreign substrate, such as Si, SiC, or
sapphire [1]. These lateral devices take advantage of the two-dimensional electron gas
(2DEG) that forms at the interface of the AlGaN and GaN heterostructures. However,
commercially available HEMT devices are unable to achieve a sufficiently high breakdown
voltage (BV) of over 1 kV. Additionally, as the current is confined to a very thin layer, it is
necessary to increase the device size significantly to achieve such a high BV and to lower
the on resistance (Ron). HEMT devices also have a normally on operation, which requires
special structures, such as recess gate [2], p-GaN gate [3], or ion implantation [4], to cut off
the 2DEG and make the device suitable for normally off operation. In addition, normally
off HEMT devices are still prone to several issues, such as high threshold voltage instability,
due to charge trapping and current collapse [5], which need to be addressed. An alternative
structure to resolve these issues and boost the BV in GaN power devices is a vertical device
grown on a native GaN substrate. Vertical GaN devices utilize the conducting n- and p-type
bulk GaN layers for vertical conduction instead of 2DEG heterostructures.
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Several research groups have fabricated fully vertical devices on native GaN sub-
strates or pseudo-vertical devices on foreign substrates, such as sapphire and silicon, in
recent times [6–9]. However, the lack of understanding of the relationship between ma-
terial processing and the underlying physics is hindering the widespread adoption of
these devices. The reported vertical devices exhibit a much higher leakage and lower
breakdown than predicted, and the leakage mechanisms are not fully understood to date.
Limited literature is available on fully vertical devices, with most of the work focused on
pseudo-vertical devices. Crystal imperfections, such as dislocations, have been reported
to increase the leakage in the devices [10–15]. Several mechanisms, including enhanced
tunneling due to surface defects [16,17], Poole–Frenkel emission (PFE) [18–22], variable
range hopping (VRH) [19,21–25], phonon-assisted tunneling [26], space-charge-limited
conduction (SCLC) [25], and trap-assisted tunneling (TAT) [20,25], have been identified for
devices grown on either bulk GaN or foreign substrates.

In this work, Schottky diodes are fabricated on free-standing GaN, with and without
an edge termination (ET), and characterized electrically. Schottky metal-semiconductor
junctions are ideal test vehicles for analyzing material properties and electrical performance,
such as leakage and breakdown mechanisms. The leakage in the Schottky diode can be
attributed to carrier injection across the barrier and/or to bulk defects, such as dislocations
and deep trap levels in the epitaxial grown layers. To understand the mechanism(s)
responsible for leakage, temperature-dependent reverse leakage characterizations were
performed and analyzed analytically. Finally, technology computer-aided design (TCAD)
simulations using Synopsys® Sentaurus were performed to help interpret the results. The
objective of this analysis was to provide deeper insight into the physics and to establish a
simulation framework for fabricating high-performance power devices.

2. Materials and Methods

For this study, GaN layers were grown by metal-organic vapor-phase epitaxy (MOVPE)
in a close-coupled showerhead reactor on a highly n+-doped (around 2× 1018 cm−3), 2 inch
diameter, 300 µm thick GaN free-standing substrate provided by Saint-Gobain Lumilog. A
highly doped 0.1 µm buffer layer was also grown on top of the substrate before the epitaxy
of the 5 µm, lightly doped drift layer (Nd-Na = 1~2 × 1016 cm−3), as illustrated in Figure 1.
The quality of the crystal was characterized by X-ray diffraction (XRD) measurements. The
full-width half-maximum (FWHM) of (002) symmetric and (302) asymmetric plane rocking
curves (RCs) were 169 arc sec and 115 arc sec, respectively. The wafer was cleaved into
six pieces, two of which were used for Schottky-barrier diode (SBD) fabrication. On one
part, device fabrication started with 1 µm deep mesa isolation using ICP etching with Cl2
plasma chemistry, followed by multi-energy and multi-dose fluorine ion implantation to
form the edge termination (implanted device). The implant dose and energy were taken
from study [27]. Fluorine implantation has been widely used in GaN-based power devices
to provide a negative fixed charge, which is effective in spreading the peak electric field
away from the edge of the Schottky contact. Post-implantation, the wafer was annealed at
450 ◦C. A Ti/Al/Ni/Au metal stack was evaporated on the backside of the wafer to form
an ohmic contact, and Pt/Au was used as the Schottky contact. The contacts were annealed
simultaneously at 300 ◦C in a nitrogen environment for 5 min. A bilayer SiN/SiO2 was
deposited as the passivation and was opened to deposit a Ti/Au field plate contact. For the
non-implanted control diode, the same contact layers were deposited and annealed. The
schematic cross-sections of the non-implanted and implanted diodes are represented in
Figure 1a and Figure 1b, respectively.

Forward and reverse characterizations on the fabricated diodes were conducted using
a Keithley 4200 parameter analyzer, and the temperature was varied from 25 ◦C to 125 ◦C, as
shown in Figure 2a and Figure 2b, respectively. The analyzed devices had square geometry,
with the Schottky contact side length being 190 µm. For the devices without implantation,
as no edge termination was used, the measurement voltage was restricted to −50 V to
prevent the device from undergoing destructive breakdown, due to electric field crowding
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at the Schottky contact edge. For the fluorine implanted devices, the measurements were
conducted up to −200 V, which was the maximum voltage range of the equipment.
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3. Results
3.1. Forward Bias

In the case of an ideal Schottky contact, the temperature (T)- and bias (V)-dependent
current (I) can be expressed as [28]:

I = Is

[
exp
(

qV
nkT

)
− 1
]

, (1)

Is = AA∗T2exp
(
− q∅B

kT

)
, (2)

A* =
4πqm∗k2

h3 , (3)

Here, Is is the saturation current density obtained by extrapolating a semi-log I-V
curve to V = 0 V. A is the Schottky contact area, m* is the effective mass of an electron, A*
is the effective Richardson constant (taken at 26.4 A cm−2 K−2 for m* = 0.2 from [29]), k is
the Boltzmann constant, q is the elementary charge, h is the Planck constant, and ∅B is the
Schottky barrier height. The ideality factor, n, describes the dominant current transport
mechanism, with a value close to unity indicating that the main mechanism is thermionic
emission. When n is slightly larger than unity, it refers to a conduction mechanism that is
composed of both thermionic emission and tunneling, while a large value of n indicates a
tunneling-dominated conduction.
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The extracted values of n at RT for both devices were 1.02 and 1.05, respectively, as
shown in Figure 3. This suggests that the dominant conduction mechanism in forward
bias is thermionic emission. The forward bias characteristics of both the implanted and
non-implanted diodes exhibited different levels of current density, as can be observed from
Figure 2a, due to the difference in the Schottky barrier heights, which were calculated at
0.76 eV and 0.96 eV (at RT) for the implanted and non-implanted diodes, respectively. The
barrier height for the implanted device was 0.2 eV lower than that of the non-implanted
one, which can be attributed to changes in the metal contact–GaN interface, due to mul-
tiple process steps, such as chemical cleaning and the annealing steps performed for the
implanted device. Such steps can introduce surface states that can lead to inhomogeneous
barrier height and ∅B deviation from the Schottky–Mott model [28]:

∅B = ∅M − χ (4)
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In the above calculation of barrier height, A* was assumed to be constant at 26.4 A cm−2K−2.
This calculation assumed an ideal case with a perfect barrier and crystal. However, in
reality, this value depends considerably on the homogeneity of the Schottky interface and
on crystal quality. Therefore, from the I-V-T measurement, the modified Richardson’s
constant was extracted from the thermionic emission model, as given by [30]:

ln
(

IS
AT2

)
= ln(A∗)− q∅b

kT
(5)

The barrier heights extracted from the slope of Figure 4 were 0.69 eV and 0.83 eV for
the implanted and non-implant diodes, respectively. These values were slightly lower than
the previous extracted values, but there was a similar difference between the two samples.
The experimental values of A* for the implanted and non-implanted diodes were found to
be 2 A cm−2 K−2 and 0.23 A cm−2 K−2, respectively. This underestimation of Richardson’s
constant from the ideal value could be explained by the presence of inhomogeneous
distribution of the Schottky barrier and has been extensively studied before for Schottky–
GaN contacts [31–36]. Due to the inhomogeneity in the barrier, the electrons at a higher
temperature had sufficient energy to overcome a higher barrier, thus increasing the average
barrier with the temperature, as can be observed from Figure 3. A comparative higher
value of A* for the implanted device could indicate a larger effective area [37], due to
the reduction in surface defects, interface roughness, or any other contamination, due to
different cleaning and annealing steps involved in the fabrication.



Energies 2023, 16, 5447 5 of 10

Energies 2023, 16, x FOR PEER REVIEW 5 of 10 
 

 

the average barrier with the temperature, as can be observed from Figure 3. A comparative 
higher value of A* for the implanted device could indicate a larger effective area [37], due 
to the reduction in surface defects, interface roughness, or any other contamination, due 
to different cleaning and annealing steps involved in the fabrication. 

 
Figure 4. Richardson’s plot for implanted and non-implanted devices. 

3.2. Reverse Bias  
Both the diodes had much higher leakage currents than those expected from the ideal 

thermionic equation. The physical origin of leakages can be either from the contact-limited 
processes, such as Schottky barrier lowering, direct tunneling through the contact, 
Fowler–Nordheim tunneling, and semiconductor bulk-limited conduction, such as PFE, 
VRH, SCLC, etc., or a combination of both contact- and-bulk related processes. A list of 
different mechanisms is presented in Table 1. In order to understand the leakage mecha-
nism(s), the field and temperature dependences of the leakage currents were studied and 
simulated in Synopsys TCAD. As both the devices exhibited different forward barrier 
heights and leakage current densities, they were analyzed and simulated separately. 

Table 1. Summary of different leakage mechanisms. 

Mechanism Expression Reference 

Poole–Frenkel emission 𝐽௉ி = 𝐶𝐸𝑒𝑥𝑝 ൭− 𝑞(∅௧ − ඥ𝑞𝐸 𝜋𝜀௥𝜀௢⁄ )𝑘𝑇 ൱  [18,19,21] 

Variable-range hopping 𝐽௏ோு = 𝐽(0)𝑒𝑥𝑝 ቌቆ𝐶 𝑞𝐸𝑎2𝑘𝑇 ൬𝑇଴𝑇 ൰ቇଵସቍ [21,25] 

Phonon-assisted tunneling 𝐽௉௛஺் ∝ 𝑒𝑥𝑝 ൬ 𝐸2𝐸௖2൰ [26,38] 

Space-charge-limited 𝐽ௌ஼௅஼ ∝ 𝑉2 [25] 

Trap-assisted tunneling 𝐽்஺் ∝ 𝑒𝑥𝑝 ⎝⎛
−4ට2𝑞𝑚∗∅௧ଷ ଶ⁄3ħ𝐸 ⎠⎞ [12] 

3.2.1. Non-Implanted Devices  
For non-implanted diodes, the leakage current increased more rapidly than for im-

planted ones. The origin of this high leakage could be a phonon-assisted tunneling mech-
anism [26], as observed from the linear dependence in the ln(J) vs. E2 plot in Figure 5. 
According to this model, the current transport across the barrier was governed by the 

Figure 4. Richardson’s plot for implanted and non-implanted devices.

3.2. Reverse Bias

Both the diodes had much higher leakage currents than those expected from the ideal
thermionic equation. The physical origin of leakages can be either from the contact-limited
processes, such as Schottky barrier lowering, direct tunneling through the contact, Fowler–
Nordheim tunneling, and semiconductor bulk-limited conduction, such as PFE, VRH,
SCLC, etc., or a combination of both contact- and-bulk related processes. A list of different
mechanisms is presented in Table 1. In order to understand the leakage mechanism(s), the
field and temperature dependences of the leakage currents were studied and simulated
in Synopsys TCAD. As both the devices exhibited different forward barrier heights and
leakage current densities, they were analyzed and simulated separately.

Table 1. Summary of different leakage mechanisms.

Mechanism Expression Reference

Poole–Frenkel emission JPF = CEexp

(
−

q
(
∅t−
√

qE/πεrεo

)
kT

)
[18,19,21]

Variable-range hopping JVRH = J(0)exp
((

C qEa
2kT

(
T0
T

)) 1
4
)

[21,25]

Phonon-assisted tunneling JPhAT ∝ exp
(

E2
Ec2

)
[26,38]

Space-charge-limited JSCLC ∝ V2 [25]
Trap-assisted tunneling JTAT ∝ exp(−4

√
2qm∗∅3/2

t
3
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3.2.1. Non-Implanted Devices

For non-implanted diodes, the leakage current increased more rapidly than for im-
planted ones. The origin of this high leakage could be a phonon-assisted tunneling mech-
anism [26], as observed from the linear dependence in the ln(J) vs. E2 plot in Figure 5.
According to this model, the current transport across the barrier was governed by the
tunneling of electrons from the interface states [39]. Note that the electric field strength (E)
was calculated using the formula:

E =

√
2q(Nd − Na)

εrεo

(
V + Vbi −

kT
q

)
, (6)

where Vbi is the built-in voltage, Nd and Na are the donor and acceptor concentrations in
the drift layer, respectively, V is the applied potential, εr is the relative permittivity of GaN,
and εo is the permittivity of free space.
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In order to confirm this, two dimensional TCAD simulations were performed (as
the supplementary materials shown), with structural parameters the same as those of
the fabricated devices, as mentioned in the previous section. The work function (WF)
of the Schottky contact in the simulation was used as a fitting parameter to match the
experimental forward I-V. We obtained a good fit, with a Schottky WF of 4.91 eV that gave
a barrier height of 0.95 eV using Equation (4) (electron affinity χ = 3.96 eV for GaN at RT).
This was in agreement with the extracted barrier height of 0.96 eV by I-V measurements.
For simulating the reverse bias leakage through phonon-assisted tunneling, trap states
were introduced at the Schottky interface, with trap energy, concentration, and thickness of
the interface as the fitting parameters. Two tunneling paths were defined for electrons to
tunnel from the metal to the trap state and for the subsequent tunneling to the conduction
band [40]. An electron effective mass value of 0.2 me was used. The electron–phonon-
coupling Huang–Rhys factor was taken as 6.5, and the phonon energy hωo was taken as 66
meV [41]. Thermionic emission and barrier lowering by image force were also included
in the simulation. For a trap concentration of 2 × 1017 cm−3 and a trap location at 0.25 eV
from the conduction band edge, a decent fit was obtained between the simulation and the
experiment, as plotted in Figure 5b. The thickness of the interface layer was estimated
to be 10 nm. This particular trap could be associated with nitrogen vacancies or point
defects segregated around a dislocation [42–45]. Further investigation is required to fully
understand the origin of this defect state.

3.2.2. Implanted Devices

The temperature and field dependence of the implanted devices suggested the pres-
ence of another mechanism apart from phonon-assisted tunneling, which could be related
to the presence of defects in the 5 µm epitaxial GaN layer. Thermal activation energy EA
was extracted at different voltages by linear fitting of the Arrhenius plot, according to the
equation I ∝ exp

(
− EA

kT

)
. The extracted EA vs. E1/2 suggested Poole–Frenkel emission

(PFE) as a possible conduction mechanism, which is the thermal excitation of deep states in
the presence of an electric field. The field dependence of activation energy for PF is given
by the relation:

EA = ∅t − βPFE1/2, (7)

βPF =

√
q

πε0εr
, (8)

where ∅t is the emission barrier height for the deep state, βPF is the Poole–Frenkel coeffi-
cient, εr is the relative dielectric constant at high frequency, and E is the electric field. Two
trap energies were extracted, with energy values of 0.75 eV and 1 eV below the conduction
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band, and βPF were equal to 1.8× 10−4 eV·V−1/2·cm−1/2 and 5.5× 10−4 eV·V−1/2·cm−1/2,
respectively, as plotted in Figure 6a. The extracted βPF were in close agreement with
previously reported values [19,21,46]. To reinforce this, TCAD simulations were performed
by including bulk traps, with the PFE model activated in the GaN drift layer. Only a
single trap energy was considered to simplify the simulation process, while the energy
and concentration were used as the fitting parameters. A good fit was obtained between
the simulation and the experimental leakages for a bulk trap of Ec—0.9 eV, with a trap
concentration of 1 × 1015 cm−3, as plotted in Figure 6b.
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The identified traps at 0.75 eV and 1 eV could be possibly related to Ga2+
1 , VGaN−i and

VGaN2−
i states [47], or dislocation-related defects [48]. However, additional experiments

such as DLTS is required to confirm these observed traps.

4. Conclusions

In this work, we investigated both the forward and reverse characteristics of fluorine-
implanted and non-implanted Schottky diodes in order to determine the conduction mech-
anisms. Both the devices were fabricated on different pieces of the same wafer, but they
exhibited different forward and reverse characteristics. This clearly indicates that different
fabrication steps, such as plasma etching, implantation, and passivation deposition, can
alter the electrical characteristics of a Schottky–GaN interface significantly in both forward
and reverse biases. The dominant conduction mechanism in the forward bias was found
to be thermionic emission, with an ideality factor close to unity. The Schottky barrier
heights were calculated at 0.76 eV and 0.96 eV (at RT) for the implanted and non-implanted
diodes, respectively. The Richardson’s constant was extracted from the thermionic emission
model, which revealed an underestimation of the Richardson’s constant from the ideal
value, indicating the presence of inhomogeneous distributions of the Schottky barriers. In
the reverse bias, two different mechanisms were identified and simulated through TCAD.
For the non-implanted diodes, phonon-assisted tunneling through a trap located close to
the M–S interface at 0.25 eV below the conduction band was identified as the source of the
leakage. For the implanted diodes, Poole–Frenkel emissions from defects located deep in
the bandgap appeared to be responsible for the observed leakage. A TCAD simulation
successfully reproduced the experimental reverse I-V at different temperatures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16145447/s1.
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