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Abstract 
Automated anomaly detection in sensor data plays a crucial role in various applications, including predictive 

maintenance, quality control, and prototype testing in the automotive industry. This paper focuses on a specific 

type of anomaly, known as “Spikes”, which are sharp, sudden outlier values with no correlation to surrounding 

samples. The study presents a novel Dynamic Time Warping (DTW) based technique for detecting these spikes 

in online, multi-channel acquisitions during automotive testing. The technique has been validated on a real-

world dataset acquired during a measurement campaign on an electric vehicle. The dataset consists of both 

anomalous and non-anomalous signals with varying dynamic ranges, patterns, lengths, and sensor types. The 

results show the method’s accuracy in avoiding false positives, such as mistaking spikes for other physical 

impulses during the test, like tires squeaking, or any other physical impulse coming from the engine or other 

sub-component of the vehicle under test.  

 
1 Introduction 

Detection of anomalies in timeseries data is an important task in many industries [1]. In the automotive 

sector, sensor data is collected in various stages of the vehicle lifecycle [2]. During the development phase 

extensive measurement campaigns are conducted on physical prototypes. After manufacturing and assembly 

quality control tests are performed at the end of the production line. Finally, when the vehicles are in operation 

at the end users, sensor data can be used to monitor the vehicle fleet, for example enabling predictive 

maintenance.  

In this work we focus on the physical prototype testing which happens during the vehicle development 

phase. The vehicle is traditionally heavily instrumented with different types of physical sensors that are needed 

to characterize the dynamical behaviour of a newly designed variant of a certain vehicle. This is a time-

intensive and error-prone activity as various problems can occur within the measurement chain.  Most common 

hardware problems that can be found are misconnection issues due to defective cables or sensors, ADC stuck 

values, EMI due to other sources functioning close to the sensors, ground loop noise, etc. These problems can 

be observed in the raw measured time series as spikes, drifts, noise, or stuck-at-constant anomalies [3].  

While various time series anomaly detection methods have been proposed in literature (cf. survey in [1]), 

several of them have prohibitive computational complexity or memory requirements, while performance can 

vary over different datasets and anomaly types. In this work, we focus on a specific sensors anomaly type 

which commonly occurs in Noise, Vibration and Harshness (NVH) and durability testing applications, i.e., 

“spikes”. Spikes appear in the measured time series as unexpected, sharp peaks with no correlation to previous 

samples. However, in these testing applications there may also be physical impulses or shock events (non-

anomalous patterns) which can be confused with actual spike sensor faults (anomalous patterns). The 

distinction between the two cases can only be made by an experienced test engineer.  
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As the state-of-the-art time series anomaly detectors were not designed for this specific NVH testing 

application, they may not be able to properly distinguish between the actual spike anomalies and the physical 

impulses and shock events (which are not anomalous). Therefore, the authors previously proposed [4] a novel 

spike detection approach based on Dynamic Time Warping (DTW), which is designed to make this distinction. 

In the current work, the method will be further validated on a real-world dataset, which was acquired during a 

measurement campaign on an electric vehicle. The paper is organized as follows. Section 2 presents the 

methodological foundations of the proposed approach. Section 3 discusses the real-world dataset and 

measurement campaign which was conducted for this study. Section 4 presents the results and discussion. 

Finally, Section 5 reports the conclusions of the work.       

 

2 Methodology 

2.1 Problem statement 

The goal of this work is to build an automatic sensor spike detection method which is capable of 

distinguishing between physical peaks (PP) and artificial spikes (AS). The PP are the natural impulses and 

shock events which are observed in structural response measurements. These have a physical root cause (e.g., 

a vehicle driving over a pothole) and should not be flagged as anomalous events. The AS on the other hand 

are caused by faults in the measurement chain, e.g., sensor malfunction, worn cables, etc. These AS should be 

flagged as anomalous events, such that the test operator is automatically notified of the issue and can take 

corrective actions. We assume that the difference between PP and AS is observable in the waveform shapes as 

follows: 

• Physical Peaks (PP) show a slow oscillating decay after the maximum value is reached. The decay time 

and oscillation frequency are determined by the mechanical system properties (mass, damping, stiffness). 

• Artificial Spikes (AS) can be considered as outliers with no dynamic response (e.g., no correlation with 

previous and subsequent samples). 

To illustrate these concepts, Figure 1 shows signals from real world test data. The difference between an 

AS (on the left) and a PP (on the right) can clearly be observed. 

 

 

2.2 Spike detection methodology 

In [4], a four-step spike detection methodology was first introduced, cf. Figure 2. This methodology first 

extracts a number of candidate peaks (steps 1 to 3) from the raw measurement signal. Then, in a final step, 

each candidate peak is evaluated by a Dynamic Time Warping (DTW) method, which evaluates the waveform 

shape of the candidate peak and classifies it as either a PP or AS. The following subsections will further 

elaborate the four steps of the spike detection method.  

Figure 1: Real-world examples of artificial spikes (left) and physical peaks (right). 
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2.2.1 Definition of reference signals 

To evaluate whether a potential peak resembles more an AS or a PP, idealized reference signals for both 

cases have to be constructed. For the PP, it is assumed that the signal will exhibit a slow oscillating decay with 

the decay time and oscillation frequency determined by the mechanical system properties (mass, damping, 

stiffness). For a Single-Degree-Of-Freedom (SDOF) linear system which is excited by an impulsive force, the 

dynamic behavior can be expressed as: 

 

 𝑚𝑋′′ + 𝑐𝑋′ + 𝑘𝑋 = 0, (1) 

 

where m, c and k are the mass, damping and stiffness of the structure and 𝑋′′, 𝑋′ and X are the acceleration, 

velocity and displacement. The response of more complex real-world structures corresponds to a sum of 

several independent frequencies and damping ratios which leads to more complex waveform shapes [5]. 

Nevertheless, for the case of artificial spikes, such dynamic behaviour cannot be observed. Figure 3 shows the 

reference template signals of AS and PP that are used in this work. 

 

Figure 2: DTW-based spike detector - processing blocks. 

 

Figure 3: Reference templates of artificial spike (left) and physical peak (right). 
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2.2.2 Pre-processing 

We consider a sensor time series that will be checked as an isolated signal, referred to as 𝑥(𝑡). The 

algorithm starts by differentiating the signal to enhance the presence of the most relevant changes in the 

gradient 𝑥’(𝑡). Then, Z-scores are calculated to normalize the time series, this means to subtract each sample 

by the mean value and divide by the overall standard deviation [6]. We will define this output variable as 𝑧(𝑡). 

After this first processing, the signal is divided into equally sized window slices. For this case, the window 

size is 2048 samples and for each window slice an exponentially weighted standard deviation (EWSD) 

calculation is performed with a forgetting factor 𝛼 = 0.3. The EWSD is calculated in the same way as the 

exponentially weighted moving average (EWMA) [7], i.e.: 

 

 EWSD𝑘 =  𝛼 ∗ 𝜎̂𝑘(𝑧) + (1 − 𝛼) ∗ EWSD𝑘−1 (2) 

 

where k is the window slice index, α is a forgetting factor between 0 and 1, EWSD𝑘−1 corresponds to the 

EWSD from the previous window slice and 𝜎̂𝑘(𝑧) corresponds to the standard deviation of 𝑧(𝑡) in window 

slice k. 

 

2.2.3 Peak extraction 

Following the previously described pre-processing procedure, an EWSD value per window slice is 

obtained. In order to identify potential peaks, a dynamic threshold is then set as EWSD*Factor. The value of 

Factor will tune the sensitivity of the algorithm to find more or less peaks to be further analysed by the DTW 

method. Each peak that surpasses the threshold and the successive 125 samples are extracted and stored for 

further analysis. 125 samples correspond to a timeframe close to 2.5 ms for the sampling frequency used in 

these measurements (i.e., 51200 Hz). The extracted peaks are scaled to unit amplitude to reduce the influence 

of amplitude while comparing with the reference templates (cf. next section). 

 

2.2.4 Dynamic Time Warping 

Once the peaks have been extracted from the pre-processed time series, each one of them is compared to 

the reference templates (cf. Figure 3). Since the peaks were all extracted from their maximum value and then 

scaled with this same value, it means that they all start at amplitude equal to 1. Nevertheless, since the 

frequencies and damping ratios will vary from each specimen under test, the use of Dynamic Time Warping 

(DTW) is essential to perform waveform shapes studies. DTW, which was introduced in speech recognition 

applications [8], allows to measure the similarity between two temporal sequences which may vary in speed, 

in contrast to the traditional Euclidean distance. DTW finds the optimal alignment between two time series 

and captures flexible similarities by aligning the coordinates inside both sequences. Figure 4 shows graphically 

how the most similar elements are linked by a grey solid line. The cost of the optimal alignment can be 

recursively computed by the following expression:  

 

 𝐷(𝑖, 𝑗) =  𝜁(𝑥𝑖 , 𝑦𝑗) +  min {

𝐷(𝑖 − 1, 𝑗 − 1)

𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗)
} ,   𝑖 = 1 … 𝑁, 𝑗 = 1 … 𝑀,   (3) 

where 𝑥 = (𝑥1, … , 𝑥𝑁) and 𝑦 = (𝑦1, … , 𝑦𝑀) are two time series and where 𝜁 is the distance between 2 

elements. These terms form D, a N-by-M matrix that will allow to establish the “least-costly” warping path. 

Intuitively, the distance function has a small value when the sequences are similar and a large one if they are 

different. Thus, DTW finds the optimal path that runs through the low-cost “valleys” in the cost matrix. For 

this research, all DTW related calculations were executed with the DTAIDistance Python package [9]. 
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Using DTW, two similarity metrics are now calculated between each extracted candidate peak and the AS 

and PP reference template signals. The lowest between both will define if the peak is considered as anomalous 

or not (e.g., if the lowest similarity metric corresponds to the comparison against the AS template, then the 

peak will be considered as anomalous). The subtraction of these two metrics leads to the creation of the ∆𝐷𝑇𝑊 

for every peak:  

 ∆𝐷𝑇𝑊 = 𝐷𝑇𝑊𝐴𝑆 − 𝐷𝑇𝑊𝑃𝑃 (4) 

 

 {
          𝐼𝑓 ∆𝐷𝑇𝑊 > 0  =>  𝑁𝑜𝑡 𝐴𝑛𝑜𝑚𝑎𝑙𝑦

     𝐼𝑓 ∆𝐷𝑇𝑊 < 0  =>      𝐴𝑛𝑜𝑚𝑎𝑙𝑦
 (5) 

 

 Since traditional implementations of DTW have a computational complexity of 𝑂(𝑁2) [11], where 𝑁 is 

the number of samples to be fed into the DTW block, we keep 𝑁 small by only applying DTW to the suspicious 

peaks and successive 125 samples which were obtained in the peak extraction block. This procedure leads to 

short computation times (as 𝑁 = 126), which allow for online use while a test is conducted.  

 

3 Real-world dataset: vehicle measurement campaign  

3.1 Measurement campaign setup 

To create a real-world benchmark dataset to validate the spike detector methodology, a test campaign was 

conducted on an electric vehicle driving on a chassis dynamometer. During these tests sensor anomalies were 

injected on purpose by using several damaged cables for specific sensors mounted on the vehicle 

(accelerometers, tachometer and microphones), while for others, the connection screw on the sensor side was 

loosened to create short-duration signal cuts, cf. Figure 5. For both cases, small and large amplitude spikes 

were indeed observed in the measured time series. The vehicle was driven in run-up and run-down sessions as 

Figure 4: Comparison between Euclidean Distance (ED) and Dynamic Time 

Warping (DTW). Grey lines indicate linked elements between time series [10]. 

 

Figure 5: Examples of damaged cable (left) and loosened screw connection (right).  
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is typical in Noise, Vibration and Harshness (NVH) measurements, hence creating non-stationary test 

conditions. After each measurement run, the test operator performed a visual inspection of the time series for 

each of the known “faulty” sensors, to verify whether spike anomalies could be observed.   

 

3.2 Spike detector validation dataset 

While during the test campaign other types of sensor anomalies besides spikes were observed (e.g., signal 

dropouts, high noise levels, flatlining, …), in this work we only focus on the measurement runs and 

measurement channels where spike anomalies were observed. A set of 24 time series were selected to evaluate 

the performance. They are a combination of 12 anomalous signals (time series with verified AS), and another 

set of 12 healthy signals without any visible or audible AS events.  

Examples of a healthy signal and an anomalous signal are illustrated in Figure 6 and Figure 7 respectively. 

It can be observed that in the healthy signal, sometimes a large peak occurs. Upon closer inspection, the peak 

however shows decaying oscillations indicative of structural dynamic behaviour (cf. Figure 6, zoomed-in 

view). Hence this corresponds to a PP which should not be indicated as an anomaly.  

  

 

Figure 6: Example of healthy vibration signal with a PP. 

Figure 7: Example of an anomalous microphone signal with multiple AS.  
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4 Results and discussion 

4.1 Ground truth labelling by reference algorithm 

While the selected anomalous signals were known to contain multiple AS, it would require significant 

effort to label each individual AS, while moreover the labelling quality may be compromised due to being a 

subjective activity. Hence for validation purpose, labels were instead provided by a reference algorithm. In 

this work the Bayesian spike detector algorithm of [12] was selected for this purpose. This algorithm was 

validated in previous work and was known to give acceptable performance for NVH measurement applications, 

but has as disadvantage that its computation time can be high for time series which are affected by many AS. 

Moreover, the method does not explicitly try to distinguish between AS and PP, so that it may erroneously 

classify a PP as an AS (i.e., a false positive).  

The Bayesian spike detector of [12] aims to precisely detect all samples which are affected by an AS, as 

the method also aims at correcting the affected samples and replacing them by a prediction of the underlying 

(healthy) signal. The output of the Bayesian detector is therefore a Boolean indicator function with the same 

length as the original time series (`0´corresponding to a sample without AS and `1´ corresponding to a sample 

affected by an AS). The DTW-based spike detector of this work however only aims at detecting each individual 

AS and does not aim at correcting the signal. It therefore only gives an indication of occurrence of an AS, but 

does not output a precise indicator function which indicates each sample that is affected by an AS. In particular, 

in most cases the DTW-based spike detector only indicates a single data point within an AS. Moreover, it (by 

design) disregards peaks which are in close proximity of an already extracted peak during the peak extraction 

step. 

To be able to compare the outputs of the two spike detection methods, an alignment step is applied whereby 

the outputs are compared within a prescribed observation window (e.g., 20 ms). If the indicator functions both 

have one or more entries of `1´ within this observation, it is considered that they both detected the same AS. 

                 

4.2 Performance metrics 

After the alignment step explained in previous section, we consider a True Positive (TP) to be a case where 

both the DTW-based spike detector and the reference algorithm indicate the presence of an AS, a False Positive 

(FP) where only the DTW-based spike detector indicates the presence of an AS, and a False Negative (FN) 

where only the reference algorithm indicates the presence of an AS. Based on these definitions, we calculate 

the Precision and Recall as follows:      

 Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

 

A high precision value (close to 1) implies that only few false positives are found, which is considered an 

important property (otherwise, the test operator would too often stop the tests for no reason). A high recall 

value on the other hand implies that every true AS is indeed detected. While this is ideally also as high as 

possible (close to 1), we consider that in this application a small number of missed detections can be tolerated 

from the user perspective.     

                

4.3 Results for anomalous signals 

Figure 8 displays the Precision and Recall results averaged over the 12 selected anomalous signals. The 

perfect spike detector would achieve Precision and Recall scores of 1, and thus be situated in the upper right 

corner of the graph.  

As indicated in Section 4.1, an observation window has to be selected within which the DTW-based spike 

detector output and reference algorithm outputs have to be aligned. As this choice has a direct impact on the 
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obtained Precision and Recall scores, the results are shown for 3 different choices (indicated by green, red and 

purple coloured lines).  

Another important parameter is the threshold Factor which is used in the peak extraction step of the DTW-

based spike detector. The higher this threshold, the less candidate peaks are passed into the DTW step, such 

that there is less chance of erroneously classifying a peak to be an AS. Therefore, higher values lead to higher 

Precision (i.e., less false alarms), but at the same time also to lower recall scores (more missed detections). 

The results show that even for the smallest observation window, a high Precision score (above 0.8) can be 

achieved. The Precision goes up to 0.95 for the larger observation window of 51200 samples (=1 second). For 

this setting, an acceptable Recall above 0.8 can also be achieved at the same time. As indicated before, we 

consider that a high Precision score is important in this application, while lower values for Recall can still be 

acceptable from the user perspective.  

 

Another important aspect is the required computation time of the methods. Figure 9 reports the 

computation times which were required to process each of the 12 anomalous signals. Each timeseries had a 

duration of 40-50 seconds, corresponding to more than 2 million data points at a sampling rate of 51200 Hz. 

It can be observed that the Bayes reference algorithm requires long computation times in some cases, in 

Figure 8: Average Precision and Recall scores for anomalous signals. 

Figure 9: Computation time of Bayes reference algorithm and DTW-based 

algorithm, for 12 anomalous signals. 
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particular when many AS occur in the signal. The computation times of the DTW-based method are always 

significantly shorter and are considered to be acceptable for this application.  

 

4.4 Results for healthy signals 

As a final sanity check, we also report the number of AS which are found by the algorithms for the 12 

selected “healthy” signals. These were signals without any visible or audible AS events, hence where the 

ground truth is assumed to be that there are no AS. Figure 10 shows the amount of AS which were erroneously 

found for each of the 12 healthy signals, both by the Bayes reference algorithm and the DTW based algorithm. 

It can be observed that the Bayes algorithm finds more AS than the DTW-based algorithm, except for 1 case 

which requires further investigation. A possible explanation for this is that the Bayes algorithm sometimes 

confuses a PP for an AS (e.g., in cases like the one illustrated in Figure 7), while the DTW algorithm correctly 

avoids that the PP leads to a false alarm.  

 

 

5 Conclusions 

This paper presented a spike detection method based on DTW with low computational cost, which is 

suitable for detecting sensor spike anomalies during measurement campaigns on physical prototypes in the 

vehicle development phase. The method consists of 4 processing blocks which pre-process the sensor signal 

and extract candidate peaks, which are then compared to reference template signals through DTW in order to 

classify them as either physical peaks (non-anomalous) or artificial spikes (anomalous). The method was 

validated on a real-world benchmark dataset, which was measured during a test campaign that was conducted 

on an electric vehicle driving on a chassis dynamometer. It was demonstrated that the DTW-based method 

achieves high Precision and Recall scores, at a significantly lower computation time compared to a reference 

algorithm. Moreover, it raises less false alarms, which can be explained by the fact that it is designed to 

distinguish physical peaks in the data from true anomalous artificial spikes.       
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Figure 10: Amount of AS found in 12 selected healthy signals by 

Bayes reference algorithm and DTW-based algorithm. 
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