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Abstract
In vibration-based condition monitoring, the damaged signal components are often masked by extraneous com-
ponents and need to be extracted or enhanced to perform detection, identification, and trending. This can be
performed using optimal filters. In this work, the optimal filtering problem is presented using different opti-
misation formulations, objective functions, and optimisation algorithms. The performance of the methods for
fault detection, and trending are compared under time-varying speed conditions. The work demonstrates that
the objective function, optimisation formulation and optimisation algorithm can have a significant impact on
the performance of the methods and should be carefully selected for vibration-based condition monitoring ap-
plications under time-varying speed conditions.

1 Introduction

Vibration-based condition monitoring is one of the most popular condition monitoring methods for rotat-
ing machinery [1]. However, the fault signatures are often masked by extraneous signal components (e.g.,
dominant gear mesh interactions) and their detection is impeded by time-varying operating conditions. Many
critical assets in the power generation and mining industries operate under time-varying operating conditions
and therefore it is important to develop and investigate methods that can enhance the damage information under
these conditions.

Digital filters can be used to extract the information of interest and to attenuate the extraneous components
[2]. In blind deconvolution, this is achieved by designing an inverse filter that aims to attenuate the transmission
path effects from the signal so that the original signal can be recovered [2]. Since we do not know the original
source, this filter is obtained by maximising some measure of the filtered signal that is sensitive to the compo-
nent of interest, e.g., kurtosis [3, 2], correlated kurtosis [4], and the indicator of second-order cyclostationarity
(ICS2) [2, 5]. The L2/L1-norm [6], spectral negentropy [6] and the Hoyer index [6] of the envelope spectrum
are some of the features that also has been used to design blind filters. Even though blind filtering follows the
same process as blind deconvolution, blind filters do not deconvolve the signals, but enhance the components
of interest [6]. Therefore, not all features (and resulting filters) can be used for blind deconvolution; some of
the features only allow the damaged components to be enhanced. Since all the methods optimise filters that can
improve the detectability of the damage, we refer to all the methods as optimal filtering methods in this work.

The performance of the optimal filtering methods depends on the feature that is maximised and the optimi-
sation algorithm that is used. In previous work, the objective function method [3], the eigenvector algorithm to
maximise the higher order statistics [3], the maximisation of the Generalised Rayleigh Quotient (GRQ) using
a generalised eigenvalue decomposition [2], gradient-descent methods [7] and global optimisation methods [8]
have been used to find the optimal filter coefficients. The GRQ method has been very popular in the past five
years, e.g., it has been used to maximise the L2/L1-norm [6]; the Hoyer index [6]; the ICS2 [2, 5]; the spectral
negentropy [6]; and the Gini index [9]. However, only limited papers evaluated and compared the performance
of the different objective functions under varying speed conditions (e.g., [2, 5]).
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It is, therefore, important to investigate the performance of different optimal filter design formulations
for fault detection under time-varying speed conditions. More specifically, three optimisation formulations,
namely, unconstrained gradient-descent, unconstrained gradient-descent with a normalised impulse response
function and solving the optimality criterion problem in the form of a generalised Rayleigh quotient, are com-
pared. The performance of the methods is quantified for fault detection under time-varying speed conditions.

Furthermore, two formulations of the ICS2 are compared (i.e., the formulation used in Refs. [2, 5] and a new
formulation for optimal filtering); two formulations of the L2/L1 of the cyclic spectrum (i.e., the formulation
used in [6] and a new formulation for optimal filtering); and the SES negentropy are compared. We evaluate
the sensitivity of the methods to damage and the sensitivity of the methods to varying speeds. Subsequently,
we use three performance measures to quantify the suitability of the methods for fault detection under varying
speed conditions.

In Section 2, an overview of optimal filter design is presented, whereafter, three investigations are performed
in Section 3 to compare the methods. Finally, the work is concluded in Section 4.

2 Optimal filter design

In this section, the optimal filter design approach is presented. Firstly, the signal processing procedure
is discussed in Section 2.1, whereafter different optimisation formulations are presented in Section 2.2 and
different objective functions are presented in Section 2.3. Lastly, the gradient-based optimisation methods
considered in this work are discussed in Section 2.4.

2.1 Signal processing

Consider the measured vibration signal x ∈ RL, with x = [x[1],x[2], . . . ,x[L]]. The filtered signal s ∈ RD is
obtained by convolving the signal x with a finite impulse response filter h ∈ RN . More specifically, the signal s
is calculated as follows [2]:

s = x⊗h = Xh (1)

where ⊗ denotes the convolution operator and X ∈ RD×N is constructed from x, with D = L−N [2]. The
Discrete Fourier Transform (DFT) of the filtered signal is defined by ds = Fs where F ∈ CD×D is the DFT
matrix of s ∈ RD. The discrete Fourier transform of the squared signal is calculated as follows:

ds2 = F(s⊙ s) (2)

where ⊙ is the Hadamard multiplication operator, e.g., x⊙y= [x[1] ·y[1],x[2] ·y[2], . . . ,x[L] ·y[D]] where x∈RD,
y ∈ RD. The squared envelope spectrum is estimated from bSES

s2 = d∗
s2 ⊙ ds2 and the envelope spectrum is

estimated from bES
s2 = |ds2 | =

√
bSES

s2 , where d∗
s2 ∈ CD denotes that the element-wise complex conjugate of

ds2 ∈ CD is calculated.
We can replace the conventional DFT matrix F with the velocity synchronous DFT V [10, 2] in the spectrum

calculations (e.g., equation (2)) to calculate the spectra in the order domain without performing computed order
tracking in the time domain. The results obtained with the velocity synchronous DFT, i.e., V, to calculate the
spectra, are shown in this work. The filtered signal s and its envelope spectra, e.g., bSES

s2 are functions of the
filter h, but this dependence is not explicitly shown to simplify the notation.

2.2 Optimisation formulations for filtering

The optimal filtering problem is formulated as follows:

max
h

ψ(h;x), subjected to hT h = 1 (3)

where the objective function is decomposed as follows: ψ(h;x) = η(h;x)
β (h;x) , with ψ : RN 7→R, η : RN 7→R and β :

RN 7→R. Since the measurement is fixed during the optimisation process, we simplify the notation and use ψ(h)
instead of ψ(h;x). We will only solve objective functions of the following form: ψ(h) = ψ(c ·h), with {c ∈
R|c ̸= 0} in this work, i.e., the function is invariant of the filter’s impulse response magnitude and we can solve
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the optimisation problem in equation (3) using unconstrained optimisation algorithms [11]. We will consider
the following three optimisation formulations: Firstly, by writing η(h)

β (h) as a non-linear Generalised Rayleigh

Quotient (GRQ), i.e., hT A(h)h
hT B(h)h , and solving the GRQ using an optimality criterion method [11]. Secondly, by

solving the unconstrained optimisation problem max
h

ψ(h) using gradient descent methods. Lastly, by solving

the unconstrained optimisation problem with normalised impulse response functions, i.e., we reformulate the
problem so that we solve max

h
η(g)
β (g) , where g = h√

hT h
using gradient descent methods. The latter method uses a

normalised filter and can potentially improve the efficiency of the numerical optimisation methods and can be
used to optimise functions that do not adhere to ψ(h) = ψ(c ·h) using unconstrained optimisation methods.

2.3 Objective functions

In this section, a brief overview is given of the objective functions considered in this work. All objective
functions will be calculated using either the envelope spectrum bES

s2 or the squared envelope spectrum bSES
s2 .

2.3.1 L2/L1-norm

The L2/L1-norm of b ∈ RD is defined as follows:

ψL2/L1(h) =
||b||2
||b||1

=

√
∑

D
i=1 |b[i]|2

∑
D
i=1 |b[i]|

(4)

where b is dependent on h, but this dependence is not shown to simplify the notation. In this work, we calculate
the L2/L1-norm of the envelope spectrum ψL2/L1

(
bES

s2

)
and the L2/L1 norm of the squared envelope spectrum

ψL2/L1
(
bSES

s2

)
as two separate objective functions. The L2/L1-norm is a sparsity measure and is used to enhance

the cyclostationary components in the signal without prior knowledge of the cyclic period. The GRQ for
ψL2/L1

(
bES

s2

)
proposed in Ref. [6] is used in this work. We did not implement the GRQ of ψL2/L1

(
bSES

s2

)
.

2.3.2 Squared Envelope Spectrum (SES) negentropy

The SES negentropy is another sparsity measure and is defined as follows:

ψSES−N(h) =
〈 bSES

s2〈
bSES

s2

〉 log

(
bSES

s2〈
bSES

s2

〉)〉 (5)

with the mean of the vector x ∈ RL denoted
〈
x
〉
, i.e.,

〈
x
〉
= 1

L ∑
L
i=1 x[n]. The GRQ form proposed in Ref. [6] is

used for the GRQ formulation in this work.

2.3.3 Indicator of second-order Cyclostationarity (ICS2)

Two formulations of the ICS2 are considered. Formulation 1 of the ICS2 (referred to as ICS2 (f1)) was
used in Ref. [2] and is defined as follows in this work:

ICS2, f 1(h;Aα) =
ψα(h;Aα)( 1

L ∑
L
n=1 s[n]2

)2 (6)

where the numerator contains the sum of the targeted components is given by

ψα(h;Aα) =

(
∑

n∈Aα

bSES
s2 [n]

)2

(7)

and Aα denotes the set of targeted indices and the amplitude of the squared envelope spectrum that corresponds
to the nth index is denoted bSES

s2 [n]. The dominator of equation (6) contains the squared mean energy of the
filtered signal s in the time domain. The GRQ proposed in Ref. [2] is used for the ICS2 (f1)’s GRQ-based
formulation.
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The second ICS2 formulation, referred to as ICS2 (f2) in this work, is normalised by the DC component of
the squared envelope spectrum, i.e.,

ICS2, f 2(h;Aα) =
ψα(h;Aα)(

bSES
s2 [0]

)2 (8)

The denominator is the squared mean energy of the filtered signal in the angle domain. Formulations 1 and 2
are equivalent under constant speed conditions. However, the squared energy of the time domain signal and the
squared energy of the angle domain signal are generally not equal under varying speed conditions, which can
potentially impede its performance under varying speed conditions.

2.4 Gradient-based optimisation algorithms

In this work, we will use gradient descent and optimality criterion-based gradient-based optimisation algo-
rithms. The gradient of the objective function in equation (3) is given by

∇hψ(h) =
1

β (h)
·∇hη(h)− η(h)

β (h)2 ·∇hβ (h) (9)

with the vector differential operator denoted ∇h = [ ∂

∂h1
, ∂

∂h2
, . . . , ∂

∂hN
] and ∇h ∈ RN . The gradients of the nu-

merator and denominator can be calculated using the chain rule. If the feature is written as a Generalised
Rayleigh Quotient (GRQ), the numerator and denominator are decomposed as follows: η(h) = hT A(h)h and
β (h) = hT B(h)h, which means that the gradient can be simplified as follows:

∇hψ(h) =
2

β (h)
·
(

A(h)h+
1
2

hT (∇hA(h))h−ψ ·
(

B(h)h+
1
2

hT (∇hB(h))h
))

(10)

If we use an optimality criterion approach and solve ∇hψ(h) = 0, while assuming β (h) ̸= 0, we obtain the
following equation: (

A(h)+
1
2

hT (∇hA(h))−ψ ·
(

B(h)+
1
2

hT (∇hB(h))
))

h = 0 (11)

Furthermore, if hT (∇hA(h)−ψ∇hB(h))h = 0, we can solve the generalised eigenvalue problem in the fol-
lowing form:

(A(h)−ψ ·B(h))h = 0 (12)

to find the filter coefficients h. Equation (12) has been iteratively solved to find the filters h in blind deconvo-
lution and blind filtering problems and is referred to as the iterative Generalised Eigenvalue Decomposition (i-
GED) approach in this work. Therefore, by solving equation (12), we assume hT (∇hA(h)−ψ∇hB(h))h ≈ 0.
The i-GED starts with an initial guess for h to calculate A(h) and B(h), whereafter the eigenvalue problem in
equation (12) is solved to obtain a new set of eigenvectors. The filter’s impulse response function h is set equal
to the eigenvector that corresponds to the largest eigenvalue and the process is repeated until convergence is
reached.

With the gradient descent methods, the Conjugate Gradient (CG) algorithm and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (a quasi-Newton method) are used with analytical gradients. The analytical
gradients of equation (9) were verified against finite differences. To utilise the gradient descent algorithms,
we need to supply the negative of the objective functions in Section 2.3, i.e., we transform the problem to:
min

h
−ψ(h). The tolerance for termination was set to 10−6 and the maximum number of iterations were set to

250. In this work, the length of the filter’s impulse response function is 64.

3 Results

The signal considered in this work is used to model outer race bearing damage and is generated with

x(t) = M(t) · (κ · r(t)⊗ xb(t)+ ε(t)) (13)
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where r(t) is a single degree-of-freedom’s impulse response function, xb(t) is a train of dirac functions with a
periodicity of 3.62 shaft orders and ε(t) is standardised Gaussian noise. The function M(t) =

(
ω

2·π·10

)2 is used
to model the amplitude modulation due to the varying speed. The impulse magnification factor κ is used to
change the signal-to-noise ratio of the damage in this work. Only linear speed signals are considered in this
work, i.e., ω ′(t) is constant and therefore the acceleration of the reference shaft is denoted ω ′.

The signal x(t) and the train of impulses M(t) · (κ · r(t)⊗ xb(t)) are shown in figure 1 for a linear speed-
varying case with κ = 0.72. The speed is shown in figure 1(a). The train of impulses is superimposed on the
signal x(t) in figures 1(b) and 1(c). The Power Spectral Density (PSD) of the time domain signal, the PSD of
the train of impulses and the centre frequency of the impulse response function of the train of impulses, which
is 3750 Hz, is shown in figure 1(d). The frequency-domain SES, calculated using the DFT matrix D, is shown
in figure 1(e) and the order-domain SES, calculated using the velocity synchronous DFT matrix V, is shown in
figure 1(f). The components smear in the frequency domain in figure 1(f) since they lose periodicity under the
time-varying speed conditions. The cyclic order of the impulses (3.62 events/revolution and its harmonics) are
much sparser and more prominent in figure 1(f), which enables early damage detection.
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Figure 1: Different representations of the signal x(t) and the train of impulses ximp = M(t) ·κ · r(t)⊗ xb(t) are
shown for κ = 0.72 and the speed profile in figure 1(a). The time domain signal and zoomed time domain
signals are shown in figures 1(b) and 1(c), the PSD of the time domain signals are shown in figure 1(d). The
SES, using the temporal signal, and the SES, using the angular domain signal, are shown in figures 1(e) and
1(f) respectively. The SES is normalised using the DC component of x(t)’s SES to make the results easier
to visualise (without including the DC component in the plot), while still interpreting the magnitude of the
components relative to the DC component.

3.1 Datasets

Two datasets were generated using equation (13) to compare the overall performance of the methods:

1. In the first dataset, the impulse magnification factor κ is increased from 0 to 1 under the speed conditions
shown in figure 1(b). This dataset is used to compare the performance of the methods to detect damage
in Section 3.2.

2. In the second dataset, the angular acceleration of the signal is varied and the impulse magnification factor
κ is constant. A linear speed profile is parameterised as follows:

ω(t) =
(
20 ·π +ω

′ · (t −2.5)
)

(14)
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where ω ′ ∈ R is a parameter used to control the acceleration, e.g., ω ′ = 0, simulates constant speed
conditions. A dataset is generated using κ = 0.72 for 0 ≤ ω ′ ≤ 23.56 rad/s2 to quantify the sensitivity
of the methods to changes in speed in the presence of damage. The sensitivity of the methods to varying
speeds is evaluated in Section 3.3.

The overall performance of the methods, using the results in Sections 3.2 and 3.3, is summarised in Section 3.4.

3.2 Sensitivity to changes in impulse magnification factors κ

In this section, the sensitivity of the filtered signals, obtained using different optimal filter design methods,
are compared using the first dataset in Section 3.1. The optimal filter design methods are separately applied to
each signal with the results shown in figure 2 as a function of impulse magnification factor κ . The results of
the normalised filter formulation (i.e., when supplying g = h/

√
hT h to the objective function) are not included

in figure 2. This is because the normalised filter’s results are similar to the non-normalised filter’s results and
excluding it simplified the figure. However, the performances of the normalised and non-normalised filters are
quantified and discussed in Section 3.4.

The results of each objective function (refer to Section 2.3) are presented in a separate row in figure 2. In
the left column, the final function value of the objective function is presented. In the right column, the ICS2
(f2) of the filtered signal s = Xh, with h obtained by optimising the specific objective function, is presented to
make it possible to compare the different methods.

The ICS2 features in figures 2(a) and 2(c) show the earliest indications of damage between κ = 0.38 and
κ = 0.44, earlier than the L2/L1 (ES) in figure 2(e), the L2/L1 (SES) in figure 2(g) and the SES negentropy
in figure 2(i). This is expected because the ICS2 features target specific cyclic component of 3.62 shaft orders
and its harmonics, whereas the L2/L1 (ES), L2/L1 (SES) and SES negentropy features are blind (i.e., specific
cyclic components are not targeted).

In figures 2(b) and 2(d), the variance between the different algorithms used to optimise the ICS2 (f1) feature
is much smaller than the ICS2 (f2) feature. The ICS2 (f2) feature optimised using the i-GED algorithm did not
converge on the dataset and performed very poorly. The ICS2 (f2) feature using the BFGS algorithm had
slightly smaller function values, which indicates that it was not able to optimise the objective function as well
as the CG for the cases considered in this work.

For the blind features, the SES negentropy using the CG and BFGS algorithms in figure 2(i) and the L2/L1
(SES) with the CG and BFGS algorithms in 2(g) display the best performance; the trends are near monotonic,
and the damage is clearly detected after κ = 0.52. The L2/L1 (ES) feature in figure 2(e) can detect the damage
with the CG and i-GED algorithms, but its trend displays strong non-monotonic behaviour, which is undesirable
for diagnostics. We found the L2/L1 (SES) is much easier to optimise than the L2/L1 (ES) when using gradient
descent methods. The SES is estimated from the squared value of the spectrum of the squared signal ds2 , with
the ES calculated as the square root of the SES. The ES is the square root of the SES and the absolute value of
ds2 . The absolute value is non-smooth, which impedes the performance of the CG and BFGS algorithms. In
figures 2(f), 2(h) and 2(j), the SES negentropy using the BFGS and CG and the L2/L1 (ES) using the CG and
the i-GED achieve slightly larger function values than the L2/L1 (SES) feature for κ ≥ 0.75. This indicates that
the cyclostationarity of the damage is more enhanced. However, the L2/L1 SES and SES negentropy is more
monotonic, which makes them desirable for fault diagnostics. Ultimately, quantitative comparisons are needed
to rank the methods. This will be performed in Section 3.4 using the speed sensitivity measure defined in the
next section.

3.3 Sensitivity to changes in speed

In condition monitoring, it is important that the features are insensitive to changes in speed to reduce
the uncertainty in the components’ condition under time-varying conditions. The second dataset discussed in
Section 3.1 is used to evaluate the sensitivity of the methods to speed and will be used to quantify the overall
performance of the methods in Section 3.4. Only the results of the ICS2 (f1) feature are considered in this
section to motivate the sensitivity ratio performance metric used in this work.

The results of the ICS2 (f1) feature is shown in figure 3 in a similar two-column format as figure 2. The
ICS2 (f1) feature in figure 3(a) is much dependent on speed. This dependence is because the ICS2 (f1) feature
is normalised by the time domain energy as opposed to the angle domain energy. This is corroborated by the
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Figure 2: The fault trending results obtained using dataset 1 in Section 3.1. For a specific row, the left figure,
which is presented on a linear scale, contains the final objective function value of a specific feature. The right
figure, which is presented on a semi-log scale, contains the ICS2 of the optimally filtered signal s, with the
filter’s impulse response function obtained by maximising the objective function described in the legend of the
figure in the right figure. None of the impulse response functions were normalised.
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Figure 3: The results obtained using dataset 2 in Section 3.1 is displayed in a similar format to figure 2. The
impact magnification factor was κ = 0.72 for all signals.

results obtained when calculating the ICS2 (f2) of the filtered signals, shown in figure 3(b). The ICS2 (f2) of
the filtered signals in figure 3(b) is much more robust to speed fluctuations than the ICS2 (f1) of the filtered
signal in figure 3(b) since it uses the angle domain signal’s energy for normalisation.

We can use the standard deviation of the features in figure 3 to quantify the sensitivity of the methods to
speed when κ is fixed. Let Ψi(κ,ω

′
m) denote feature i’s function value, obtained with an optimally filtered syn-

thetic signal with an impulse magnification factor of κ and angular acceleration of ω ′
m. We can use Ψi(κ,ω

′
m)

to calculate the standard deviation of the features in figure 3 using

σΨi =

√
1
N

N

∑
m=1

(
Ψi(0.72,ω ′

m)− Ψ̄i(0.72,ω ′
m)
)2 (15)

where ω ′
m denotes the mth angular acceleration point in figure 3 and Ψ̄i(0.72,ω ′

m) =
〈
Ψi(0.72,ω ′

m)
〉

m. The
standard deviation of the results in figures 3(a) and 3(b), calculated using equation (15), is 0.087 and 0.018,
respectively. This highlights that the ICS2 (f1) feature is more sensitive to varying speed conditions than the
ICS2 (f2) feature. This will be used to calculate the sensitivity ratio performance metric in the next section.

3.4 Summary of performance

Three performance measures are used to compare the optimal design formulations in this work. The first
method is the Sensitivity Ratio (SR), which is defined as follows:

SR =
Ψi(1,ω ′)−Ψi(0,ω ′)

σΨi

(16)

where Ψi(κ,ω
′) is defined in the previous section. The numerator of equation (16) quantifies the change in the

feature value from the healthy κ = 0 to damage κ = 1 case using the results in figure 2. The denominator of
equation (16) is defined in equation (15) and quantifies the sensitivity of the feature to speed using the second
dataset. The second performance measure is the monotonicity of the features with respect to κ as defined in
Ref. [12]. The third performance metric is the trendability of the features with respect to κ as defined in
Ref. [12]. The monotonicity and trendability are important performance metrics for prognostics [12] and is
calculated using the results in figure 2.

The results are summarised in table 1 for the optimal filtering formulations. The metrics of two features of
the filtered signals are included in table 1; the final objective function value and the ICS2 (f2) of the filtered
signal s. The number of function evaluations is also summarised in the last column to compare the efficiency
of the methods.

The results in table 1 indicate that the ICS2 (f1) using the CG algorithm performed the best to enhance the
damage; it had the highest SR, monotonicity and trendability values for the ICS2 (f2) of s feature and required
relatively few iterations to converge (second least after the L2/L1 (ES) i-GED feature). However, if the final
objective function is used, the method’s sensitivity ratio is much lower than the ICS2 (f2). This indicates that
the feature value of the ICS2 (f1) is sensitive to speed, which is undesirable for time-varying speed conditions.
The ICS2 (f2) using the CG algorithm performed second best.

When comparing the ICS2 (f2) of s results of the blind features, it is concluded that the SES negentropy
using the CG algorithm performed the best to enhance the damage; it has the highest SR, monotonicity and
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Feature Alg. Filter Final obj. fun. ICS2 (f2) of s # fun eval.
normed SR Mon. Trend. SR Mon. Trend. Med. ± MAD

ICS2 (f1) BFGS N 2.517 0.273 0.879 10.973 0.273 0.880 88±24
ICS2 (f1) BFGS Y 2.517 0.273 0.879 10.972 0.273 0.880 88±20
ICS2 (f1) CG N 2.524 0.455 0.882 11.006 0.455 0.883 82±22
ICS2 (f1) CG Y 2.524 0.455 0.882 11.006 0.455 0.883 82±22
ICS2 (f1) i-GED N 2.515 0.455 0.879 10.968 0.455 0.880 250±0
ICS2 (f2) BFGS N 8.048 0.273 0.875 8.048 0.273 0.875 136±70
ICS2 (f2) BFGS Y 8.048 0.273 0.875 8.048 0.273 0.875 136±70
ICS2 (f2) CG N 11.005 0.364 0.883 11.005 0.364 0.883 124±32
ICS2 (f2) CG Y 11.005 0.364 0.883 11.005 0.364 0.883 124±32
ICS2 (f2) i-GED N -1.008 -0.091 0.208 -1.008 -0.091 0.208 250±0

L2/L1 (ES) BFGS N 0.222 0.182 0.203 2.724 0.000 0.638 258±2
L2/L1 (ES) BFGS Y 0.224 0.182 0.205 2.726 0.000 0.638 258±2
L2/L1 (ES) CG N 3.246 0.000 0.764 4.065 0.091 0.731 672±79
L2/L1 (ES) CG Y 3.246 0.000 0.762 4.074 0.091 0.732 678±87
L2/L1 (ES) i-GED N 3.370 0.000 0.736 4.418 0.182 0.714 56±21

L2/L1 (SES) BFGS N 6.209 0.000 0.797 4.267 0.182 0.775 254±4
L2/L1 (SES) BFGS Y 6.209 0.000 0.797 4.267 0.182 0.775 254±4
L2/L1 (SES) CG N 6.256 0.000 0.840 4.343 0.273 0.820 298±79
L2/L1 (SES) CG Y 6.256 0.000 0.840 4.343 0.273 0.820 298±79

SES Neg. BFGS N 6.062 0.091 0.806 4.088 0.182 0.811 161±40
SES Neg. BFGS Y 6.062 0.091 0.806 4.088 0.182 0.811 161±40
SES Neg. CG N 6.279 0.182 0.810 5.100 0.000 0.810 300±86
SES Neg. CG Y 6.279 0.182 0.810 5.100 0.000 0.810 289±75
SES Neg. i-GED N 3.962 0.182 0.695 3.567 -0.182 0.633 250±0

Table 1: A summary of the results that were obtained using the methods. The objective function (or feature), the
optimisation algorithm and whether the filter’s impulse response function was normalised before the function
evaluation (Y) or not (N) are shown in the first three columns of the table. Thereafter, the Sensitivity Ratio
(SR), the monotonicity and the trendability of the final objective function is shown. The same measures are
also calculated and documented for the ICS2 (f2) of the filtered signal s. Lastly, the Median ± the Median
Absolute Deviation (MAD) number of the function evaluations is also summarised for each case.

second to highest trendability. The L2/L1 (ES) using the i-GED performed second best when using the SR and
number of function evaluations as guidance. The L2/L1 (SES) using the CG algorithm had a very good SR,
with the highest monotonicity and trendability of the blind features. The L2/L1 (ES) performs slightly worse
than the L2/L1 (SES) when using the gradient descent methods; the performance measures are lower, and it
required more function evaluations.

According to the SR, monotonicity and trendability performance metrics, the CG generally performed much
better than the BFGS and i-GED algorithms. Even though the GRQ with the i-GED published in literature had
good convergence characteristics, it does not use the consistent gradient, which can impede the performance of
new objective functions (e.g., ICS2 (f2)). The filter normalisation process did not make a significant impact,
since all the objective functions considered in this work are filter magnitude invariant. However, some of
the filter normalisation cases required slightly fewer function evaluations to achieve the same performance as
the non-normalised filters (e.g., ICS2 (f1) (BFGS), SES Negentropy (CG)) or resulted in better ICS2 (f2) of
s scores (e.g., L2/L1 (SES) (CG)). The main benefit of the filter normalisation process is that unconstrained
optimisation algorithms can be applied to objective functions that are sensitive to the magnitude of the filter’s
impulse response function.

Lastly, we also investigated the performance of the methods when using the DFT matrix, i.e., F, instead of
the velocity synchronous DFT matrix, i.e., V. We found that the blind and targeted methods performed poorly
when using F instead of V under large angular accelerations. Therefore, it is important to calculate the features
in the cyclic order domain as opposed to the cyclic frequency domain.
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4 Conclusion

In this work, optimal filters were obtained using different objective function formulations, different opti-
misation formulations and different optimisation algorithms. The methods were applied on a synthetic dataset
and the performance of the methods was quantified. The ICS2 feature performed the best, however, it is a
targeted method, and its performance depends on the formulation that is used. The SES negentropy performed
the best of the blind features. The results indicate that the optimisation algorithm influences the performance
and efficiency of the optimisation process. The conjugate gradient algorithm is proposed as a starting point
for new objective functions. However, this should be further investigated on different datasets. Furthermore,
the sufficient tolerance for termination and the maximum number of iterations to achieve acceptable results for
condition monitoring also need to be investigated on different datasets.
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