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Abstract 
Gears play an important role in transmission systems, allowing for high performance in terms of load capacity 

and efficiency. Common gear faults such as cracked teeth and pitted teeth, can occur as a result of contact 

fatigue, excessive load, or sudden impact. Starting from an initial stage, their steady growth can lead to 

irreparable damage and unexpected breakdowns that result in economic losses. Therefore, local tooth damage 

diagnosis of gears using advanced monitoring techniques is extremely important for the normal operation of 

drivelines and transmissions. The presence of local tooth damage produces transient impact in the vibration 

signals, which exhibit non-stationary and non-linear characteristics. Taking into account its ability to 

characterize the phase coupling between signal components caused by non-linearity, wavelet-based high order 

spectrum is considered to be effective to attain reliable fault-related features. Among others, wavelet 

bicoherence technology has been successfully applied to detect the artificially created gear faults under steady 

speed and load. However, in case the operating condition changes, the effectiveness of this method in detecting 

gear faults is still unclear. Additionally, the selection of the informative bi-frequency bands and the extraction 

of instantaneous diagnostic features is still a challenge. This may constraint the widespread application of 

wavelet-based high order spectrum in gear fault diagnosis. This paper presents a novel strategy for selecting 

informative bi-frequency bands and extracting instantaneous diagnostic features in the time bi-frequency 

domain. The performance of the proposed methodology is evaluated by comparison with the WIF method and 

is extended to cases involving healthy and faulty gears operating under different speeds and loads. To validate 

the effectiveness of the methodology, an experimental dataset with artificially made gear pitting damage and 

a publicly available dataset which includes gears with various crack severity as well as different speed and 

load operating conditions is utilized. 

 
1 Introduction 

Gearboxes are extensively used in various industries for power transmission. However, the occurrence of 

unforeseen gear failures, such as local teeth defects like pitting, spalling, and cracks, can lead to costly 

breakdowns and substantial economic losses. Therefore, implementing condition monitoring is crucial to 

ensure operational safety and minimize expenses. Over the past several years, vibration-based diagnosis has 

been considered as a powerful and effective tool [1-3]. 

When local damage such as pitting exists on a gear tooth, it results in transient impulses each time the 

damaged surface meshes with other teeth [4]. Similarly, in the case of gear tooth cracks, the meshing process 

causes the cracked tooth to ‘open’ and ‘close’, leading to the breathing effect of the crack, which also produces 

sharp transients in the vibration signature [5]. The vibration signals generated during the meshing process of a 

gear tooth with local tooth damage exhibit characteristics of non-stationarity and non-linearity [6]. 

Consequently, conventional linear representations, such as the Short-Time Fourier Transform and the 

Continuous Wavelet Transform (CWT), prove less effective in capturing the complex nature of these signals. 
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The use of high-order spectra, such as bispectrum and bicoherence, has proven successful in identifying 

phase coupling and nonlinear behavior [7] in various fields like ocean engineering [8] and biomedical 

engineering [9]. Recently, these techniques have been introduced in the domain of condition monitoring and 

fault diagnosis of mechanical systems. For instance, Rivola et al. [10] employed the normalized bispectrum to 

detect cracks in beams, presenting high sensitivity to fatigue cracks. Bicoherence was applied in [11] to analyse 

vibration and acoustic signals acquired from a gearbox with artificially created broken teeth, yielding reliable 

fault-related information. Additionally, the combination of wavelet transform and bicoherence analysis, known 

as wavelet bicoherence (WB), has been proposed and utilized. More specifically, WB was employed in [12] 

for the detection of naturally-developing gear faults. To enhance accuracy, Li et al. [13] incorporated a biphase 

randomization step in WB and extracted two diagnostic features for bearing diagnostics of inner race defects. 

However, the mentioned papers estimated WB by integrating over finite-time intervals, which may result 

in information loss in the time domain. To address this, the concept of instantaneous wavelet 

bicoherence/bispectrum (IWBC/IWBS) was introduced, enabling analysis in the time-bi-frequency domain. 

One notable application is in [6], where IWBC was employed for detecting multiple ‘like natural’ pitting faults 

in a back-to-back industrial spur gearbox system. Additionally, to preserve phase information, the 

instantaneous biphase randomization wavelet bicoherence was further developed by [14], successfully 

detecting chipped gear teeth and broken teeth. 

Moreover, a challenge remains in the selection of informative bi-frequency bands to extract instantaneous 

diagnostic features in the time-bi-frequency domain. Currently, researchers mainly rely on information 

provided by the scalogram of CWT or make comparisons between healthy and faulty cases, which may not be 

convenient or accurate in certain scenarios. Thus, there is no mature approach for selecting/optimizing 

informative bi-frequency bands specifically related to faults in the time-bi-frequency domain in order to better 

extract the instantaneous diagnostic features. 

Furthermore, in the application of wavelet-based high-order spectrum in condition monitoring area, the 

focus has primarily been on specific operating conditions. The effectiveness of the methodologies in detecting 

faults under changing operating conditions remains unclear. 

The primary objective of this paper is to propose a novel diagnostic feature, the Enhanced Instantaneous 

Wavelet Bispectrum Feature (EIWBSF), for gear diagnostics. This is achieved by applying the instantaneous 

wavelet bispectrum and developing an optimization procedure for the informative frequency band. To validate 

the proposed methodology, vibration signals acquired from an experimental setup at KU Leuven are utilized, 

and the performance is compared with the classical WIF method [15]. Subsequently, a publicly available 

dataset including three severities of cracked gear tooth under different speed and load conditions is employed 

to test the effectiveness of EIWBSF in different operating conditions. The rest of the paper is organized as 

follows. In Section 2, the background theory is described while in Section 3, the proposed methodology is 

briefly presented. Moreover, in Section 4 the proposed EIWBSF is applied on the two datasets and the results 

are discussed. The paper’s conclusions are then summarized in Section 5. 

 

2 Basic signal processing theory 

The forms of wavelet-based higher-order spectra rely on the utilization of CWT to process signals. CWT 

is a commonly used technique for characterizing the properties of non-stationary signals in the time-frequency 

domain. The CWT of a signal x(t) can be presented by: 

 

 𝑊𝜓(𝑎, 𝜏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝜏

𝑎
) 𝑑𝑡

∞

−∞
  (1)  

 

where 𝜓(𝑡) is the mother wavelet function, 𝑎 is the scale which can also be converted to frequency f, τ is the 

time shift variable, and ∗ represents the complex conjugation form.  

The wavelet bispectrum (WBS) was initially introduced in the field of turbulence analysis and is defined 

as follows [16]:  

 

                                          𝐵𝑊,𝑇(𝑓1, 𝑓2) = 𝐸 {∫ 𝑊𝜓(𝑓1, 𝜏)
𝑇

0
𝑊𝜓(𝑓2, 𝜏)𝑊𝜓

∗(𝑓3, 𝜏)𝑑𝑡}  (2)  
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𝑊𝜓(𝑓, 𝜏) is the wavelet coefficient calculated by the CWT of the signals, 𝑇 is the time interval of the signal, 

𝐸{. } is the expectation operator. Additionally, the frequencies in the equation (2) satisfy the relationship of 

𝑓3 = 𝑓1 + 𝑓2. 

Considering that the values of WBS are complex, WBS can be expressed in the form of amplitude 

𝐴𝑚𝑝(𝑓1, 𝑓2) and biphase 𝜑(𝑓1, 𝑓2) as following:  

 

                                                      𝐵𝑊,𝑇(𝑓1, 𝑓2) = 𝐸{𝐴𝑚𝑝(𝑓1, 𝑓2)𝑒𝑖𝜑(𝑓1,𝑓2)}                                      (3)  

 

                                                    𝜑(𝑓1, 𝑓2) =  𝜑(𝑓1) + 𝜑(𝑓2) − 𝜑(𝑓3)                                      (4) 

 

where, 𝜑(𝑓1), 𝜑(𝑓2), and 𝜑(𝑓3) are respectively the phases of the frequencies 𝑓1, 𝑓2, 𝑓3. 

If the phase coupling exists in the signal, the phase component will satisfy the relationship: 

 

                                                          𝜑(𝑓3) = 𝜑(𝑓1) + 𝜑(𝑓2)                                      (5) 

 

and therefore the biphase 𝜑(𝑓1, 𝑓2) will equal to 0. Thus 𝐵𝑊,𝑇(𝑓1, 𝑓2) = 𝐸{𝐴𝑚𝑝(𝑓1, 𝑓2)}, and the normalized 

version wavelet bicoherence (WBC) will be equal to 1. 

In the case of non-phase coupling in the signal, the biphase 𝜑(𝑓1, 𝑓2) is normally randomly distributed 

within (-π,π], which means that 𝑒𝑖𝜑(𝑓1,𝑓2) is distributed within (-1,1]. Consequently, after taking the expectation 

operator, BW,T(f1,f2) tends to approach 0. As a result, the WBC approximates to 0. 

Due to the fact that WBS and WBC need to be integrated over a finite-time interval, which may bring time 

information loss of the nonstationary signal, the IWBS has been proposed [6]. The IWBS aims to extend the 

bi-frequency domain to the time bi-frequency domain I and is defined as follows: 

 

                                      𝐼𝑊𝐵𝑆𝑊,𝑇(𝑓1, 𝑓2, 𝜏) = 𝐸{𝑊𝜓(𝑓1, 𝜏)𝑊𝜓(𝑓2, 𝜏)𝑊𝜓
∗(𝑓3, 𝜏)}                                      (6) 

 

The IWBS can be further expressed by its instantaneous amplitude and biphase components, similar to the 

WBS, following the same rule for detecting the phase coupling and non-phase coupling part in the signals. 

 

3 Proposed methodology 

 

 
 

Figure 1: Schematic description of the EIWBSF 
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As mentioned before, the selection/optimization of informative bi-frequency bands to extract instantaneous 

diagnostic features in the time-bi-frequency domain is still challenging. To address this, the EIWBSF is 

proposed in this paper and presented in Figure 1. The specific steps are detailed in the following: 

Step 1: Resample the raw vibration signal in the angular domain based on the speed signals. 

Step 2: Estimate and remove the periodic part (e.g. mesh harmonic components) from the vibration signals 

to obtain the residual signals.  

Step 3: Divide the vibration signal into 𝑛 epochs based on the rotating period of the target gear, each epoch 

equals to one rotation period of the gear. 

Step 4: Compute the IWBS of each epoch by equation (6). 

Step 5: Obtain the IWBS(f1,f2,θ) by the ensemble average of IWBS of 𝑛 epochs 

Step 6: Segment the bi-frequency (f1,f2) into a series of bi-frequency bands Bj(f1,f2), which has the band 

size 𝑏𝑤 × 𝑏𝑤, 𝑏𝑤 being the bandwidth. 

Step 7: In each bi-frequency band, integrate the IWBS(f1,f2,θ) modulus over both frequencies 𝑓1 and 𝑓2 and 

obtain the IIWBSBj(θ) by equation (7). 

 

                                           𝐼𝐼𝑊𝐵𝑆𝐵𝑗
(𝜃) =

1

𝐵𝑗
∫ ∫|𝐼𝑊𝐵𝑆(𝑓1, 𝑓2, 𝜃)| 𝑑𝑓1𝑑𝑓2                                      (7) 

 

Step 8: Extract the feature featBj(f1,f2) of each processed IIWBSBj(θ) with equation (8). The feature is based 

on the assumption that if a gear has a damaged tooth, then in one rotation period of the gear, there will be a 

high-amplitude impulse during the time interval when the damaged tooth meshes other teeth. Therefore, the 

numerator of equation (8) calculates this high-amplitude impulse by searching for the maximum value of 

IIWBSBj(θ) and integrated around the position of maximum value with the interval of Δθ (Δθ can be set via 

dividing one rotation by the tooth number). And the denominator of equation (8) is calculated as the integration 

of IIWBSBj(θ) subtracting the numerator, which is considered as the noise level. 

 

                                           𝑓𝑒𝑎𝑡𝐵𝑗(𝑓1,𝑓2) =
∫  𝐼𝐼𝑊𝐵𝑆𝐵𝑗

(𝜃)𝑑𝜃
𝜃𝑚𝑎𝑥+∆𝜃/2

𝜃𝑚𝑎𝑥−∆𝜃/2

∫ 𝐼𝐼𝑊𝐵𝑆𝐵𝑗
(𝜃)𝑑𝜃−∫  𝐼𝐼𝑊𝐵𝑆𝐵𝑗

(𝜃)𝑑𝜃
𝜃𝑚𝑎𝑥+∆𝜃

𝜃𝑚𝑎𝑥−∆𝜃

                                      (8) 

 

Step 9: The featBj(f1,f2) is then normalized between 0 and 1 to generate the weight matrix as shown in equation 

(9). Within the W(f1,f2), each bi-frequency has a weight value. 

 

                                           𝑊(𝑓1, 𝑓2) =
𝑓𝑒𝑎𝑡 −𝑚𝑖𝑛 (𝑓𝑒𝑎𝑡)

𝑚𝑎𝑥(𝑓𝑒𝑎𝑡)−𝑚𝑖𝑛 (𝑓𝑒𝑎𝑡)
                                      (9) 

 

Step 10: The final step is to weight the IWBS(f1,f2,θ) based on the weight matrix and to integrate the 

weighted IWBS(f1,f2,θ) modulus over both frequencies f1 and f2 to obtain the EIWBSF: 

 

                              𝐸𝐼𝑊𝐵𝑆𝐹(𝜃) =
1

𝐵
∫ ∫|𝐼𝑊𝐵𝑆(𝑓1, 𝑓2, 𝜃) × 𝑊(𝑓1, 𝑓2)| 𝑑𝑓1𝑑𝑓2                                      (10) 

 

4 Experimental application and results 

4.1 Case 1 – Healthy and pitting gear under two speed conditions 

In the first case study of this paper, experiments were conducted using a back-to-back gearbox setup at KU 

Leuven. The experimental setup consists of several components, including an electric motor A, the test 

gearbox, a planetary gearbox, and a loading electric motor B, as shown in Figure 2 (up). The kinematic diagram 

of the test gearbox is shown in Figure 2 (left), providing the gear information. Speed signals are obtained by 

an encoder installed on the back side of motor A, while two accelerometers (PCB 352A24) are placed on the 

top surface of the test gearbox and on the input shaft side, as depicted in Figure 2 (right). Both motors are 

induction motors of 1,5 kW power with rated load and speed of 5 Nm and 2880 rpm, respectively.  

Healthy and faulty gears are tested on the setup (Figure 3). The faulty gear has one tooth with 50% pitting 

damage which is artificially created by a MED machine. During the tests, two rotational speeds (speed of the 
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motor A that is equal to the input shaft speed of the test gearbox) have been considered, 1620 rpm (~27 Hz) 

and 2200 rpm (~37 Hz). Additionally, the torque applied by the motor B can be estimated by the torque 

percentage (the ratio of the torque developed by the motor and the nominal torque) from the drive, which is 

around 5 Nm. The signals were sampled at a sampling frequency of 51200 Hz and the duration of each 

acquisition was 5 s. More details can be found in [15]. 

 

 

 
 

Figure 2: (up) The test rig setup, (left) the kinematic diagram of the test gearbox, (right) the accelerometers’ 

position 

 

         
 

Figure 3: (left) Photo of the healthy gear, (right) photo of the faulty gear 

 

For the case of speed 1620 rpm, raw vibration signals acquired from the accelerometer that is positioned 

close to the input shaft of the gearbox are used for analysis. The raw signals under healthy and faulty conditions 

are presented in Figure 4 (left). Besides, the residual signals extracted from the resampled signals by removing 

the periodic components are shown in Figure 4 (right). No apparent differences can be observed between the 

raw signals or the residential signals, as the fault information related to the impact produced by the tooth 

damage is very weak and is easy to be masked by the background noise. 
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Figure 4: (left) The raw vibration signals, (right) residual signals of the healthy and faulty gear for 1620 rpm 

 

Following the procedure described in Section 2, the IWBS of the healthy gear and the faulty gear is 

obtained by taking the ensemble average on the IWBS of the residual signals of all revolutions. As shown in 

Figure 5, the detected phase coupling of frequencies mainly exist within 200 orders. Comparing with the IWBS 

of the healthy gear, it is evident that the IWBS of the faulty gear exhibits a greater number of coupled 

frequencies in the time bi-frequency domain. This increase in coupled frequencies is attributed to the presence 

of pitting damage on the contact surface of the helical gear tooth. 

 

   
 

Figure 5: (left) IWBS of the healthy gear, (right) IWBS of the faulty gear for 1620 rpm 

 

Considering the computing efficiency and the accuracy, the bandwidth was set based on the frequency 

resolution of the IWBS, thereafter the feature featBj(f1,f2) of each band was extracted, and the weight matrix of 

the bi-frequency band of the healthy and the faulty gear is displayed in Figure 6. From the results we can see 

the weight matrix exhibits high weight values around [73 order, 73 order] for both healthy and faulty gears. 

However, in the case of the faulty gear condition, additional high weight values can be observed in a different 

region, and more specifically, these high weight values are present in between the range of 100 ~ 150 order 

and 10 ~ 30 order. The presence of high weight values in the specific frequency region for the faulty gear case 

indicates that these regions are related to the pitting damage. This finding highlights the capability of the 

proposed feature to identify the fault-related informative band. 
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Figure 6: Weight matrix of IWBS (left) of the healthy gear, (right) of the faulty gear for 1620 rpm 

 

 
 

Figure 7: The EIWBSF of the healthy and the faulty gear for 1620 rpm 

 

 
 

Figure 8: The WIF of the healthy and the faulty gear for 1620 rpm 

 

Based on the results of Figure 5 and Figure 6, the EIWBSF is extracted using Equation 10. The 

corresponding EIWBSF results are presented in Figure 7, where the X-axis represents the angular position of 
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the gear, and the Y-axis represents the amplitude of the new feature. The maximum EIWBSF value of the 

healthy gear is set as the threshold to check if the faulty gear tooth can be detected. The vertical sections 

presented in the plots are drawn based on the assumption that there is no random fluctuation during the meshing 

process, thus, one rotation is divided into several intervals, each one corresponds to a specific gear tooth. From 

the results, it is clear that the EIWBSF of the faulty gear exceeds the threshold within a specific angle interval 

with the peak in the middle of the interval, which is around 80 deg. 

In order to evaluate the proposed EIWBSF, it is compared with the WIF results presented in [15]. The 

threshold of the WIF is selected in the same way as in the EIWBSF case. From the results shown in Figure 8, 

the WIF of the faulty gear is always lower than the threshold extracted from the healthy gear, and it is 

concluded that the WIF methodology does not provide any valuable diagnostic information in this case, and 

consequently it cannot detect the pitting defect on the faulty gear. 

 

 
 

Figure 9: The EIWBSF of the healthy and the faulty gear for 2220 rpm 

 

 
 

Figure 10: The WIF of the healthy and the faulty gear for 2220 rpm 

 

Next, the case of operating speed at 2200 rpm is investigated. Figures 9 and 10 illustrate the WIF and the 

EIWBSF results obtained for both the healthy and faulty gears. The results indicate that both methodologies 

are capable of detecting the faulty gear tooth, as the maximum amplitude value of the diagnostic features 

exceed the threshold and peaked at around 135 deg. This is reasonable, as due to the higher speed conditions, 
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the impulses intensity caused by the mesh of pitted tooth become stronger, which consequently makes it easier 

to successfully detect the pitted tooth. 

 

4.1 Case 2 –  Cracked gear teeth under different speed and load conditions 

The signals of the following case were acquired from the single-stage spur gearbox test rig presented in 

Figure 11. A 4-kW induction motor is connected to the input shaft. An electromagnetic particle (EMP) brake 

is connected to the output shaft to apply load to the rig. The gearbox consists of a 27-tooth driving gear and a 

44-tooth driven gear. The encoders were mounted on the unloaded (free) end of both shafts with the resolution 

of 3600 pulses per shaft revolution. In addition, a torque meter is mounted in the input shaft to measure the 

input torque from the motor. Moreover two accelerometers are mounted on the gearbox for acquiring the 

vibration signals [17]. 

 

 
 

Figure 11: The single-stage spur gearbox test rig 
 

A series of tests were conducted at different operating conditions, with pinion cracks of three different 

sizes (small, medium and large). To check the effectiveness of the proposed method under different speed and 

load conditions, the measurements collected at nominal input speeds of 10, 15 and 20 Hz and nominal loads 

of 10, 15 and 20 Nm are used, with the sampling frequency of 200 kHz and sampling duration of 21s. 

 

 
 

Figure 12: The MEIWBSF of the healthy, small crack, medium crack and large crack case at different speed 

and load 

 

In order to check the effectiveness of the EIWBSF in detecting the faulty gears, the maximum value of 

EIWBSF (MEIWBSF) of gears under each operating condition is extracted as an indicator. The MEIWBSF 

corresponding to the healthy, small crack, medium crack and large crack gears are presented in Figure 12. For 

better visualization and comparison of the evolution of the faulty indicators in relation to the healthy 
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benchmark, a version of the MEIWBSF normalized by the healthy case is also plotted in Figure 13. The 

normalized MEIWBSF is just the indicator values divided by the healthy indicators for each load and speed 

conditions. 

 

    
 

Figure 13: The normalized MEIWBSF of the healthy, small crack, medium crack and large crack case at 

different speed and load 

 

The results of the MEIWBSF confirms the effectiveness of the EIWBSF in detecting faulty gear cases. 

The MEIWBSF values of the faulty gears, under different load and speed conditions, consistently exhibit 

higher values compared to the healthy gear. This observation is further emphasized in the normalized 

MEIWBSF results, where the deviation from the healthy benchmark becomes more significant. 

Additionally, as the speed and load increase, the MEIWBSF values also show an upward trend. This 

correlation between the MEIWBSF values and the increase in speed and load is expected. Higher speeds and 

loads brings stronger impulses resulting from the breathing effect of the cracked tooth. 

The normalized MEIWBSF results reveal valuable insights into the ability of MEIWBSF to detect fault 

severity. In most cases, the MEIWBSF values of the large crack case exhibit the highest values, followed by 

the medium crack case and then the small crack case. This trend aligns with the expected severity of the fault, 

indicating that MEIWBSF is capable of capturing and distinguishing different levels of damage. 

However, it is worth noting that there are instances where the MEIWBSF of the small crack case appears 

higher than that of the medium crack case, which may occur because of the load being relatively low (i.e., 10 

Nm). Therefore, repeatable experiments are needed to validate and ensure the consistency of the results, 

minimizing the experimental uncertainties and providing more reliable conclusions. 

Nevertheless, a notable finding is that all the MEIWBSF values of the healthy cases are consistently lower 

than those of the faulty cases, ensuring that there are no missed detections. 

 

5 Conclusion  

This paper proposes a new diagnostic feature for the diagnosis of local damage in gears based on vibration 

signals. Initially, the acquired vibration signals are resampled in angular domain. Afterwards the residual 

signals are extracted by removing the periodical component from the resampled signals. Then, after 

segmenting the residual signal, the IWBS is obtained by ensemble average of IWBS of each epoch. An 

optimization of the informative bi-frequency band is proposed by a feature and the EIWBSF is obtained based 

on the weight matrix and integrations over the bi-frequency. To validate the methodology, an experimental 

dataset has been used, where a healthy gear and a faulty gear (one tooth with artificially generated 50% pitting 

damage) are tested under two operating speeds. By comparing with the classical WIF method, EIWBSF shows 

good performance in detecting the faulty gear tooth. Although WIF also works when operating the drivetrain 

at higher speeds, the EIWBSF shows to be able to extract the fault peaks more effectively, even under low 
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speed conditions.  Additionally, the effectiveness of the methodology under different operating conditions is 

tested. A publicly available dataset is utilized, which includes gears with various crack severities as well as 

different speed and load conditions. The MEIWBSF is extracted as an indicator and the results show that the 

faulty cases can be successfully detected. Additionally in most of the case, the normalized MEIWBSF can 

distinguish clearly the severity of the gear fault. In the future, more tests will be done in order to validate and 

further improve the applicability of the method by considering the damage evolution, multi-teeth defects as 

well as various defect types. 
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