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Abstract 
 

Deep learning models represent a new learning paradigm in artificial intelligence (AI). Recent breakthroughs 

in image analysis and voice recognition have generated enormous interest in many other areas such as the 

diagnosis of rotating machinery providing voluminous data during the life of these machines. 

A gear endurance test bench was designed to create a database of vibration signals ranging from a healthy state 

to a degraded state. The aim of our work is to test common methods and the use of unsupervised deep learning 

in the detection of deviation from the normal operating state of the machine [1]. 

After a description of the bench, we present the progress of the test over one year. The data collected consists 

of a representative set of vibration signals corresponding to different operating environments (speed, 

temperature, etc.). 

Then we present the experimental study using deep auto-encoding networks and we compare with usual 

methods. The principle of the chosen approach is to train the autoencoder with the healthy data, so that it 

should learn to reconstruct only this type of data. When a new sample of data is supplied to the network, the 

reconstruction error is calculated and the objective to try to achieve is to obtain a low error for the healthy data 

and an error which begins to increase as the defect develops. We conclude our paper with the work 

perspectives. 

 

1 The benchmark  

The benchmark consists of a spur gear driven by a motor-gear and followed by a generator. This benchmark 

simulates a wind turbine. The general view of this benchmark is presented by Figure 1 and the conspectus by 

Figure 2. This benchmark is used in the accelerated lifetime test by reducing the width of the output wheel of 

the gear. With the reduction of the tooth width (from 30 to 10mm), the theoretical calculation (lifetime 

estimation of 480 h) was carried out for a pinion torque of 16 Nm and a constant speed of 1530 rpm at the 

output of the High-Speed Stage (generator side).  

The gear was instrumented by radial and axial accelerometers and by a key phasor (Top-tour IFT200) giving 

an impulse every round of the high-speed shaft. Three Current sensors were also used from the electrical 

cabinet of the generator, see  

Figure 3. 

 

Figure 1: the general view of the benchmark  
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Figure 2: the conspectus of the benchmark  

 

 

Figure 3: The benchmark instrumentation 

 

The endurance test began on 11 February 2021 at constant speed of 1515 RPM and a constant load of 16Nm 

then the load was increased to 21 N.m with periodic return to 16 N.m. the lifetime test ended the eight of June 

2022 with 6873 hours of operation. 

 

1.1 The data 

The data analysed correspond to the spectra of the vibration measurements ranging from zero 2 kHz. During 

the duration of the endurance, we retained only the signals with a speed and torque corresponding to the 

nominal speed of 1515 RPM and a torque of 16 +/-0.2 N.m. the number of signals meeting this rule is 72988 

Signals. The frequencies calculated with a step of 1/10 Hz, we then obtain a set of 72988 signals with 20000 

frequencies. 

We note 

x_ij: the vibration measurement of signal i for frequency j or the amplitude of the frequency j in the vibration 

signal i. 

x_i=(x_i1,…,x_ip) the signal i spectrum or the frequency vector of signal i. 

X=(x_ij) The data set of the vibration measurements. 

 

The 72988 signals are cut as follows: 

• a learning set of 27410 spectra measured from the 11 of February 2021 till 30 September 2021 and 

•       a monitoring set of 45,578 spectra measured from October 1, 2021 to June 8, 2022. 

 

In order to reduce the dimensions of the data we have grouped the frequencies by 4 then by 40 thus giving a 

second set called G4 and a third set called G40, see the following table. 
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Data set 

Name 

Learning Supervision 

 

Initial data set G1 27410× 20000 45578× 20000  

Frequencies gathered by 4 G4 27410× 5000 45578× 5000  

frequencies gathered by 40 G40 27410× 500 45578× 500  

Table 1: the different data sets  

 

In the rest of this document the analyzes presented will be those of the two sets G4 and G40 

 

2 Data processing  

The measured data in the learning data set is considered coming from flawless system (without any defects) 

and, remember, that the objective is to represent this data in a parsimonious way so that the reconstruction of 

this data is the best possible, hoping that the construction of faulty data (data coming system with mechanical 

defects) is less good. The principle of the chosen approach is therefore to train the auto-encoder with the 

learning set, so that it should learn to reconstruct only this type of data. When a new sample of data is supplied 

to the network, the reconstruction error will be calculated and the objective to be achieved is to obtain a low 

error for the healthy data and an error which increases as the fault progresses.  

Having a sample of healthy signals, x1,…,xn, where each xi is a vector of dimension p, the objective is 

therefore to determine a compression function f and a reconstruction function g of Rp in Rq and of Rq in Rp 

where p is the initial dimension of the data and q is the dimension of the compressed data such that g∘f is close 

to the identity function. In another words, if we note y=f(x) the compressed signal, we would like the 

reconstructed signal g(y) to be close to the initial signal x. 

To achieve this objective, two tools were used: The Principal Component Analysis and “deep autoencoders” 

based on deep neural networks. 

 

2.1 The PCA method 

Beyond its use to visualize data, principal component analysis (PCA) can be used to compress and reconstruct 

initial data. Indeed, if we note 

𝑋𝑐 = (𝑥𝑖𝑗
𝑐 ) the matrix (𝑛, 𝑝) of the column-centered initial data defined by 

 𝑋𝑐 = 𝑋 − 𝟙. 𝐠  (1) 

Which can also be written: 

 𝑥𝑖𝑗
𝑐 = 𝑥𝑖𝑗 − 𝑔𝑗  ∀𝑖, 𝑗    (2) 

with 𝐠 = (𝑔𝑗) and 𝑔𝑗 = ∑ 𝑥𝑖𝑗𝑖  is the medium spectrum and  

𝑈 is the matric of dimension (𝑝, 𝑝) of the eigenvectors of the PCA, 

the principal component matrix is written: 

 𝐶 = 𝑋𝑐 . 𝑈   (3) 

and is related to the initial data by the formula  

 𝑋𝑐 = 𝐶.𝑈𝑡  and  𝑋 = 𝐶.𝑈𝑡 + 𝟙. 𝐠.  (4) 

If we reduce to the matrix �̂� = 𝑋𝑐 . �̂�. with dimension (𝑝, 𝑞) of the first 𝑞 eigenvalues, we obtain the first 𝑞 

principals components, which grouped in the matrix �̂� of dimension (𝑛, 𝑞), checking  

 �̂� = 𝑋𝑐 . �̂�.  (5) 

Then using the reconstruction 

 �̂�𝑐 = �̂��̂�𝑡  (6) 

And then 

 �̂� = �̂�. �̂�𝑡 + 𝐠,  (7) 

one can show that we thus obtain a linear approximation of dimension q minimizing the criterion of the least 

squares 

 ||�̂�𝑐 − 𝑋𝑐||2 = ||�̂� − 𝑋||2 = ∑ (𝑖,𝑗 𝑥𝑖,𝑗 − 𝑥𝑖,𝑗)
2.  (8) 

We thus have a compression function 𝐲 = 𝑓(𝐱) defined by the relation 

 𝐲 = 𝐱𝑐 . �̂�  (9) 

and a reconstruction function 𝑥 = 𝑔(𝐲) matrix defined by the relation 

 𝑥 = 𝐲�̂�𝑐 + 𝐠  (10) 

which provide the optimal linear reconstruction in the sense of least squares. 



4 

 

2.2 The autoencoders 

2.2.1 Definition 

An autoencoder is a non-supervised artificial neural network in which the input layer has the same number of 

neurons as the output layer. The interest is to learn how to reduce the dimension of a data set. In practice, an 

auto-encoder breaks down into two parts. 

• The first part is the encoder. The encoder will make it possible to condense the information initially available 

(image, text, audio, etc.) by extracting characteristics that best define the initial information. The vector that 

results from the encoder is much smaller in size than the initial vector. 

•The decoder is the second part of an auto-encoder. It is responsible for reconstructing the initial information, 

from the condensed vector. For example, when working with images, when well trained, an autoencoder can 

take an input image, condense it into a small-sized vector through the encoder, and then recreate it only through 

to this small vector, via the decoder. 

Many examples of auto-encoder networks have been developed. We can cite, for example, the following 

examples: 

The denoising auto-encoders [2] are auto-encoders where the input data is processed through a random noise 

filter rendering, for example, a grainy image. The output is always compared to the input, so the network learns 

to ignore some of the detailed features that are irrelevant. 

The deep auto-encoders (DAE) or stacked auto-encoders (SAE) are deep auto-encoder models. The 

architecture of an "SAE" is built by stacking several auto-encoders to form a deep model with many layers. 

The learning often proposed in this situation, of the greedy type, is done step by step without questioning [3] 

 

The autoencoder parameters are the parameters of the functions used in each layer of the autoencoder. 

Once the input data is encoded, it is present in a new form in a particular space called latent space. The latent 

space corresponds to a new representation of our data. In this new representation, only the most important 

information contained in the training data is condensed, while filtering the noise (feature extraction). 

To train an autoencoder, i.e. to determine the parameters of the autoencoder, it is provided with input data that 

it must be able to encode in a space of a fixed dimension, then to decode it from the resulting encoding. During 

training we expect the model to give as output the same input. 

 

2.2.2 Tools  

To implement these autoencoders, we select the PyTorch package and use the graphics processors (GPU) of 

the Cassio and cassio2 servers. 

 

2.2.3 The autoencoder Hyper-parameters  

As with the neural network in general, the stochastic gradient descent algorithm is often used to train an 

autoencoder. Several hyper-parameters must be taken into account to train an autoencoder: 

 

The number of hidden layers: in our experiments, three types of networks were tested: 1 hidden layer, 3 hidden 

layers and finally 5 hidden layers. 

 

The number of neurons per layer decreases in the encoder and increases in the decoder (symmetry with respect 

to the code layer of the encoder and the decoder). The number of neurons in the different layers will depend 

on the tests and will depend on the dimension of the latent space (1, 5 or 10) which correspond to the number 

of the retained variables. 

 

The Loss function: it is the function that the autoencoder will seek to minimize. The latter is generally the root 

mean square error in the case of continuous data, which is our case. This error is defined as follows: 

 MSE =
∑ (𝑖,𝑗 𝑥𝑖𝑗−𝑥𝑖𝑗)

2

𝑛×𝑝
  (11) 

 

The learning rate: this rate sets the level of modification of the parameters of the autoencoder at each step of 

the gradient descent. Three learning rates were used: 10-3, 5 10-4 et 10-4. 
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Batch size: this size corresponds to the number of samples taken into account at each step of updating the 

parameters of the gradient method. 

 

The number of epochs (epochs): this is the number of times the network is trained with all the data. The number 

of epochs retained was 1000. 

 

2.2.4 Link with the PCA  

The ACP can be seen as a linear autoencoder with only 1 hidden layer and without an activation function. The 

quality of spatial representation Ek provided by the first k principal components is measured by the inertia 

fraction Qk which varies between 0 and 1. We can notice that the maximization of the criterion 𝑄𝑘 of the PCA 

is equivalent to the minimization of the mean square error criterion of the autoencoders. 

 

3 Results  

 

3.1 The learning phase. 

3.1.1 PCA and the autoencoders reconstruction method 

The reconstruction quality obtained by the first 10 axes is about 90% for the G40 data set and about 70% for 

the G4 data set, see figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The PCA spaces quality 

 

In the following table, we have reported the values of the reconstruction error of the different data sets. We 

then obtain the following results (after multiplying the values by108) : 

 

Data set Retained 

variables  

PCA Autoencoder 

1 layer 

Autoencoder 

3 layers 

Autoencoder 

5 layers  

G40 1 7.47 20.10 20.04 19.99 

 5 3.11 7.81 3.08 20.06 

 10 2.04 3.062 3.43 2.34 

G4 1 32.47 52.04 52.07 52.05 

 5 22.13 51.42 52.07 22.23 

 10 17.24 33.42 26.92 20.63 

Table 2: the reconstruction error of the different data sets in the learning phase  

 

We can notice that the best results, except for one situation, are those obtained by PCA. 

We also notice that the error of reconstruction decreases when the number of the retained variable increases. 

 

  



6 

3.2 The supervision phase. 

In order to study the evolution of the data after the learning phase, we chose to measure the root mean square 

difference between the reconstituted spectra and the initial spectra. 

 eqm𝑖 =
1

𝑝
∑ (𝑗 𝑥𝑖𝑗 − 𝑥𝑖𝑗)

2 =
1

𝑝
∑ (𝑗 𝑥𝑖𝑗

𝑐 − 𝑥𝑖𝑗
𝑐 )2  (12) 

 

In order to facilitate the reading of these results, we used the following normalized standard deviation. 

 𝑒𝑖 =
1

𝜎
√eqm𝑖  (13) 

 

where σ is the standard deviation of the learning data. 

Furthermore, we reported these discrepancies for both the training data and the supervision data. In all these 

figures, the border between these two types of data is indicated by a vertical red line. The two red longitudinal 

lines are the upper control limit and the lower control limit defined as the mean value +/- 3* standard deviation 

of the 𝑒𝑖 values in the learning period. The alert should turn on when data in the supervision phase exceeds 

one of these two control limits. 

 

For all the graphs of the figure below, the normalized error evolution during the learning and the monitoring 

data, shows a small drift from the month of October 2021 to the month of February 2022 then a clearer drift 

from the month of April 2022 till June 2022. 

 

we can also notice that if we increase the dimension of the PCA space (increase the number of principal 

components retained) then the decision model will be more sensitive to variations and will alert more and more 

in a precocious manner. The same observation is observed by increasing the number of variables retained. In 

another terms, and as noticed in the learning phase, the model with 10 retained variables is more sensitive than 

that of 5 variables and the latter is more sensitive than the model with a single retained variable. 
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Figure 5: Results of computing the normalized standard deviation in the learning and supervision phases 

using the G40 data set and for different PCA and autoencoder types.  
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4 Gear inspection 

After gear removal and microscopic examinations, we notice an incipient pitting on the active sides of the 

pinion and a small seizing area on two teeth of the gear wheel, see figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Inspection of the gear components 

 

 

5 Conclusion  

In this paper we have presented the follow-up of an endurance test on a gear. This test was monitored by an 

intelligent system comprising vibration sensors as well as a "machine learning" method for the automatic 

detection of deviation from the normal operating state of the bench. 

Despite the difficulty encountered in revealing pitting and fatigue wear, the monitoring system was quite 

sensitive to changes in gear condition. Few but sufficient alerts were issued to trigger an inspection and to 

notice incipient pitting and seizing. 

However, the interest expressed by industrials leads us to propose continuing this study with another endurance 

test by reducing the duration of the tests through the following: 

1- Reduce the width of the wheel 

2- Possibly modify the materials of the wheel 

3- Increase the capacity of the endurance bench by replacing the epicyclic reduction gear with another that can 

withstand much greater torques. 

It is also planned to use a more elaborate monitoring system developed by CETIM comprising advanced sensor 

signal processing functions as well as on-board ‘Edge’ decision-making methods. 
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