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Abstract 
Effective fault classification of mechanical components based on vibration signals requires robust domain 

adaptation methods, particularly in scenarios where complete data on all fault types is unavailable. The 

challenge lies in monitoring the health of components with variable characteristics, such as speed, load, and 

torque, where the lack of information on their current state renders target domain labels unavailable. 

Maximum Mean Discrepancy (MMD) is a widely used loss function in domain adaptation; however, its 

popular Gaussian kernel necessitates prior knowledge of the target domain data, posing a limitation in 

domain adaptation problems. To address this challenge, this paper proposes a novel approach that aims to 

achieve two key goals: (1) accurate fault identification and (2) automatic tuning of the MMD Gaussian 

kernel to adapt to different domains. The proposed approach consists of two stages. Firstly, a static 

representation of the standard deviation is identified using the Pascal Triangle that allows the reconstruction 

of a Gaussian kernel accurately. In the second stage, a dynamic parameter is computed by considering the 

difference between the source and target features distribution, extracted from the desired layers of the 

considered model. The proposed approach is evaluated by the classification of bearings health state, using 

the Case Western Reserve University (CWRU) signals as the source dataset and Jiangnan University (JNU) 

signals as the target one. The model employed in this evaluation is a 2D Convolutional Neural Network 

(CNN) model designed to process 2D reshaped signals. The desired layers for adaptation were identified as 

the fully connected layers of the network. The results demonstrate that the proposed method outperforms 

traditional MMD with a manually tuned Gaussian kernel, as well as other domain adaptation methods such 

as Correlation Alignment (CORAL) and Wasserstein distance that do not require any parameter tuning, 

making it a valuable contribution to the field of intelligent fault classification based on vibration signals. 

 
1 Introduction 

Mechanical components, such as bearings, play a critical role in various industries and compact 

environments like aircraft engines, where monitoring their health is essential for ensuring machine and 

engine safety and reliability [1]. Vibration signal analysis has emerged as one of the most common methods 

for monitoring the health of bearings during operation [2]. However, the vibration signatures of bearings are 

influenced by factors such as speed, load, torque, and other operating conditions, making it challenging to 

accurately diagnose different fault types based on vibration signals. To overcome this challenge, robust 

domain adaptation methods are required for intelligent fault diagnosis based on vibration signals that can 

effectively handle the variability in operating conditions. Domain adaptation is the process of adapting a 

model trained on a source data domain to perform well on a new target domain, even when the distribution 

of the target data may differ from the source domain [3], [4], [5]. In the case of bearings fault classification, 

obtaining complete data on all fault types in the target domain is often not feasible, making it difficult to 
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acquire target domain labels. Maximum Mean Discrepancy (MMD) is a widely used discrepancy metric in 

domain adaptation that has shown promising results in various fields [6], [7], [8], [9]. However, using MMD 

presents a challenge in tuning the parameter of the chosen kernel, such as the variance for the Gaussian 

kernel, which is used to measure the distance between the distributions of the source and target domains. 

This requirement of prior knowledge for the target domain data contradicts the nature of the domain 

adaptation problem. To address the limitations of existing methods, this paper proposes a novel approach for 

automated deep domain adaptation specifically applied to bearings fault classification. The approach focuses 

on estimating the hyper-parameter of the MMD Gaussian kernel in two stages. In the first stage, a static 

representation of the standard deviation is determined using the Pascal Triangle, enabling accurate 

reconstruction of a Gaussian kernel for uniform change of discrepancies. In the second stage, a dynamic 

parameter is introduced, extracted from the desired layers of the model, to weigh the static representation in 

response to distribution changes during iterations. The remainder of the paper is organized as follows: 

Section 2 provides a detailed description of the preliminary concepts and related work in domain adaptation, 

including popular methods for estimating distribution discrepancies. Section 3 presents the proposed two-

stage methodology, also considering the possibility of higher order moments. Section 4 presents the 

experimental results, encompassing dataset description, pre-processing techniques, and evaluation metrics. 

Finally, Section 5 concludes the paper by summarizing the findings and outlining potential directions with 

such approach. 

 

2 Preliminaries 

2.1 Transfer Learning 

To provide a clear understanding of the problem at hand, certain concepts related to the Transfer Learning 

(TL) are first introduced. A domain is defined by )}(,{ XPD  ; where  is the feature space, )(XP is the 

marginal probability distribution and X . Two domains sourceD and targetD are considered to have different 

distributions if    targettargetsourcesource XPXP   [9]. A task is defined by )}(,{ XfyT  ; where y  is the label 

space, )|()( XYPXf   is the conditional probability distribution and yY  . In the context of fault 

diagnosis, specifically in bearings, TL is applied as a domain adaptation problem where 
t

XX s   and 

)()( ttss XPXP   such that both datasets revolve around the same context (i.e. bearing defects) but 

considering different conditions (angular speed, load, torque, etc…) [10]. Since the data in the source and 

target domains are collected under different working conditions, a shift in the distributions occurs, leading to 

a degradation in classification performance, as illustrated in Figure 1. In domain adaptation, the availability 

of a source domain dataset with labels   sn

i

s

i

s

i yx
1

,


 and a target domain dataset without labels   tn

i

t

ix
1
is 

assumed, where sn  and tn  represent respectively the number of samples in the source and target domain. 

Therefore, the target conditional distribution deviation is not considered due to the absence of the target 

labels while the samples from the source domain should be sufficient to construct an accurate source 

classifier. Thus, the primary objective of the domain adaptation is to reduce the distribution discrepancy 

between the source and target datasets during or after training by adapting the classifier learned from the 

source domain to effectively separate the target samples. To achieve this goal, various methods have been 

proposed that aim to minimize the difference in distribution between the source and target domains, such as 

Correlation Alignment, Wasserstein Distance, Maximum Mean Discrepancy, … 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration for domain shift and domain adaptation [11]. 
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2.2 CORrelation ALignment (CORAL)  

Correlation Alignment or CORAL is an efficient and simple unsupervised adaptive method commonly used 

to measure the distribution gap between the source and the target domains in pattern recognition because it 

aligns the distributions of both domains by exploring their second order statistic. The key calculation 

involved in CORAL is the covariance matrix in each domain. When incorporated into a neural network, it 

can be summarized as follows [13]: 

 

   2

2
)cov(cov

4

1
FtsCORAL HH

d
L   (1) 

 

Where sH  and tH  are of dimension d , )cov(X is the covariance matrix of X  and 
F

X is the Frobenius 

norm of X  which is calculated by: 
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2.3 Wasserstein 

Wasserstein distance, also referred to as Earth Mover's Distance, is a mathematical measure of the distance 

between two probability distributions [14]. It can also be interpreted as the minimum amount of effort 

required to transform one distribution into another, where effort is measured as the amount of distribution 

weight that must be multiplied by the distance it must be moved. This is a solid extension of the GAN model 

by shifting the focus from a discriminator that predicts the probability of an image being "real" to a critical 

model that assesses the "reality" of an image. The Wasserstein distance can be expressed as: 

 

 





FnWasserstei VUL  (3) 

 

Where U  and V  are the source and the target datasets respectively and 
F

X is the Frobenius norm of X . 

 

2.4 Maximum Mean Discrepancy 

Although both CORAL and Wasserstein are non-parametric methods, it was empirically shown several times 

that Maximum Mean Discrepancy (MMD) outperforms both approaches and specially with the Gaussian 

kernel [6], [7], [8], [9]. MMD is a measure of the distribution deviation without explicitly calculating the 

intermediate density. The squared MMD distance between the source dataset 
sX  and the target dataset 

tX  

is defined as [15]: 
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Where H  is the Reproducing Kernel Hilbert Space (RKHS) and  bak ,  is a Gaussian kernel function: 

 

 

2
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

  (5) 

 

And where   is the bandwidth parameter that influences the distribution of the studied signal. 

 

3 Methodology 

As seen in the formula (5) above, the Gaussian kernel requires a variance to be tuned with respect to both 

data distributions. One way to address is by applying standard Grid Search with respect to the objective 

metric such as the accuracy. However, this is not feasible since the target labels are not accessible in a 
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domain adaptation problem. Therefore, this variance should be deduced purely on each dataset distribution 

without any prior knowledge. In order to reduce the computational cost of the MMD method, all 

computations are performed in 2D. This transform enables the possibility to replicate the iteration summation 

as matrix multiplication, which significantly reduces the overall computation time. This strategy has been 

previously explored in other studies [16], which has shown its effectiveness in reducing computational costs 

for similar tasks. 

 

3.1 Static representation 

To estimate the variance of the 2D Gaussian kernel, a static representation is employed using the Pascal 

Triangle or binomial coefficients. The size of the Gaussian kernel is set to match the size of the data obtained 

from a specific layer of the model. In this paper, the fully connected layers are considered as they contain 

important information for classification. Thus, the width of the 2D Gaussian kernel is set to the square root 

of the 1D distribution size. Therefore, the Pascal Triangle of order NL  , rounded to the nearest integer, 

is computed to determine the respective variance, such that N  being the length of the chosen fully 

connected layer. This variance can be deduced from [17] and the Appendix as follows: 

 

 
)max(2

2 1

L

L

P




  (6) 

 

where LP  is the Pascal Triangle of order L . 

 

3.2 Dynamic representation 

While the static representation of the Gaussian kernel provides a fixed variance, it may not be optimal as the 

source and target distributions can significantly differ during model weight adjustments. To address this 

limitation, a dynamic representation is introduced to consider the difference between the source and target 

distributions. This dynamic representation acts as a weight for the static one, allowing for a more accurate 

estimation of the variance in the target domain. The product of the dynamic representation and the static 

representation yields the final variance estimation during each iteration, as shown in Eq. (7). 
 
 dstatic  2  (7) 
 
Such that the variance   of each pair of distributions depends on the dynamic one d  related to this pair. In 

addition, static is the static representation since the same layer is considered upon iterations. 

 

In a general manner, the goal is to minimize the discrepancy between two distributions A  and B  of sizes 

a and b respectively using a Gaussian kernel. This can be formulated as: 

 

    2
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where  N  denotes the probability density function of the Gaussian distribution defined as follows: 
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Using the maximum Likelihood principle, one can estimate then 
2

d  by maximizing the likelihood function, 

)( 2

dL  , which is given by: 
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To find a local minima of the negative log-likelihood function, the derivative of  2
d  with respect to 

2

d  is 

taken and set equal to zero: 
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Therefore, the final variance, being the product of static and dynamic representation, is estimated during 

each iteration with respect to each kernel as follows: 

 

 

 

 

 

 

 

 

)max(2

1
2

ˆ

)max(2

1
2

ˆ

)max(2

1
2

ˆ

1 1

2
1

2
,

1 1

2

2

1

2
,

1 1

2

2

1

2
,

L

n

i

n

j

t
j

s
i

ts

L

XX

L

n

i

n

j

t
j

t
i

t

L

XX

L

n

i

n

j

s
j

s
i

s

L

XX

TP

XX
nn

TP

XX
n

TP

XX
n

s t

ts

t t

tt

s s

ss
















 



 



 















 (12) 

 

 

 

 

 

 

3.3 Higher order 

In some cases, the difference between the source and target distributions may be too large for the product of 

static and dynamic representations to effectively align the distributions. For instance, some studies have 

shown that using higher-order moments of the kernel can improve the alignment of distributions in some 

cases [18]. As the order of the Pascal Triangle increases, the corresponding Gaussian kernel becomes wider 

and considers more information. This means that higher-order kernels capture more information and have a 

greater chance of correctly estimating the variance within the range considered up to the chosen order P . 

Therefore, the choice of P  affects the number of computations required during each iteration and, 

subsequently, the overall computational time. Eq. (13) presents the reformulated total representation 

considering higher-order moments: 
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Such that 0P . 

 

Consequently, the final form of sigma will be a list of size 1P  such that 1P  MMD computations are 

needed, during each iteration, to fully adapt the target domain with respect to the source one. Based on 

experimental results, an order P  of 5 is a reasonable choice as it strikes a balance between computational 

time and the probability of including the correct variance. 

 

 



6 

4 Tests and Discussions 

4.1 Data description 

Two datasets were utilized in this study: Case Western Reserve University (CWRU) bearings dataset and 

Jiangnan University (JNU) bearings dataset. The CWRU dataset served as the source dataset, while the JNU 

dataset was defined as the target one. The operating conditions varied in each dataset, with load variation in 

the CWRU dataset and speed variation in the JNU one. The sampling frequencies were approximately 12 

kHz for the CWRU and 50 kHz for the JNU. To gather a large amount of training data, sliding windows of 

length 1568 (without overlap) were applied to the CWRU dataset, and windows of length 14884 were used 

for the JNU dataset. This windowing approach ensured that each window contained sufficient information to 

detect bearing faults. The signals were then normalized between 0 and 1 to avoid overfitting due to scaling 

factors. Both datasets underwent band pass filtering, with a passband between Fs/4 and 3Fs/8, where Fs 

represents the respective sampling frequency. The Hilbert transform was applied to obtain the envelope of 

each signal, which was used to compute the spectrum. Since the spectrum was even due to the real nature of 

the signal, only the right half of the spectrum (frequency range) was considered, resulting in sample sizes of 

784 for the CWRU dataset and 7,442 for the JNU dataset. Table 1 provides a description of each subset of 

the datasets and their corresponding operating conditions. For model training, both datasets were resampled 

into a 2D format: the CWRU dataset as 28 x 28 images and the JNU dataset as 86 x 86 images. As the sizes 

of the two datasets were different, interpolation was performed to obtain a consistent input size for the 

model. Since the CWRU dataset served as the source dataset, the interpolation involved replacing every n 

samples in the JNU dataset (where n is the ratio of the JNU dataset size to the CWRU dataset size) with their 

mean. This down sampling of the JNU dataset ensured that major information was not excluded. The 

objective of the classification task was to achieve a 4-way classification, distinguishing between Normal, 

Inner Race Fault (IRF), Ball Fault (BF), and Outer Race Fault (ORF) under different working conditions. 

Several tasks were addressed to adapt a source domain to a target one as follows : source  target. 

 

Datasets Health Conditions Number of Samples Operating 

Conditions 

CWRU 

A 

B 

C 

D 

N/IRF/BF/ORF 

N/IRF/BF/ORF 

N/IRF/BF/ORF 

N/IRF/BF/ORF 

1504  

1504  

1504  

1504  

0 HP (1797 rpm) 

1 HP (1797 rpm) 

2 HP (1797 rpm) 

3 HP (1797 rpm) 

     

JNU 

E 

F 

G 

N/IRF/BF/ORF 

N/IRF/BF/ORF 

N/IRF/BF/ORF 

33,33,33,100  ORFBFIRFN  

33,33,33,100  ORFBFIRFN  

33,33,33,100  ORFBFIRFN  

600 rpm 

800 rpm 

1000 rpm 
 

Table 1: Datasets Description. 

 

4.2 Model and objective function 

The proposed model's objective function consists of two parts: 

 

- The classification error on the labelled source dataset  s

i

s

i yxJ ),( . 

- Multilayer adaptation with multi-core Maximum Mean Discrepancy (MMD) between source and target 

data Kd . 

 

The model is optimized by minimizing Eq. (14), which combines the cross-entropy loss for classification and 

the MMD loss: 
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where   represents the set of all convolutional neural network (CNN) parameters, n  is the number of 

samples in the mini-batch, and      )(log),( s

i

Ts

i

s

i

s

i xyyxJ    is the training loss function of 

classification. The proposed model was optimized by the Adaptive moment (Adam) algorithm. The paper 

focuses on demonstrating the proposed method for automating domain adaptation rather than finding the 

optimal model for each specific dataset. The model topology is described in Table 2 and illustrated in Figure 

2. The model includes convolutional neural network (CNN) layers, pooling layers, and fully connected 

layers. 

 

 

 

 

 

 

 

 
 

Figure 2: The proposed framework [11]. 

 

Layers Parameters Activation Functions Output Size 

Input / / 2828  

Conv1 Kernels: 1655  , bias: 116  ReLU 162424   

Pool1 

Conv2 

Stride: 2  

Kernels: 3277  , bias: 132  

/ 

ReLU 

161212   

3266   

Pool2 

F1/Flatten 

F2 

F3 

F4/Output 

Stride: 2  

/ 

Weights: 100288 , bias: 1100  

Weights: 100100 , bias: 1100  

Weights: 4100 , bias: 14  

/ 

/ 

ReLU 

ReLU 

Softmax 

3233   

1288  

1100  

1100  

14  
 

Table 2: Topology of the model. 

 

The distribution of learned characteristics in the model's layers gradually transitions from a general approach 

to a more specific one. The transfer capacity decreases in the upper layers as the domain divergence 

increases. To address this, the hidden representations of the 3F and 4F  layers are integrated into the Hilbert 

space of the Reproducing Kernel Hilbert Space (RKHS), where the mean embedding of different domain 

distributions can be explicitly aligned. Multiple Gaussian kernels with different bandwidths are used to 

match the lower-order and higher-order moments of the learned characteristics and reduce the discrepancy 

between domains [9]. A linear combination of Gaussian kernels is used, where 
sh3 , 

th3 , 
sh4 , and 

th4  are the 

outputs of layers 3F and 4F  for the source and target domains, respectively. The multi-kernel-based MMD 

multilayer is calculated by: 

    ts

K

ts

KK hhDhhDd 44

2

33

2 ,,   (15) 

 

4.3 Results 

Table 3 presents the different transfer methods used in the transfer learning process. The experiments 

employed an 80% training and 20% validation split for the source dataset, while the target dataset was used 

for testing. The methods included CNN (no transfer), CORAL, Wasserstein, conventional MMD, and the 

proposed method. For conventional MMD, optimal variances were determined through Grid Search, 

resulting in values of 10, 35, and 14 for the CWRU, JNU, and CWRU → JNU subsets, respectively. In the 

proposed method, an order of P = 5 was chosen to adapt the variance automatically during transfer learning. 

To evaluate the performance and stability of the methods, 1000 iterations were conducted, and each method 

was executed around 50 times. The results, presented in Table 4, consistently demonstrate the superiority of 

the proposed method over other non-parametric approaches, with a slight improvement compared to 
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conventional MMD. The reported results in Table 4 provide the average accuracy in percentage, along with 

the variance that accounts for the observed variation resulting from the random seed used in each iteration. 

For visualizing the transfer performance, t-distributed stochastic neighbour embedding (t-SNE) was utilized 

to reduce dimensionality nonlinearly. Figure 5b showcases how the proposed method effectively regroups 

both domains with respect to each class, in contrast to Figure 5a that represents the results using CNN. This 

visualization demonstrates the capability of the proposed method to enable the classifier to operate 

effectively on both distributions. Refer to Table 5 for the legend explaining the distribution visualization. 
 

Method Transfer Approach 

CNN No Transfer 

CORAL Non-parametric Transfer 

Wasserstein Non-parametric Transfer  

Conventional MMD 

Proposed Method 

Transfer + Variance Tuning 

Non-parametric Transfer 
 

Table 3: Various Transfer Methods. 
 

Method 

Task 
CNN CORAL Wasserstein MMD 

Proposed 

Method 

A  C 82.17 ± 2.97% 85.24 ± 1.58% 88.81 ± 1.14% 97.98 ± 0.98% 98.33 ± 0.74% 

B  D 64.92 ± 1.26% 79.34 ± 1.35% 86.93 ± 1.02% 96.11 ± 0.81% 97.75 ± 1.61% 

C  B 97.33 ± 3.75% 97.40 ± 2.07% 97.36 ± 0.66% 97.32 ± 0.45% 98.45 ± 0.39% 

D  A 58.83 ± 2.10% 86.47 ± 1.52% 84.72 ± 0.85% 95.88 ± 0.72% 97.30 ± 1.06% 

E  F 92.48 ± 1.48% 92.71 ± 1.39% 93.02 ± 1.37% 94.73 ± 0.99% 95.46 ± 1.33% 

F  G 80.93 ± 3.39% 82.11 ± 2.78% 85.19 ± 2.64% 88.53 ± 0.88% 86.42 ± 2.21% 

G  E 82.41 ± 2.68% 84.78 ± 1.51% 86.62 ± 1.09% 91.44 ± 0.53% 92.96 ± 0.48% 

CWRU  JNU 54.62 ± 1.05% 78.74 ± 1.12% 79.91 ± 0.73% 87.55 ± 0.55% 88.93 ± 0.67% 
 

Table 4: Performance Metrics For Transfer Tasks. 

(a) 

 
(b) 

 
Figure 3: The two-dimensional visualization of learned features exposed by t-SNE embedding of 

transfer task CWRU  JNU using (a) CNN (b) Proposed method. 
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Label Element 

0 Normal/Healthy Case 

1 Inner Race Fault 

2 Ball Fault 

3 

S 

T 

Outer Race Fault 

Source Domain 

Target Domain 
 

Table 5: Distribution Visualization Legend. 

 

5 Conclusion 

In this study, a novel approach for automating knowledge transfer in fault classification of rotating 

machinery was proposed. The method utilized a convolutional neural network (CNN) with multi-kernel-

based maximum mean discrepancy (MMD) multilayer adaptation. The results demonstrated that the 

proposed method outperformed other existing transfer learning techniques and achieved high accuracy in the 

diagnostic tasks. By leveraging the knowledge learned from the source dataset, the proposed method 

effectively transferred that knowledge to the target dataset, improving the fault diagnosis performance. The 

self-adaptive nature of the method, utilizing multi-kernel-based MMD, allowed for better alignment of the 

distributions between the source and target domains. The findings of this study highlight the potential of 

automated knowledge transfer in enhancing fault diagnosis in rotating machinery and reducing the need for 

extensive labelled data in the target dataset. 
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Appendix 

The Pascal's Triangle is a mathematical construct used in various fields, including probability theory and 

combinatory. A Pascal’s Triangle of order L ( LP ) is represented as follows: 
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The 2D Gaussian kernel can be reconstructed upon the 
thL  row of interest after normalizing it as seen in the 

matrix above where the sum of the 
thL  row is equal to 

12 L
. Taking an example of 5L  results in the final 

row as  1464116
1  . Therefore, the Gaussian kernel ),( baG  of width 5 can be constructed as 

follows: 
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Since ),( baG  represents a Gaussian kernel, then it can be denoted as: 
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Considering a special case where ),( baG  is maximal, its value corresponds to the maximum value of  
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. Consequently, G  is maximal when 0 ba . From the example of order 5, 256
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max G  which  

 

is none other than 2
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As a conclusion, generally this means that 
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