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Abstract 
The characterization of hydraulic turbine runners’ dynamic behaviour is essential for accurate stress and 

fatigue life prediction leading to design and maintenance adapted to the fluctuating power demand. As the 

modal parameters of runners depend on the operating regime and coupling effects, a representative estimation 

of these parameters relies on the analysis of in-operation data. However, harmonics contained in Francis 

runners strain response complexify the use of traditional operational modal analysis methods. This paper 

proposes a steady-state harmonic modal analysis method using Non-Trivial Rotor-Casing Interactions 

(NTRCI). The Bayesian method used to identify the parameters is first presented. The method is evaluated on 

a ground truth system obtained with an analytically generated strain response and then deployed on operating 

runner strain gauge measurements. The paper concludes with a discussion and future works related to the 

exhaustivity of the proposed model.  

 

1 Introduction  

Hydroelectric turbines are mechanical systems converting water flow energy to electricity. In a Francis 

turbine, the spiral casing creates a free water swirl (see Figure 1). The runner transfers water swirl kinetic and 

potential energy in shaft torque by the transfer of momentum from the deflection of the water. By its function, 

the runner is one of the most stressed components of the turbine. Runner failure represents a costly loss of 

production [1]. The recent arrival of intermittent energy sources on the power grid stretches the operating range 

of hydroelectric turbine-generator units. Off-peak operations of turbines result in new loadings accentuating 

fatigue degradation of the runner [2,3]. This new reality combined with the financial criticality of the integrity 

of the runner entails the need to comprehend its dynamic behaviour and loadings. This understanding should 

improve fatigue analysis, life estimation and diagnosis tools, and allow better-suited design of turbines to the 

fluctuating demand. 

 

 
Figure 1: Principal components of Francis turbines 

from Dollon et al. (2023) 
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A typical modal characterization method for the runner is a numerical simulation using an axisymmetric 

runner in a constrained acoustic fluid volume. The method usually considers isolated components like the 

runner with or without the shaft. Experimental methods are sometimes used to validate and calibrate numerical 

simulations [5–7]. Those experimental methods, however, consider the sole runner in air or standstill water 

([5,8–10]) which is insufficient to capture the actual fluid-structure coupling effects found in operation. In 

essence, Operational Modal Analysis (OMA) methods with in situ measurements consider the actual geometry 

of the runner, and coupling and added mass effects. OMA is an output-only identification approach assuming 

white noise excitation from the environment [11]. Dollon et al. (2020) proposed a Bayesian modal analysis 

method using strain gauge measurements on runner blades in transient regimes [12]. In steady-state regimes 

near the Best Efficiency Point (BEP), periodic excitations dominate stochastic excitations, limiting the use of 

traditional OMA methods. In runner strain measurements, Dollon et al. (2023) observed unexpected resonance 

between rotation speed harmonics and natural modes of the runner [4]. The author proposed a steady-state 

periodic forced response model to describe those Non-Trivial Runner-Casing interactions (NTRCI). The 

proposed model generalizes Rotor-Stator Interactions (RSI) theory [12,13]. The identification of the periodic 

forced response model using strain gauge measurements presents an opportunity to achieve a harmonic-based 

modal analysis of the turbine runner.  

This paper presents a Bayesian inference method for the harmonic modal analysis of a Francis turbine 

runner using in situ strain gauge measurements. The paper is structured as follows. Section 2 presents the 

runner blade periodic forced response model. Section 3 proposes an inference methodology to evaluate the 

runner's NTRCI excitation and modal parameters. Section 4 circumscribes the range of applicability of the 

algorithm through a synthetic data study. Section 5 presents the implementation of the method on an 

operational prototype runner under a NTRCI excitation. Section 6 discusses perspectives on future 

developments and applications of the method before concluding in section 7. 

 

2 Periodic Forced Response Model  

Dollon et al. (2023) proposed a model to estimate the forced response of a runner blade to a periodic 

excitation. The model states that in the modal basis, the excitation generates 𝑄 harmonics per nodal diameter 

𝑣, 𝑄 being a number depending on the considered bandwidth. The number of nodal diameters 𝑣 is a quantity 

used to characterize the spatial shape of a mode in an axisymmetric structure [9,13]. Runner nodal diameters 

𝑣 are integers from ]−𝑍𝑅 2⁄ , 𝑍𝑅 2⁄ [ if the number of blades 𝑍𝑅 is odd or [−𝑍𝑅 2⁄ , 𝑍𝑅 2⁄ ] if 𝑍𝑅 is even. In this 

paper, negative nodal diameters are corotating (forward) modes and positive nodal diameters 𝑣 counterrotating 

(backward) modes. Nodal diameter 𝑣 = 0 is a standing vibration, considered as a forward mode in the model.  

On an observed point 𝑛 on the blade, the angular position 𝜃 dependant shape 𝐹(𝜃) of the periodic excitation 

force can be expressed by a set of Fourier coefficients {𝐹𝑝}. For a 𝑍𝑅-bladed runner, the force projected in the 

modal basis generates an excitation harmonic as expressed in Eq. 1. 

 

 𝒄𝑞,𝑣 =  ∑ 𝐹𝑝
∗ 𝑠𝑖𝑛𝑐 [(𝑞 − 𝑝)𝜋 +

𝜋𝑣

𝑍𝑅
]𝑝𝜖𝕫 𝑒

𝑖[(𝑞−𝑝)𝜋+
𝜋𝑣

𝑍𝑅
]

≈ 𝑭1𝑍𝛟𝑞,𝜈
1𝑍  , 𝑞 ∈  [1, 𝑄] (1) 

 

In Eq. 1, 𝒄𝑞,𝜈 ∈ ℂ𝑁×1 contains the excitation Fourier coefficients, 𝑭1𝑍 ∈ ℂ𝑁×(2𝑃+1) contains a finite quantity 

𝑃 of force Fourier coefficients for a one-per-revolution force, 𝛟𝑞,𝜈
1𝑍 ∈ ℂ(2𝑃+1)×1 is the transformation vector 

expressing the excitation force in the modal basis as illustrated in Figure 2 
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Figure 2: Transformation of the excitation from the physical to the modal basis  

 

The resulting excitation harmonic magnitudes depend on their frequency proximity to corresponding 

natural frequencies 𝜔𝜈,𝜆,with mode 𝜆 ∈  [1, Λ] of given normalized mode shapes 𝝍𝜈,𝜆 𝜖 ℂ𝑁×1. The gyroscopic 

effect from rotation at frequency Ω causes each mode to split in conjugated backward (𝜔+𝜈,𝜆 and 𝝍+𝜈,𝜆) and 

forward (𝜔−𝜈,𝜆 and 𝝍−𝜈,𝜆) modes [4,14]. As developed in [4], the model deals with a single mode per nodal 

diameter. Here, the forced response model was adapted to a multimode 𝜆 contribution and expressed in the 

frequency domain in Eq. 2 and 3. 

 

 𝒙𝑞,+𝜈 = ∑ √2𝜋

𝜔+𝜈,𝜆−(𝑞𝑍𝑅+𝜈)Ω
𝑨+𝜈,𝜆𝒄𝑞,+𝜈𝛿[𝑓 − (𝑞𝑍𝑅 + 𝜈)Ω]𝜆  (2) 

 

 𝒙𝑞,−𝜈 = ∑ √2𝜋

−𝜔−𝜈,𝜆−(𝑞𝑍𝑅−𝜈)Ω
𝑨−𝜈,𝜆𝒄𝑞,−𝜈

∗ 𝛿[𝑓 − (𝑞𝑍𝑅 − 𝜈)Ω]𝜆  (3) 

 

In Eq. 2 and 3, 𝒙𝑞,𝜈  ∈  ℂ𝑁×1 is the harmonic response, 𝑨+𝜈,𝜆 and 𝑨−𝜈,𝜆  ∈  ℂ𝑁×𝑁 are the residual matrices of 

the 𝜆th forward and backward conjugated modes of nodal diameter 𝜈, respectively. Residual matrices 𝑨𝜈,𝜆 

depend on normalized mode shapes 𝝍𝜈,𝜆 as 𝑨𝜈,𝜆 = 𝝍𝜈,𝜆
 𝝍𝜈,𝜆

 𝐻
. For a given excitation periodicity, Eq. 1, 2 and 

3 can be combined in a matrix form stacking all 𝑁 × 𝑄 harmonics related to a given forward or backward 

nodal diameter 𝜈 as shown in Eq. 4: 

 

 𝑿𝜈 = ∑ 𝑨𝜈,𝜆𝑭𝚽𝜈𝑾𝜈,𝜆𝜆  (4) 

 

where 𝑿𝜈 ∈ ℂ𝑁×𝑄 contains the response harmonics, 𝑭 = [𝑭0 𝑭−𝑝 𝑭𝑝] ∈ ℂ𝑁×(2𝑃+1), , 𝑝 ∈  [1, 𝑃], contains 

the excitation Fourier coefficients,  𝚽𝜈 =  [𝛟0 𝛟−𝑝 𝛟𝑝]𝑇 ∈ ℂ(2𝑃+1)×𝑄 is the transformation matrix and 

𝑾𝜈,𝜆 ∈ ℝ𝑄×𝑄 is a diagonal matrix with element 𝑊𝑞𝑞 =
√2𝜋

𝜔+𝜈,𝜆−(𝑞𝑍𝑅+𝜈)Ω
 or 

√2𝜋

−𝜔−𝜈,𝜆−(𝑞𝑍𝑅−𝜈)Ω
 for backward or 

forward modes. 

Francis turbines’ excitation contains rotor-stator interactions (RSI), which are 𝑍𝐺-periodic forces. To 

obtain an excitation model accounting for RSI, a 𝑍𝐺  periodicity is added to the 1Z model as: 𝑿𝜈
1𝑍,𝑍𝐺𝑍

=

∑ 𝑨𝜈,𝜆𝑭1𝑍,𝑍𝐺𝑍𝛟𝜈
1𝑍,𝑍𝐺𝑍

𝑾𝜈,𝜆𝜆 , where 𝑿𝜈
1𝑍,𝑍𝐺𝑍

∈ ℂ𝑁×𝑄 is the strain response matrix, 𝑭1𝑍,𝑍𝐺𝑍 = [𝑭1𝑍 𝑭𝑍𝐺𝑍] ∈

ℂ𝑁×2(2𝑃+1) and 𝛟𝜈
1𝑍,𝑍𝐺𝑍

=  [𝛟𝜈
1𝑍 𝛟𝜈

𝑍𝐺𝑍]
𝑇

∈ ℂ2(2𝑃+1)×𝑄 are respectively the combined 1Z and RSI force 

coefficients and modal transformation matrices. To infer the excitation coefficients 𝑭,the error variance 𝜎2, 

the mode shapes 𝝍𝜈,𝜆
  and natural frequencies 𝜔𝜈

𝜆, the contribution of a specific excitation on the harmonics 

is isolated so that 𝑿𝜈 = 𝑿𝜈
1𝑍,𝑍𝐺𝑍

− 𝐗𝜈
𝑍.  

 

3 Model-Based Inference Algorithm 

The method used to fit the model to the measured strains synchronous harmonics of the runner is based on 

the Prediction Error Method (PEM) (see Eq. 5) [15]. The error 𝜺 between the measured harmonics �̂�𝜈 and the 

model 𝑿𝜈 is proposed Gaussian 𝜺 ∼ 𝒩(0, 𝜎2𝑰2𝑁𝑄𝑍𝑅
). 
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 �̂�𝜈 = 𝑿𝜈 + 𝜺 (5) 

 

Using Bayes’ theorem [16] with a uniform prior, the posterior density of probability of the model given the 

data, 𝒫(𝑿𝜈 , 𝜎2 |�̂�𝜈  ), is expressed proportional to the likelihood ℒ(�̂�𝜈  |𝑿𝜈 , 𝜎2 ) of the data: 

𝒫(𝑿𝜈 , 𝜎2 |�̂�𝜈  )  ∝ ℒ(�̂�𝜈  |𝑿𝜈 , 𝜎2 ). The resulting Complex Gaussian likelihood is expressed in Eq 6.  

 

 ℒ(�̂�𝜈  |𝑿𝜈 , 𝜎2 )  ∝
1

𝜎2𝑁𝑄 𝑒
−

1

𝜎2𝑡𝑟[(�̂�𝜈 −𝑿𝜈)
𝐻

(�̂�𝜈 −𝑿𝜈)]
 (6) 

 

From the likelihood, a conditional probability density is derived in sections 3.1 to 3.3 for the error, the 

excitation and mode shapes enabling Gibbs sampling [16]. Since the conditional probability density shape of 

the natural frequencies are unknown, as shown in section 3.4, a Metropolis-Hastings step is implemented 

leading to a Metropolis-Within-Gibbs algorithm [17]. 

 

3.1 Error Sampling Kernel  

The error depends on all the harmonics of the response. Therefore, the conditional probability density is 

the product of every nodal diameter probability density. The obtained conditional probability density for the 

homoscedastic variance 𝜎2 is an inverse gamma distribution 𝒢−1 as shown in Eq. 7. 

 

 𝑝(𝜎2|rest) ∝ 𝒢−1 (∑ 2𝑁𝑄𝜈 − 1, ∑ ‖�̂�𝜈 − 𝑿𝜈‖
2

𝜈 ) (7) 

 

3.2 Excitation Sampling Kernel  

The excitation depends on every response harmonics. Eq. 8 expresses the conditional probability, 

𝑝(𝑭|𝑟𝑒𝑠𝑡), of the excitation using Eq. 6 and the model (Eq. 4) as 𝑣𝑒𝑐([𝑅𝑒(𝑿𝜈) 𝐼𝑚(𝑿𝜈)]𝑇) = �̃�𝜈𝑣𝑒𝑐(�̃�): 

 

 𝑝(𝑭|𝑟𝑒𝑠𝑡)  ∝ 𝒩 (∑ (�̃�𝜈
𝑇

�̃�𝜈)
−1

�̃�𝜈
𝑇

𝑣𝑒𝑐 ([𝑅𝑒(�̂�𝜈) 𝐼𝑚(�̂�𝜈)]
𝑇

)𝜈 , 𝜎2 ∑ (�̃�𝜈
𝑇

�̃�𝜈)
−1

𝜈  ) (8) 

 

with �̃�𝜈 = [𝑅𝑒(∑ 𝑾𝜈𝜆
𝑇𝚽𝜈

𝑇 ⊗ 𝑨𝜈𝜆𝜆 ) 𝐼𝑚(∑ 𝑾𝜈𝜆
𝑇𝚽𝜈

𝑇 ⊗ 𝑨𝜈𝜆𝜆 )]
𝑇

∈ ℝ2𝑁𝑄×2𝑁(2𝑃+1)
, the Kronecker 

product ⊗, and with �̃� = [𝑅𝑒([𝑭0 𝑭𝑝]) 𝐼𝑚(𝑭𝑝)] ∈ ℝ𝑁×(2𝑃+1). 

 

3.3 Mode Shape Sampling Kernel 

Mode shapes are complex vectors. Each mode 𝜆 has an associated mode shape. The conditional probability 

density for a given mode shape 𝝍𝜈,𝜆
  is evaluated with measured harmonics �̂�𝜈,𝜆 considering the contribution 

of other modes as described in Eq. 9. 

 

 �̂�𝜈,𝜆 = �̂�𝜈 − ∑ 𝑨𝜈,𝜁𝑭𝚽𝜈𝑾𝜈,𝜁𝜁≠𝜆  (9) 

 

From the proposed likelihood (Eq. 6), mode shape vectors contained in residual matrices 𝑨𝜈,𝜆 = 𝝍𝜈,𝜆𝝍𝜈,𝜆
𝐻

 

are factorized in Eq. 10 using the cyclic shift invariance of the trace. 

 

ℒ(�̂�𝜈,𝜆|𝑿𝜈,𝜆 , Σ )  ∝ 𝑒
𝑡𝑟[𝝍𝜈,𝜆

𝐻(
−1
𝜎2 [𝑭𝚽𝜈,𝜆𝑾𝜈,𝜆𝑾𝜈,𝜆

𝑇𝚽𝜈,𝜆
𝐻𝑭𝐻−�̂�𝜈,𝜆𝑾𝜈,𝜆

𝐻𝚽𝜈,𝜆
𝐻𝑭𝑝

𝐻−𝑭𝚽𝜈,𝜆𝑾𝜈,𝜆�̂�𝜈,𝜆
𝐻

])𝝍𝜈,𝜆]
 (10) 

 

From Eq. 10, using Hoff (2009) developments, a vector Bingham conditional probability can be derived for a 

vector in ℂ𝑁×1, hence the normalized complex mode shape 𝝍𝜈,𝜆. 
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3.4 Natural Frequency Sampling Kernel 

The natural frequency 𝜔𝜈,𝜆 in the diagonal of 𝑾𝜈,𝜆 has a intractable kernel shape as shown in Eq. 12.  

 

 ℒ(�̂�𝜈,𝜆|𝑿𝜈,𝜆 , Σ ) ∝ 𝑒
−1

2𝜎2𝑡𝑟[−𝑾𝜈,𝜆(�̂�𝜈,𝜆
𝐻

𝑨𝜈,𝜆𝑭𝚽𝜈+𝚽𝜈
𝐻𝑭𝐻𝑨𝜈,𝜆

𝐻�̂�𝜈,𝜆)+𝑾𝜈,𝜆
2𝚽𝜈

𝐻𝑭𝐻𝑨𝜈,𝜆
𝐻𝑨𝜈,𝜆𝑭𝚽𝜈]

 (11) 

 

Candidates 𝜔𝜈,𝜆𝑖
 at iteration 𝑖 are sampled in a Gaussian distribution 𝒩 (𝜔𝜈,𝜆𝑖−1

, 𝜎𝜆
2 ), with a user defined 

variance 𝜎𝜆
2, in a random walk Metropolis-Hastings step [16]. To maximise the acceptance ratio of a given 

mode, variance 𝜎𝜆
2 can be defined mode specific considering the signal-to-noise ratio (SNR) of given 

harmonics. Forward modes have lower SNR because they are excited by higher order harmonics than backward 

modes. Therefore, inference of forward natural frequencies is more sensitive to stochastic excitation bias (see 

section 4.1.3). A hypothesis is made on mode-split, stating that the frequency gap between conjugate modes is 

in the range of 0 Hz to 10 Hz. A forward natural frequency density of probability 𝑝(𝜔−𝜈,𝜆|rest) is then 

weighted by a Gaussian prior 𝑝(𝜔−𝜈,𝜆|𝜔+𝜈,𝜆) = − (𝜔−𝜈,𝜆 − 𝜔+𝜈,𝜆)2 2𝑘2⁄  given the backward natural 

frequency value 𝜔−𝜈,𝜆 and a user defined variance 𝑘2 influencing 𝜔𝜈,𝜆 samples.  

 

 𝑝(𝜔−𝜈,𝜆|rest)  ∝ ℒ(�̂�𝜈  |𝑿𝜈 , Σ )𝑝(𝜔−𝜈,𝜆|𝜔+𝜈,𝜆) (12) 

 

In the Metropolis-Hastings step of the algorithm, user-defined variances 𝜎𝜆
2 are tuned according to the noise 

level and the quantity of measurement points (sensors) considered for the inference to maximize the acceptance 

ratio of every natural frequency.  

 

4 Synthetic Data Study 

The probabilistic modal identification algorithm is intended to be deployed on in situ measurements. It, 

therefore, needs to be evaluated on a representative synthetic dataset. Three groups of parameters interreact 

for this instance, the excitation periodicities, the number of harmonics accessible from the measured response 

and the number of modes contained in the analyzed frequency band.  

 

4.1 Range of Applicability  

Probabilistic algorithm performance generally improves with larger datasets. The measured synchronous 

harmonics in the studied datasets are observed up to around the 40th to 50th harmonic. In this frequency range, 

for our studied Francis runner, 3 to 7 modes 𝜆 per nodal diameter 𝜈 are expected. In this sense, as the harmonic 

order considered by the algorithm increases, so does the complexity of the model to infer.  

 

4.1.1 Minimal Quantity of Harmonics  

Let’s consider a system with two modes per nodal diameter, excited by a periodic force composed of a 

fundamental and three harmonics. This system is solved on five measured points on one blade. From the 

experimentation results, the minimal number of harmonics required for Markov Chain Monte-Carlo (MCMC) 

convergence is 𝑍𝑅𝑄=39 for a 𝑍𝑅=13 blades runner, e.g., 𝑄=3 response harmonics per nodal diameter 𝜈. When 

the periodic force is described by more harmonics in the spectral domain, the MCMC stability for the excitation 

decreases. This observation is also made when the number of observed measured points increases. However, 

this stability loss can be solved by adding higher-order response harmonics. 

From the two mentioned limitations, the inference of a 2Z or RSI excitation from the 𝑍𝑅𝑄~50 observable 

response harmonics in the response is unattainable. The one or two RSI-specific excitation harmonics 

observable can be ignored if still three harmonics per ND can be used for the inference. RSI excitation’s 

amplitude contribution to 1Z-affected harmonics can be considered using a pseudo-inverse function to infer a 

residual amplitude for the RSI contribution to the harmonics.  
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4.1.2 Minimal Quantity of Modes  

When the algorithm is tested on systems containing more than two modes per nodal diameter (ND), it 

causes a divergence in the excitation sampling. For a given nodal diameter 𝜈 , the modal residue induced by 

higher frequency modes introduces some inaccuracies in the inference, leading to a bias in the inference of the 

highest natural frequency, from now on called 2nd mode. The lowest natural frequency, e.g. first mode, is less 

altered suggesting that the higher frequency acts as a firewall that captures the higher frequency bias. A test 

was carried out where the algorithm tried to characterize two modes per ND from a synthetic signal containing 

the influence of four modes. Figure 3 illustrates the bias obtained for mode ND5-2. Without a frequency 

maximum constraint, some Markov Chains of the natural frequencies were also observed to drift towards 

higher frequencies in a multimodal shape. 

 

 
Figure 3: Algorithm mode under-definition  

bias effect on 2nd modes 

 

To minimise the modal residue effect, forward and backward 2nd mode natural frequencies ND2-2 to ND6-2 

are sampled using an independent Metropolis-Hastings method [16] based on a Gaussian distribution 

𝒩 (𝜔𝜈,2𝐼𝑊
, 𝜎𝜆

2 ) with a constant defined mean 𝜔𝜈,2𝐼𝑊
 near the expected 2nd mode natural frequency and a 

variance 𝜎𝜆
2=100. A Gaussian prior 𝑔(𝜔𝜈,𝜆|𝜔−𝜈,𝜆),given the conjugate mode, as initially defined for forward 

modes (section 3.4), is also added on all 2nd modes sampling. The additions constrain the 2nd modes sampling 

around the expected 2nd mode natural frequency value to minimize the modal under-definition and frequency 

variable stochasticity biases.  

 

4.1.3 Stochastic Excitation Bias 

On Francis turbine runner around the best efficiency point, stochastic excitations, dominated by periodic 

excitations, are marginal but non-zero. As the modelled excitation is proposed as purely periodic, the stochastic 

excitation contribution biases the model. The noise floor of strain measurements on an operating runner was 

analyzed at 70 %, 50 % and 20 % of guide vanes opening (GVO) to evaluate the stochastic excitation level at 

each opening. For the analysis, the measured stochastic contribution to the signal at the three guide vanes 

openings is normalized using the noise floor level |2𝛾|2 near the first harmonic order in the power spectrum 

and the power of the first synchronous harmonic |𝐴1|2 as 𝑙𝑜𝑔[|2𝛾|2 |𝐴1|2⁄ ]. Noise floor levels in the range of 

20 GVO to 70 GVO were observed between 𝑙𝑜𝑔[|2𝛾|2 |𝐴1|2⁄ ] = -7.5 and 𝑙𝑜𝑔[|2𝛾|2 |𝐴1|2⁄ ] = -9.2, hence a 

lower stochastic contribution near the BEP. 

The algorithm’s sensitivity to the stochastic bias was evaluated using added Gaussian stochasticity to the 

excitation for the tested GVO. The resulting absolute amplitude error for the excitation parameters is of order 

10-2 to 10-1 for Gaussian stochastic contributions considered equivalent to 20 GVO and 70 GVO observations. 

As the amplitude of the periodic excitation’s Fourier coefficient increases, the bias becomes negligible. The 

stochastic bias sensitivity analysis showed that the proposed Gaussian stochastic excitation has no critical 

effect on the excitation parameters around BEP, e.g. 𝑙𝑜𝑔[2𝛾 |𝐴1|2⁄ ] ≈-9, although the bias should be 

considered for better accuracy.  
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4.2 Synthetic Data Study Case 

The algorithm is evaluated using the 3𝑍𝑅 first harmonics produced by a four modes per ND, model under 

a combined 1Z and RSI excitation observed by 10 sensors. The forces are defined with fundamentals around 

𝐹0,1𝑍 =100 N⋅s, 𝐹0,𝑅𝑆𝐼=1000 N⋅s and five randomly generated harmonics. Turbine parameters are 𝑍𝐺=24 guide 

vanes, 𝑍𝑅=13 runner blades and a Ω=1.25 Hz rotating frequency. The observed RSI harmonic is considered 

using a pseudo-inverse function. To simulate a 70 % guide vanes opening, the stochastic excitation used 

generates a noise level of 𝑙𝑜𝑔[|2𝛾|2 |𝐴1|2⁄ ] = -8.13. Mode shapes are randomly generated, and natural 

frequencies are chosen in an actual runner-like range (see Table 1) based on previous modal analysis of the 

studied runner using finite element analysis in standstill water. In Figure 2, excitation harmonics generated by 

coefficients 𝒄𝑞,𝑣 are represented in red. Each harmonic’s amplitude varies according to its proximity to the 

nodal diameter and companion-specific modes resulting in the strain response 𝑿𝜈 in black. Forward modes 

harmonics are indicated by the minus sign. For visualization, the noise floor is represented among the 

harmonics. The probabilistic algorithm is set to infer the two firsts of the defined four modes per ND and three 

of the five defined excitation harmonics to reproduce an under-definition of the system as may occur on field 

measurements deployment. 

 

 
Figure 4: Excitation harmonics (red) modulated in the strain response (black) 

 

4.3 Results on Synthetic Data 

The model inference results are shown in Table 1. The Most Probable Value (MPV) per natural frequency 

is compared to the defined target value by a relative error in percentage.  

 

Modes 
Target 

[Hz] 

MPV 

[Hz] 

Error 

% 

95% 

interval 
Modes 

Target 

[Hz] 

MPV 

[Hz] 
Error% 

95% 

interval 

ND1-1 8.0 7.2 10.4 6.9-11.0 ND1-2 27.0 28.9 6.9 20.3-29.5 

ND1∗-1 10.0 11.3 13.9 1.5-23.2 ND1∗-2 31.0 31.8 2.5 16.3-41.0 

ND2-1 12.1 13.3 9.8 10.8-14.8 ND2-2 48.0 45.4 4.5 41.0-53.3 

ND2∗-1 14.1 15.1 7.1 3.4-27.4 ND2∗-2 53.8 48.9 9.1 37.0-59.0 

ND3-1 22.0 22.1 0.5 22.2-23.7 ND3-2 50.2 49.1 2.2 45.3-62.1 

ND3∗-1 24.0 26.7 11.3 14.8-36.9 ND3∗-2 53.8 55.1 2.4 45.5-67.1 

ND4-1 27.2 25.8 5.3 22.3-28.5 ND4-2 51.9 44.8 13.6 48.8-64.8 

ND4∗-1 29.2 27.6 5.5 14.2-37.1 ND4∗-2 55.2 53.6 5.8 45.5-67.1 

ND5-1 29.4 30.5 3.7 28.8-33.6 ND5-2 52.3 61.0 20.0 52.2-65.8 

ND5∗-1 31.4 33.3 6.1 20.2-39.4 ND5∗-2 56.9 60.4 5.5 48.5-67.8 

ND6-1 30.2 31.7 5.0 26.8-36.8 ND6-2 52.1 55.6 6.7 51.0-63.3 

ND6∗-1 32.2 33.9 5.3 22.8-39.2 ND6∗-2 57.3 57.0 1.6 48.0-67.6 

ND0-1 9.5 19.7 108 3.9-38.5 ND0-2 30.0 53.6 78.6 29.8-69.3 

Table 1 : Inferred natural frequencies from the modelled response 
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The Metropolis-Hasting candidate distribution for forward and backward modes ND2-2 to ND6-2 was set to 

a mean 𝜔𝜈,2𝐼𝑊
= 50 𝐻𝑧 and variance 𝜎𝜆

2=100 for the inference. 

In Table 1, torsion modes (ND0) harmonics have poor Signal-to-Noise-Ratio (SNR) and lead to 

inconclusive results. Also linked to low SNR harmonics, forward modes ND1∗-1 to ND6∗-1 are inferred with 

a larger credibility interval, from 20 Hz to 25 Hz, than backward modes, from 2 Hz to 10 Hz. The resulting 

credibility intervals for 2nd modes, inferred with the independent candidate method, is in the range of 10 Hz to 

25 Hz. The error over 13% of mode ND5-2 and ND4-2 results from the modal residue effect. Although the 

inferred 2nd modes may be biased, their consideration facilitates the inference of first modes as ND1-1 to ND6-

1 are inferred within a 3 Hz error. The same analysis using 5 sensors showed similar results. Finally, the defined 

2 % to 10 % mode split is within the error range. 

 

5 Implementation on Field Measurements  

The synthetic and the field measurements differ in the stochastic excitation influence and damping effects. 

To begin with, the stochastic excitation bias added to the model produces a constant broadband noise floor.  In 

operation, turbulence excitation, cavitation and vortices might induce colored noise with an irregular floor. 

The biased harmonics might be interpreted of higher amplitude than expected by the model, increasing risks 

of excitation overshooting or indetermination. Furthermore, damping is not accounted for in the model. This 

omission might lead to phase biases of the inferred excitation and mode shapes, and to an overestimation of 

synchronous harmonics amplitude for a given natural frequency. The algorithm is deployed on field 

measurements to evaluate the impact of the biases.  

 

5.1 Field Steady-State Strain Measurements 

The studied runner is a low-head Francis turbine with 𝑍𝑅=13 blades, 𝑍𝐺=24 vanes and a rotating speed of 

Ω=1,25 Hz. The strain and pressure measures points are shown in Figure 4.  

 

 
Figure 5: Strain (red) and pressure (blue) measured points 

 

The pressure measurements are used to analyze the possible excitation periodicities in the runner. As 

shown in Figure 5-a, a dominant 1-per-revolution synchronous pressure amplitude is present in the system 

leading to the consideration that there is a 1Z excitation of the runner.  

 

 
Figure 6: a) 30 cm from leading edge intrados pressure measurements on blade 2 

b) Extracted harmonics (green) from measured strains (black) 
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The rotating speed of the runner is not perfectly constant. Some runners’ rotating speed respond to the grid 

power variations or are oscillating around a speed command. The synchronous vibrations are then extracted 

by synchronous averaging. In Figure 5-b, in green are the extracted harmonic values from the response (black). 

The extracted harmonics are used for the inference of the model by the algorithm. 

 

5.2 Results on Field Measurements 

The excitation, mode shapes and natural frequencies inference is completed with measurements from five 

strain gauges on two blades of the same runner during stable operation near the best efficiency point. The 

algorithm is set to infer, over 200k iterations, 26 modes and a one-per-revolution (1Z) excitation, considering 

the RSI response harmonic, defined with one fundamental and three harmonics. The first 15 of the 26 inferred 

modes’ natural frequencies of the runner are presented in Table 2. The inferred natural frequencies are 

compared to numerical simulation results of the studied runner in standstill water. As the numerical simulation 

did not include the runner shaft, simulated ND1 natural frequencies are not considered. 

 

Table 2: Runner in steady-state operation inferred natural frequencies  

 

From Table 2, the posterior distributions of forward modes natural frequencies ND2∗-1 to ND6∗-1 show a 

similar 20 Hz to 25 The MCMC of the excitation parameters showed partial stabilization. The reconstruction 

of the signal harmonics with the inferred model shows an up to 104 overshoot of the harmonics over the 13th 

order. These harmonics are mostly dependent on the second and third harmonics of the excitation.  

On different tries with given measurements, a phase variability between the excitation Fourier coefficients 

and an up to 10 Hz variability of the inferred natural frequencies were observed. The blade difference presented 

in Table 2 may therefore not only be attributed to the local physical properties of the two blades but to the 

indetermination of the excitation with the actual model and data. 

The varying noise floor and the omission of damping may be the root cause of the non-repeatability and 

the partial stabilization of the excitation entailing the need for the consideration of those effects. As the 

proposed model is shown non-exhaustive for the used measurements, the inferred modal parameters may not 

be statistically conclusive.  

  

Modes 
Sim. 

[Hz] 

MPV 

Blade 1 

[Hz] 

Error 

% 

95% 

interval 

MPV 

Blade 2 

[Hz] 

Error 

% 

95% 

interval 

Blade 

difference  

[Hz] 

ND1-1 
- 

5.5 - 4.5-6.4 4.1 - 4.0-12.2 1.4 

ND1∗-1 4.4 - 0.3-15.3 9.2 - 0.6-19.6 4.8 

ND1-2 
- 

29.6 - 29.0-30.9 29.7 - 20.5-30.9 0.1 

ND1∗-2 31.7 - 19.2-41.6 25.4 - 16.9-67.4 6.3 

ND2-1 
12.0 

8.7 27.6 7.8-12.6 8.5 29.2 7.2-8.8 0.2 

ND2∗-1 6.3 21.2 0.8-26.0 9.3 22.6 0.1-17.8 3.0 

ND3-1 
22.1 

23.9 8.3 21.5-24.3 30.3 37.3 29.4-31.4 6.4 

ND3∗-1 17.4 6.9 8.3-30.1 21.9 0.8 9.8-34.2 4.5 

ND4-1 
27.2 

31.4 15.3 22.9-34.5 29.3 7.6 24.2-39.5 2.1 

ND4∗-1 29.1 2.8 17.6-39.1 29.9 9.8 18.1-39.2 0.8 

ND5-1 
29.4 

30.3 3.1 29.8-30.5 27.3 7.1 23.4-34.5 3.0 

ND5∗-1 28.6 2.7 18.2-38.4 29.4 0.0 17.1-38.8 0.8 

ND6-1 
30.2 

26.8 11.3 25.6-27.8 29.5 2.4 27.1-37.0 2.7 

ND6∗-1 29.7 1.8 18.4-38.3 34.3 13.5 21.3-39.4 4.6 
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6 Discussion and Perspectives  

The previous sections showed the inference of a periodic forced response model from synthetic data and 

operating runner strain measurements using a Bayesian inference-based algorithm. Although the inferred 

natural frequencies values are within the range of simulated natural frequencies, the method would benefit 

from future works to enhance the stability and resulting confidence intervals. Biases from stochastic 

excitations, modal residues and damping effects should be considered by the method. At first, stochastic 

excitations’ contribution should be considered in the analysis as synchronous harmonics’ amplitude might 

contain a non-negligible stochastic contribution that may cause the frequency-varying noise floor observed in 

the strain response (see fig 5-b). If the noise floor variations are mainly random, Discrete Random Separation 

(DRS) [19] could be used. Other noise floor models or the combination of the proposed deterministic harmonic 

modal analysis method and stochastic excitation-based traditional OMA could be of interest. This 

consideration could enhance the accuracy and range of applicability of the method in different operating 

regimes. Secondly, modal residue parameters should be added to the model as the algorithm is limited to the 

consideration of 2 modes. The consideration could lead to more accuracy in the 2nd modes inference. Thirdly, 

as damping may be difficult to include as a parameter in the probabilistic algorithm, sensitivity analysis or 

model selection methods using proposed damping constants added to the model could be of interest. As 2nd 

modes per ND may be more damped [8] the consideration of damping could correct the overshoot of the 

excitation and response harmonics by the algorithm. 

The resulting more exhaustive algorithm could not only become a useful tool for operating runner’s 

dynamics characterization but also represent a harmonic modal analysis opportunity on model scale runners. 

On model-scale test benches, it may be possible to generate a controlled 1Z excitation by moving a specific 

guide vane. With mechanical homology principles [20], the natural frequencies of operating runners could be 

deducted. This less expensive and more flexible application of the method could lead to new knowledge on 

runners’ dynamics and loadings. 

 

7 Conclusion 

In operating hydro-turbines, Non-Trivial Runner-Casing Interactions (NTRCI) can produce a wide range 

of synchronous harmonics observable in strain gauge measurements of the runner’s response. Dollon et al. 

(2023) proposed a periodic forced response model, considering gyroscopic effects, explaining the nodal 

diameter specificity and amplitude of the harmonics. In this paper, a Bayesian method is proposed to infer the 

roots of a periodic excitation, modal characteristics, and uncertainties of Dollon et al. (2023) NTRCI model 

from observed harmonics in a Francis runner steady-sate strain response. The proposed method is limited to a 

case study under a one-per-revolution (1Z -NTRCI) and Rotor-Stator Interaction (RSI) combined excitation 

with dominant influence from the 2 first modes of each specific nodal diameter. The proposed algorithm 

inferred 15 of the first modes of an operating Francis runner within a 5 Hz difference of simulated natural 

frequencies in standstill water and a 95% credible interval of 2 Hz to 25 Hz. The considered rotating frequency-

dependent mode split effect was shown insignificant compared to the quantified uncertainties. The partial 

stabilization and non-repeatability of the excitation inference imply the non-negligibility of stochastic 

excitations, modal residue and damping effects. 

Future works on stochastic excitation, modal residue and damping modelling could bring a more 

exhaustive physical model. The Bayesian inference algorithm could benefit from combined blade information 

in the statistical model and mode coupling information. Parameter discrimination could be enhanced by using 

model selection methods and prior information from numerical simulations as Bayesian algorithms are well 

suited for the addition of prior knowledge. Ultimately, this harmonic modal analysis method could bring more 

knowledge on runners’ dynamics and loadings, essential for design, life analysis tools and health monitoring.  
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