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ABSTRACT 
__________________________________________________________________ 

A Pin Loading Tension (PLT) test was developed to evaluate the fracture behavior 

of thin-walled tubes. The fracture resistance curve (𝐽 − 𝑅 curve) was determined 

from the load-CMOD curve using the single specimen technique based on the 

elastic unloading method following the procedure described in the ASTM E1820-

22e1 standard [1]. However, the standard does not provide the necessary functions, 

geometric function 𝑓(𝑎/𝑊) and plastic factor 𝜂𝑝𝑙, to apply the methodology to the 

PLT test. In this work, the geometric functions needed to evaluate the crack length 

from the unloading compliance, which allows to highlight effects not seen in the 

past and the elastic and plastic parts of the 𝐽-integral were determined using finite 

element analysis. Special care was taken to consider the effects of contact and 

friction between the test specimen and the loading device. The methodology was 

then applied to experimentally study the crack growth resistance of a 9Cr ODS 

(Oxide Dispersion Strengthened) steel tube, which is a candidate material for fuel 

claddings of future fast-neutron reactors. 

_______________________________________________________________________________________________ 

1. Introduction 

Fast neutron reactors offer better efficiency in the use of fuel and reduce radioactive waste. These improvements mean 

severe thermomechanical sollicitations for the reactors' components, especially for their fuel cladding. ODS (Oxide 

Dispersion Strengthened) steels are candidate materials for the fuel cladding in these reactors. These steels have been 

proven to have good tensile and creep resistance at the expected service temperatures [2]–[4]. However, one of the 

particularities of these high-strength alloys is their limited ductility. It is, therefore, essential to know their resistance to 

crack propagation to ensure the integrity of the fuel cladding and avoid radioactive contamination of the reactors' primary 

circuit. These claddings are thin-walled tubes : wall thickness of 0.5 mm and external diameter of 10.73 mm.They are 

obtained using a cold rolling process that induces significant microstructural modifications of the material. Therefore, 

assessing the material toughness in the final geometry of the cladding is mandatory. The ASTM E1820-22e1 standard 

provides guidelines for conducting tests on cracked specimens [1]. It is based on several functions to obtain the crack 

propagation resistance curve (𝐽 − 𝑅 curve) from the force-CMOD curve. When using the unloading compliance 

technique, the procedure allows determining the entire 𝐽 − 𝑅 curve using a single specimen. The ASTM E1820-22e1 

standard [1] can be applied to C(T), DC(T), and SE(B) specimens but cannot be straightforwardly applied to thin-walled 

parts as it is impossible to sample standard fracture specimens from the fuel claddings due to their geometry. 

Estimating the toughness of fuel claddings in terms of Stress Intensity Factor (SIF) or 𝐽-Integral requires the design and 

fabrication of adapted experimental setups together with the associated procedure to process the experimental load-

displacement curves. Some tests have been developed in the literature to assess the toughness of thin-walled tubes [5]–

[9]. The assessment of fracture toughness of ODS steel tubes has been performed by Nitu et al. in terms of stress intensity 

factors [10] using the Pin Loading Tension test (PLT) proposed by Grigoriev et al. [5].  
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Nomenclature 

 

𝐴𝑝𝑙 , 𝑎, 𝑎(𝑖), 𝑎0, 𝑎𝑓  

 

Plastic area under load-CMOD curve, crack length, crack length at ith unloading, initial 

crack length, final crack length 

𝐵, 𝑏, 𝑏0  Specimen thickness (two times the wall thickness for PLT specimen), uncracked ligament, 

initial uncracked ligament 

𝐶𝑀𝑂𝐷, 𝐶, 𝐶(𝑖), 𝐶(𝑎/

𝑊), 𝐶(𝑇)  

Crack Mouth Opening Displacement, Compliance, Compliance at ith unloading, 

Compliance function, Compact Tension specimen 

𝐷𝐶(𝑇)  Disc Compact Tension specimen 

𝐸, 𝐸′, 𝑒  Young modulus, Effective Young modulus  𝐸/(1 − 𝜈2) in plane strain and 𝐸 in plane 

stress, EDM mandrel cutting gap 

𝑓(𝑎/𝑊), FL  Geometric function, Limit load (or maximum load) 

𝐺(𝑏/𝑊)  Terms function of crack length in the load separation theory of Ernst et al.  

𝐻(𝑉𝑝𝑙/𝑊)  Term function of plastic displacement in the load separation theory of Ernst et al. 

𝐽, 𝐽𝑒𝑙 , 𝐽𝑝𝑙 , 𝐽0.2, 𝐽1, 𝐽𝐼𝐶  𝐽-integral, elastic part of 𝐽-integral, plastic part of 𝐽-integral, 𝐽-integral at 0.2 mm of crack 

extension, 𝐽-integral at 1 mm of crack extension, Critical mode I 𝐽-integral. 

𝐾𝐼 , 𝐾𝐽0.2
, 𝐾𝐼𝐶  Stress intensity factor for mode I opening, Sterss intensity factor corresponding to 𝐽0.2, 

Critical stress intensity factor 

𝑃  Load 

𝑅𝑖𝑛𝑡, 𝑅𝑚𝑎𝑛𝑑  Internal radius of PLT specimen tube, Mandrel’s radius 

𝑆𝑖𝑗, 𝑆𝐸(𝐵)  Separation factor corresponding to (𝑃𝑖/𝑃𝑗) loads for different crack lengths at the same 

plastic opening displacement, Single Edge Notched Bend specimen 

𝑡  PLT specimen’s wall thickness 

𝑢  Normalized compliance 

𝑉𝑝𝑙  Plastic CMOD 

𝑊  PLT test specimen's width (Distance between the load line and the end of the specimen)  

𝛾𝑝𝑙  Crack propagation correction factor 

∆𝑎  Crack extension 

𝜀𝑝  Plastic accumulated strain 

𝜂𝑝𝑙  Plastic factor 

𝜈  Poisson’s ratio 

𝜎, 𝜎𝑢, 𝜎𝑌𝑆, 𝜎𝑌  Stress, Ultimate tensile strength, Yield Stress, Yield Stress and Ultimate tensile strength 

average 



Sanyal et al. [11] also proposed multiple-specimen and single-specimen methods to evaluate the fracture toughness of 

Zircaloy fuel cladding in terms of 𝐽-integral using the PLT test. In their study, the single-specimen procedure was applied 

using the normalization method of the ASTM E1820-22e1 standard [1] to determine the 𝐽 − R curve [1]. CEA PLT 

specimen has a different geometry compared to Zircaloy PLT specimens and ODS steel PLT specimens tested in 

literature (see Fig. 9). Geometric functions 𝑓𝑘(𝑎/𝑊) and 𝜂𝑝𝑙 determined by the othors are not applicable to CEA PLT 

specimen. This requires determining adapted geometric functions. 

Moreover, in previous works [10], a muti-specimen method was used and only elastic part of the fracture toughness was 

determined on ODS steel fuel claddings. A new procedure based on the elastic unloading technique is proposed in this 

paper to determine the fracture toughness of thin-walled tubes.This new procedure uses the PLT test proposed by 

Grigoriev et al. [5]. Section 2 recalls the ASTM E1820-22e1 standard [1] procedure to determine 𝐽 − R curves using the 

unloading compliance technique. Section 3 details the material and the testing apparatus used in this study. In section 4, 

the geometric parameters required to process the experimental data to obtain the 𝐽 − R curve are evaluated using the 

Finite Element Method (FEM). A comparison of different methods proposed on literature and adapted to determine 

theses parameters for PLT specimen are detailed and compared. Section 5 exposes and discusses the experimental  𝐽 −

R curves obtained by the developed procedure on a 9Cr ODS steel tube, before concluding in section 6. 

2. Procedure for the determination of  𝑱 − 𝐑 curves using the unloading compliance method 

The analytical procedure for evaluating fracture toughness of materials in terms of 𝐽-integral from a single specimen is 

described in the ASTM E1820-22e1 standard [1]. The primary method recommended by the standard is the unloading 

compliance method. This method consists of performing elastic unloading cycles during the test and evaluating the 

instantaneous compliance 𝐶(𝑖) (Fig. 1). This compliance allows estimating the instantaneous crack length 𝑎(𝑖) and 

determining 𝐽 − R curve from a single specimen. An alternative method was also proposed and referred to as "the 

normalization method". This method allows the determination of the intermediate crack lengths, without measuring 

them, from the normalized load, the initial crack length and the final crack length. 

 

Fig. 1. Exemple of a load-CMOD curve with partial unloading and determination of elastic compliance 

Under Mode I loading, the 𝐽-integral is expressed as the sum of an elastic part, 𝐽𝑒𝑙, and a plastic part, 𝐽𝑝𝑙, as:

 

𝐽 =  𝐽𝑒𝑙 + 𝐽𝑝𝑙  (1) 

 
This additive decomposition is strictly valid if the load applied to the cracked structure can be expressed as the product 

of a function depending on the crack length and a function of the plastic displacement [12]. The elastic part, 𝐽𝑒𝑙, is given 

by:
 



𝐽𝑒𝑙 =
𝐾𝐼

2

𝐸′      (2) 

Where  𝐸′ =  𝐸 for plane stress, which is the case in this paper regarding the small thickness of the studied tubes, and 

𝐸/(1 − 𝜈2) for plane strain. 𝐸 and 𝜈 are the Young's modulus and the Poisson's ratio, respectively. The mode I stress 

intensity factor 𝐾𝐼  is defined as: 
 

𝐾𝐼 =  
𝑃

𝐵√𝑊
 𝑓 (

𝑎

𝑊
)    (3) 

 

Where 𝑃 is the applied load, 𝐵 the specimen thickness, 𝑊 the specimen width and 𝑓(𝑎/𝑊) a function given by the 

ASTM E1820-22e1 procedure for standard specimens. 𝑓(𝑎/𝑊) has to be defined for the nonstandard PLT specimen 

geometry. For a non-propagating crack, the relation between 𝐽𝑝𝑙 and the macroscopic plastic work is given as [13]:
 

𝐽𝑝𝑙 =
𝜂𝑝𝑙𝐴𝑝𝑙

𝐵 𝑏0
  (4) 

where 𝐴𝑝𝑙 is the plastic area under the load-displacement curve, 𝐵 is the specimen thickness, used as it is when the 

specimen does not have Side Grooves like for PLT specimen, 𝑏0 is the initial uncracked ligament (𝑏0 = 𝑊 − 𝑎0 where 

𝑎0 is the initial crack length and 𝑊 is the specimen width).  𝜂𝑝𝑙 is a factor that is also geometry dependent but assumed 

independent of loading and which relates the plastic work to 𝐽𝑝𝑙. It also needs to be determined for the PLT specimens. 

When the crack grows, the area under the load-displacement curve differs from the corresponding one for a non-

propagating crack. Then, to determine 𝐽𝑝𝑙, a correction for crack extension is needed, and equation (4) is not applicable 

[14]. The widely used procedure to evaluate 𝐽-integral, given in standards such as ASTM E1820-22e1, is the incremental 

procedure that evaluates 𝐽𝑒𝑙 and 𝐽𝑝𝑙 at every applied elastic unloading point, denoted 𝑖, during the test (see Fig. 1). For 

𝐽𝑒𝑙(𝑖),  equation (2) is still valid using the current crack length (𝑎(𝑖)) and the load corresponding to the 𝑖𝑡ℎ elastic 

unloading point (𝑃(𝑖)) in equation (3). For 𝐽𝑝𝑙, the measured load–displacement records must be corrected for crack 

extension to obtain an accurate estimation. Therefore, at 𝑖𝑡ℎ elastic unloading point from load-displacement curve 

measurement for growing crack 𝐽𝑝𝑙 is then defined as
 

𝐽𝑝𝑙(𝑖) =  (𝐽𝑝𝑙(𝑖−1) +
𝜂𝑝𝑙(𝑖−1) 

𝑏(𝑖−1)
 

𝐴𝑝𝑙(𝑖)−𝐴𝑝𝑙(𝑖−1)

𝐵
)  (1 −

𝛾(𝑖−1)

𝑏(𝑖−1)
 (𝑎(𝑖) − 𝑎(𝑖−1)))  (5) 

 Where the correction factor  𝛾(𝑖) is given as: 

𝛾(𝑖) = 𝜂𝑝𝑙(𝑖) − 1 −
𝑏(𝑖)

𝑊

𝜂𝑝𝑙(𝑖)
′

𝜂𝑝𝑙(𝑖)
  (6) 

 

where 𝜂𝑝𝑙
′  is the derivative of 𝜂𝑝𝑙 with respect to 𝑎/𝑊. 

The key ingredients for the experimental determination of the 𝐽 − R curves are, therefore, the determination of the 𝑓 

and 𝜂𝑝𝑙 functions which are expressed as functions of 𝑎/𝑊. The function relating compliance to crack length is also 

required. The ASTM E1820-22e1 standard [1] already provides these three functions for C(T), DC(T), and SE(B) 

specimens with some size limitations. The test must be performed in the range of 0.45 ≤ 𝑎/𝑊 ≤ 0.7. The width of the 

specimen depends on its thickness, proportion ranges are 1 ≤  𝑊/𝐵 ≤  4 for SE(B) specimen and                    2 ≤

 𝑊/𝐵 ≤  4 for C(T) and DC(T) specimens. However, any thickness can be used as long as the qualification 

requirements are met. 𝑓(𝑎/𝑊) and 𝜂𝑝𝑙 need to be determined in the case of PLT specimens, as detailed in section 4. 

3. Material and experimental procedure 

3.1. Material 

The product studied in this work is a 1000 mm long tube manufactured by the french atomic energy agency, CEA, at 

the Nuclear Material Department.Its inner diameter is 9.73 mm with a wall thickness of 0.5 mm . The material is a 9Cr-



1W-0.3Ti-0.25Y2O3 (wt. %) martensitic ODS steel tube provided as the engineering tensile properties of the material 

are given in Table 1.  

Table 1   

Mechanical properties of CEA 9Cr ODS steel fuel cladding at room temperature 

Property 

Young’s 

modulus (GPa) 

[15] 

Poisson's ratio 
Yield stress 𝜎𝑌𝑆 

(MPa) 

UTS 𝜎𝑢  

(MPa) 

𝜎𝑌 = 1 2⁄ (𝜎𝑌𝑆 + 𝜎𝑢) 

(MPa) 

Value 225 0.3 910 1026 968 

 

This tube is manufactured using powder metallurgy. Hot extrusion is used for consolidation after mechanical alloying 

of a powder composed of a mixture of elementary powders composing the steel with a powder of yttrium oxide. The 

final shape is obtained by cold rolling with inter-pass heat treatments of austenitization at 1050°C for 15 min followed 

by a quench and a tempering at 750°C for 30 min. The microstructure of the 9% Cr ODS tube appears homogeneous in 

the thickness of the tube, according to the EBSD observations of the rolling plane (RD-ND) (Fig. 2-a) and transverse 

plane (ND-TD) (Fig. 2-b).  

The microstructure shows grains of equiaxed shape with a diameter of about 1.2 µm. Some columnar grains along the 

rolling direction (RD) can be observed in the RD-ND section. This morphology is the heritage of the cold rolling process 

applied to obtain the final geometry. The analysis of the pole figures and orientation maps in both sections (see Fig. 2) 

shows a weakly textured microstructure with the presence of preferential crystallographic orientations, with an 

alignment of the <110> crystallographic axes of the grains parallel to the axial direction (RD) and <111> axes parallel 

to the normal direction (ND). This texture, generated by the rolling process, is attenuated by inter-pass heat treatments 

and final tempering. This type of microstructure was already observed on martensitic ODS steels manufactured at CEA 

[2], [4], [16]. 

 

Fig. 2. EBSD Analysis of 9%Cr ODS Steel tube (a) Cross Section (b) longitudinal section 

Recent ODS steels with a finer and more homogeneous precipitation have been developed at the CEA in the meantime. 

The average radius of YxTiyOz-type particles on these new ODS steels is of the order of a nanometer. This finer 

distribution of oxide particles is due to better control of the growth and coalescence kinetics of these precipitates during 

annealing [17], [18].  

Particles of the same nature as nanometric oxide particles but with a stoichiometric composition Y2Ti2O7 with a radius 

between 5 and 50 nm were also observed by Sakasegawa et al. [19]. More recently, on more optimized alloys 

manufactured at the CEA, Sallez [20], Laurent-Brocq [21] as well as Hatzoglou [22] have observed these precipitates. 



Other particles whose size can reach a few hundred nanometers are also present. These particles are considered 

undesirable because they weaken the material and promote its damage. These can be titanium oxides, carbides or nitrides 

[18]. Their presence is attributed to contamination during the preparation or mechanical alloying of the powders due to 

their presence at the grain boundaries [3], [19], [23], [24]. 

3.2. Specimen and setup configuration 

Machining of the PLT specimen was performed using electro-discharge machining (EDM). The PLT specimen is a 

17 mm long section of the tube. Two symmetric diametrically opposed notches were machined. The diameter of the 

notch root was 0.24 ± 0.01 mm (Fig. 3-b). Eleven PLT specimens with different machined notch lengths were fabricated. 

Specimens together with notch dimensions are referenced in Table 2. The loading setup consists of two half-cylinder 

mandrels inserted in the specimen (Fig. 3-a).  

Two holes were machined at the end of the mandrel to insert the pins and load the specimens. The distance between the 

load line connecting the centers of the pin holes and the crack tip is denoted 𝑎 and corresponds to the crack length. The 

distance between the load line and the end of the specimen was considered as the specimen effective width 𝑊 and equals 

to 28.5 mm. It should be noted that the mandrels used to load the specimen behave as extensions of the specimen length 

so that 𝑊 is larger than the height of the machined specimens. This is an interesting feature of the experimental setup 

in the case where the material is scarce (e.g., irradiated material). Small extensions were machined at the bottom of the 

mandrels to attach a clip gauge used to measure crack opening displacement (CMOD) (see Fig. 3-a). The other end of 

the mandrels was machined to insert a pin (diameter: 3 mm). This pin defines a rotation axis for the mandrels and blocks 

the translation of the specimen along the mandrel's axis during loading. The nominal radius of the mandrels is 4.8 mm. 

After measuring it through optical microscopy, measurments gave a mandrel radius (𝑅𝑚𝑎𝑛𝑑) value of 4.8 ± 0.02 mm. 

The internal radius of the ODS steel tube (𝑅𝑖𝑛𝑡) varies along his axis (± 30 µm). The difference between 𝑅𝑖𝑛𝑡 and 𝑅𝑚𝑎𝑛𝑑 

is noted 𝐺𝑎𝑝 as shown in Fig. 3-c. The 𝐺𝑎𝑝 values of every specimen are presented in Table 2. The mandrels were 

machined by cutting the full cylinder in two half-cylinders through EDM. This operation gived a second gap noted 𝑒 of 

0.3 mm at the initial position corresponding to the thickness of material removed during this cutting (see Fig. 3-c). 

 

Fig. 3. Design of (a) loading fixture (b) PLT specimens (c) Side view of mandrels inserted in the PLT specimen (𝑮𝒂𝒑 induced by ∆𝑅 between 

mandrel and internal surface of PLT specimen and 𝒆 induced by EDM while separating the full cylinder in 2 halfs) 

3.3. Pre-cracking and testing procedure 

All the PLT specimens were subjected to fatigue loading to propagate a fatigue crack and perform fracture toughness 

tests on specimens with sharp cracks. Fatigue pre-cracking was performed using a 5kN servo-hydraulic machine. First, 

cycles with a maximum stress intensity factor 𝐾max determined following equation (3) equal to 12 MPa√m and an 

amplitude 𝛥𝐾 equal to 10 MPa√m were applied and were decreased progressively down to about 8 MPa√m.  𝐾max was 

chosen so that the plastic zone radius is negligible compared to the wall thickness and fatigue precracking deformations 



does not interfere with toughness measurements. Fatigue crack extension was optically controlled every 3000 cycles to 

obtain the target crack lengths.  

In some cases, differences in fatigue crack extensions at both notches exceeded 0.3 mm. The specimen was then rotated 

around the mandrel by 180° to reduce these différences. In addition, the crack front along the thickness was usually not 

straight. Fatigue crack extension was always larger at the inner surface of the specimen. FE simulations showed a  

significant stress gradient along the specimen thickness, which could explain why obtaining a straight front was difficult. 

In particular, opening stresses tended to be larger at the inner surface (see A.1). 

Fracture toughness tests were conducted at room temperature on a 10 kN electro-mechanical testing machine. The 

CMOD was measured using a clip gauge. The loading program consisted of the following cycles: (i) loading at 0.1 

mm/min until the CMOD increases by 0.03 mm, (ii) holding the CMOD for 60 s to allow for relaxation, (iii) unloading 

at 0.4 mm/min until 80% of load reached at the end of holding period, and (iv) reloading to 100% of this load at the 

same speed. The use of a relaxation period allows a better estimation of the unloading/loading compliance. 

Table 2 Details of 3-point averaged post-fracture toughness testing measurements of initial crack lengths after fatigue pre-cracking (𝑎0) and final 

crack extensions (∆𝑎)  

Specimen 

reference 

Notch 

lengths 

(mm) 

Gap 

(µm) 

𝑎0 after pre-cracking (mm)  ∆𝑎 (mm) 

Front side Back side Average 
 

Front side Back side Average 

Sp.1 2 59 15.190 14.990 15.090  1.913 2.363 2.138 

Sp.2 4 40 17.134 17.052 17.093  2.128 1.312 1.720 

Sp.3 4 36 17.006 17.263 17.135  1.903 2.940 2.422 

Sp.4 5 43 17.310 16.917 17.114  5.077 3.308 4.193 

Sp.5 6 59 18.274 18.927 18.601  1.743 2.528 2.136 

Sp.6 6 40 18.019 18.381 18.200  2.624 3.261 2.943 

Sp.7 7 50 19.165 19.663 19.414  1.754 2.453 2.104 

Sp.8 7 32 19.172 19.093 19.133  2.721 3.954 3.338 

Sp.9 7 63 19.455 19.031 19.243  2.305 3.622 2.964 

Sp.10 8 44 20.045 20.359 20.202  2.577 4.356 3.467 

Sp.11 8 51 20.029 20.067 20.048  2.525 4.220 3.373 

 

3.4. Optical measurement of crack extension 

To follow the crack extension during the test, a PCO.EDGE 5.5 camera equipped with a telecentric lens 

(magnification × 4) was installed facing the specimen. The side observed with the camera is referred to as the front 

side; the other side is referred to as the back side. The observation area was 4.1 × 3.5 mm2 and the pixel size was 

1.6 µm. This direct method was used to determine the crack initiation point and measure crack extension during loading 

phases where the unloading compliance method is not applicable (see below). Specimens were break-open after testing 

by propagating the crack using the same setup until total failure of the specimen. It was done at −150 °C to highlight 

all the different cracking zones. The failed specimens were then observed with a Keyence optical microscope. 3D 

reconstructions of the cracked zones were made and crack extensions were measured from, as shown in Fig. 4.  



 

Fig. 4 Front and back sides failure surfaces with fatigue pre-crack and final crack extension measurement procedure 

The fatigue pre-crack length and the final crack extension were then measured. After testing, the crack front of the PLT 

specimen xas usually not straight (chevron shape in most cases, see points 4, 5, and 6 in Fig. 4). Crack lengths were 

measured by averaging the crack lengths on 3 points through the thickness, at the inner surface (weight: 1/4), at the 

outer surface (weight: 1/4), and at half-thickness (weight: 1/2). The average of the front and back sides crack lengths 

was then considered as the final crack length of the specimen. 

4. Determination of the geometric functions 𝒂/𝑾(𝒖), 𝒇(𝒂 𝑾⁄ ), and 𝜼𝒑𝒍(𝒂 𝑾⁄ )  

This section is devoted to determining the functions needed to obtain 𝐽 −Δ𝑎 curves from PLT tests. Several analytical 

and numerical methods are proposed in and their suitability to be used on PLT specimen is discussed.  

4.1. Numerical procedures 

Detailed finite element analyses of the PLT test were performed using Cast3M 21 [25], a multi-physics finite element 

code developed by CEA. Three functions needed to be determined. (i) The evolution of the compliance as a function of 

normalized crack length 𝑎/𝑊. This function allowed estimating the crack extension during tests using the unloading 

compliance method. (ii) The function used to determine the stress intensity factor (and therefore the elastic part of the 𝐽 

integral): 𝑓(𝑎/𝑊). (iii) The 𝜂𝑝𝑙 and 𝛾𝑝𝑙  functions used to evaluate the plastic part of the 𝐽 integral. All fits of the 

functions determined in this work were performed by polynomial regression with a coefficient of determination R2 ≥

0.99. When needed, the order of the function was increased to obtain this value. All the methods presented in sections 

4.2, 4.3 and 4.4 have been tested by FEA on a standard C(T) specimen in the range of 𝑎/𝑊 recommended by the ASTM 

E1820-22e1 standard. The determined geometric functions cited in (i), (ii) and (iii) were in accordance with the 

corresponding ones given by ASTM E1820-22e1 standard [1]. 

The finite elements (FE) mesh with the boundary and loading conditions is presented in Fig. 5-a. Due to symmetries, a 

quarter of the assembly was modelized using linear quasi-incompressible hexahedral elements. While the mesh was 

quite refined, this element type gived the same results as quadratic hexahedral elements with reduced computation time. 

A finite strain framework was employed based on the Jauman stress rate. The mesh was refined around the crack tip to 

obtain a converged macroscopic load and a detailed description of the stress field in this area. The specimen loading 

was imposed by the displacement of the pin axis. Contact with a friction coefficient of 0.3 was used between the internal 

surface of the specimen and the mandrel to describe the experimental setup realistically. This friction coefficient was 

determined by performing tribological tests. A radial gap of 0.065 mm was also introduced between the mandrel and 

the inner surface of the specimen in agreement with the design of the setup (Fig. 5-b). This gap has an important effect 

on the mechanical response of the setup and may, in part, be responsible for some scattering of test results.  

 



 

Fig. 5 (a) Finite element model with boundary conditions of the test setup (b) Sketch of left view of PLT assembly 

The hardening behavior of the material was identified using ring tensile tests. This type of tensile test is often used to 

characterize the circumferential tensile properties of fuel cladding [2], [9], [26]. Based on the almost isotropic 

microstructure observed on the EBSD maps, the mechanical properties of the 9Cr ODS steel fuel cladding were 

supposed to be isotropic. Tile tensile tests were realized, as done before by Jaumier et al. [27]. These tensile tests allowed 

to verify and confirme that the use of Von Mises stress was available for our material. The flow stress was represented 

by the following function, which includes two Voce-type laws:   

𝜎 = 910 +  89.7(1 − 𝑒−492.9 𝜀𝑝) + 180.2(1 − 𝑒−28.3 𝜀𝑝)       (MPa) (7) 

 

Where 𝜎 is the stress and 𝜀𝑝 the cumulated plastic strain. The Young's modulus equals 225 GPa for the tested material 

and 214 GPa for the mandrel. The Poisson's ratio was set to 0.3. For elasto-plastic calculations, plastic flow is assumed 

to follow von Mises plasticity criterion 

4.2. Determination of 𝑎/𝑊(𝑢) function 

The elastic unloading compliance method consists of measuring the compliance from elastic unloads applied during the 

test. From the measured compliance, 𝑎/𝑊 is determined using the normalized crack length function 𝑎/𝑊(𝑢) given by 

the ASTM E1820-22e1 standard for standard specimens [1]. 𝑎/𝑊(𝑢) is specific to the specimen geometry and had to 

be determined for the PLT specimens. To determine this function FE calculations of PLT test were performed for 

different crack lengths. In this case, the material was considered elastic, and small strains/small displacements were 

assumed.  

 

Fig. 6 (a) Elastic Load-CMOD curve for a given 𝑎/𝑊 = 0.61. (b) Compliance-CMOD curve showing the determination of Cmin 

Because of progressive contact, the Load-CMOD curve is not linear for low load levels, as exemplified in (Fig. 6-a). It 

is also possible to mimic the experimental procedure by performing partial unloadings during the simulation to compute 



the unloading compliance. It is shown that it decreases as the CMOD increases and reaches a stable value (Cmin) while 

contact between mandrel and internal surface of the specimen is fully established around the crack tip, provided the 

CMOD is large enough, as shown in Fig. 6-b for different values for 𝑎/𝑊. This value is used to determine the 𝑎/𝑊(𝑢) 

function.Several FE analyses of the PLT test in a normalized crack length range of 0.47 ≤ 𝑎/𝑊 ≤ 0.82 were carried 

out. 𝑎/𝑊 is plotted a function of the normalized compliance 𝑢 = 𝐶 × 𝐸 × 𝐵 (where 𝐵 is two times the wall thickness 

𝑡). The 𝑎/𝑊(𝑢) function is fitted by a second-order polynomial equation as:   

 

𝑎/𝑊(𝑢) = −8.9441 10−6 𝑢2  +  4.741 10−3 𝑢 +  2.0084 10−1  (8) 

Whatever the material, this function allows determining crack extension during the test for the present PLT specimen 

by subtracting the initial crack length 𝑎0 from the instantaneous crack length at unload (𝑖) 𝑎𝑖. 

Rotation correction: The evaluations of the compliance and the 𝑎/𝑊(𝑢) function are performed assuming small strains 

and do not reflect changes in specimen geometry due to large rotations as the test progresses. For that reason, the 

measured compliance must be corrected to be able to apply equation (8). The PLT specimen is loaded similarly to C(T) 

specimen (pin-loaded specimen in bending). It is therefore proposed to use the rotation correction proposed in the ASTM 

E1820-22e1 standard [1] for the C(T) specimen in the case of the PLT test. However, the material of this study does not 

exhibit a high toughness, so the rotation correction hardly affects the results. 

4.3.Determination of 𝑓(𝑎/𝑊)  

According to equations (2) and (3), the geometric function 𝑓(𝑎 𝑊⁄ ) is needed to evaluate the stress intensity factor 𝐾𝐼 

and deduce 𝐽𝑒𝑙 . In case of the PLT specimen, Grigoriev et al. [5], Sanyal and Samal [28], Alvares Holston et al. [29], 

and Nitu et al. [10] proposed geometry-dependent functions for their PLT specimens. The 𝑓(𝑎/𝑊) functions proposed 

by these authors are applicable to their specific specimen geometry. In this study, a suitable geometric function was 

evaluated for the used specimen geometry. Simulations already performed to evaluate the compliance (section 4.2) can 

be used for that purpose. 𝑓(𝑎/𝑊) is evaluated for the linear part of the Load-CMOD curve. To calculate the geometric 

function, Grigoriev et al. [5] used a method based on compliance and hereafter referred to as the "Compliance method". 

A second method, used, e.g., by Cravero and Ruggieri [30], is based on the direct evaluation of the 𝐽 integral. It will be 

referred to as the "𝐺𝜃 method“ [31]. In this section, both methods are applied and compared. 

4.3.1. Compliance method 

This method consists in determining the evolution of the compliance as a function of 𝑎/𝑊 and deducing the geometric 

function from 𝐶(𝑎/𝑊) using the following equation: 

𝑓(a 𝑊⁄ ) = √
𝐵𝐸

2

𝜕𝐶

𝜕(
𝑎

𝑊
)
  (9) 

 

The compliance (𝐶min in the present case, as shown in Fig. 6-b,) is first fitted and is given as follows: 

𝐶(𝑎/𝑊) =
1

𝐸𝐵
[18 234.5 (

𝑎

𝑊
)

4
− 43 784.1 (

𝑎

𝑊
)

3
+ 39 739.5 (

𝑎

𝑊
)

2
− 15 779.6

𝑎

𝑊
− 2 360.5]   (10) 

 

for values of 𝑎/𝑊  between 0.47 and 0.82. The fitted function is shown in Fig. 7. The geometric function 𝑓𝐾(𝑎/𝑊) is 

then given following equation (11) as:  

𝑓(a 𝑊⁄ ) =  √(
1

2
(72 938.1 (

𝑎

𝑊
)

3
− 131 352.3 (

𝑎

𝑊
)

2
+ 79 479.1 (

𝑎

𝑊
) − 15 779.6))  (11) 

 

It is plotted in Fig. 9. 

 



 

Fig. 7 𝐶𝑚𝑖𝑛 as function of 𝑎/𝑊 plot and polynomial fit of 𝐶(𝑎/𝑊) 

4.3.2. 𝐺𝜃 method 

This method consists in calculating the 𝐽-integral using a domain integral (𝐺𝜃 method) implemented in Cast3M 21 [25]. 

The chosen integration domain has little influence on the computed 𝐽 values as the simulation assumes elastic behavior. 

From the evaluation of 𝐽, 𝐾𝐼 can be directly determined using equation (2). 𝐾𝐼 is plotted as a function of 𝑃/𝐵√𝑊 in Fig. 

8. The relation between both quantities is not linear for first load levels due to the progressive formation of the contact 

area between the specimen and the mandrel (see appendix). The linear part of the curve is used to determine 𝑓𝐾for the 

considered crack length. Note that contact formation appears to have less effect on the linear relation between 𝐾𝐼 and 

𝑃/𝐵√𝑊 than between Load and CMOD (see Fig. 6-a). Values for 𝑓(𝑎/𝑊) for the different analyzed crack lengths are 

then plotted (see Fig. 9) and fitted by 3th order polynomial equation as: 

𝑓(a 𝑊⁄ ) =  709.76 (
a

𝑊
)

3
− 1277.06 (

a

𝑊
)

2
+  792.90 (

a

𝑊
) − 155.12  (12) 

 

with a coefficient of determination such that 𝑅2 ≥ 0.99. 

 

Fig. 8 Geometric function determination for 𝑎/𝑊 = 0.47  

4.3.3.  Comparison of the 𝑓(𝑎/𝑊) functions and discussion 

Values of 𝑓 as a function of 𝑎/𝑊 for CEA PLT specimen geometry are plotted in Fig. 9 and compared with those 

obtained in the literature for different geometries of PLT specimens (the dimensions are recalled in the table in Fig. 9). 

The comparison of the values for the geometry of this study obtained with both methods (compliance and 𝐺𝜃) is also 

given Fig. 9. Some small differences exists and it is believed that the “𝐺𝜃 method“ provides more reliable results as the 



values for 𝑓 are directly obtained from the FEA whereas the “compliance method” uses the derivative of a fitted function. 

This is known to lead to systematic errors [32]. 

 

Fig. 9 Comparison of geometric functions determined by compliance method and 𝐺𝜃 method to those proposed in the literature (PLT specimens 

dimensions are referenced in the table at the right) 

4.4.  Determination of 𝜂𝑝𝑙   

As presented in section 2, the plastic factor 𝜂𝑝𝑙, and the correction factor 𝛾𝑝𝑙 in case of a propagating crack, are needed 

to calculate 𝐽𝑝𝑙. These factors are geometry dependent and have to be determined for nonstandard specimens. Some 

methods allowing the determination of these factors were proposed in the literature. Sharobeam and Landes [33], [34] 

proposed a method using the load separation theory of Ernst et al. [35] to determine 𝜂𝑝𝑙 when the plastic deformation 

in confined to the remaining ligament, which is the case for PLT specimens in 9Cr ODS steel. This method is referred 

to as the “𝑆𝑖𝑗 method”. Based on the same theory Sanyal et al. [11] used the “limit load” method” to determine 𝜂𝑝𝑙 and 

𝛾𝑝𝑙 and determine 𝐽 − R curve of a Zircaloy fuel cladding using the PLT test [14]. Previously, Grigoriev et al. [36] had 

determined the 𝐽 − R curve for the same material using the PLT, but they used the  𝜂𝑝𝑙 and 𝛾𝑝𝑙 functions for C(T) 

specimens. A third method, consists of directly computing 𝐽 from a domain integral (𝐺𝜃 method in this work) to 

determine 𝜂𝑝𝑙. This method is, e.g., used by Cravero and Ruggieri [30]. Once 𝜂𝑝𝑙 is determined, 𝛾𝑝𝑙 can be deduced 

using equation (6). To determine 𝜂𝑝𝑙 (whatever the method), the mesh and boundary conditions shown in Fig. 5-a are 

still used. A finite strain framework accounts for plasticity (flow stress given by equation (7). In all cases,𝜂𝑝𝑙 is 

determined for 𝑎/𝑊 between 0.47 and 0.82. 

4.4.1. Sij method 

This method was proposed by Sharobeam and Landes [33], [34] and was validated on several materials for different 

standard fracture mechanic specimens geometries. It is based on the load separability theory of Ernst et al. [35], [37] 

that stipulate that the 𝜂𝑝𝑙 factor only exists if 𝑃 can be represented in a separable form as follow: 

𝑃 (
𝑏

𝑊
;

𝑉𝑝𝑙

𝑊
) = 𝐺 (

𝑏

𝑊
) × 𝐻 (

𝑉𝑝𝑙

𝑊
)  (13) 

 

Where 𝑏 is the ligament size (𝑏 = 𝑊 − 𝑎), and 𝑉𝑝𝑙 the irreversible (plastic) CMOD. 𝐺 and 𝐻 are two functions that are 

a priori unknown. They then introduced a separation parameter 𝑆𝑖𝑗. This parameter is the ratio between loads for 

specimens with different crack lengths at the same plastic displacement. In the case of a non-propagating crack, for two 

specimens with uncracked ligament lengths 𝑏𝑖 and 𝑏𝑗, 𝑆𝑖𝑗 is constant whatever the plastic displacement and can be 

written referring to equation (13) as 



𝑆𝑖𝑗 =
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𝑏𝑖
𝑊
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𝑉𝑝𝑙

𝑊
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𝑊
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𝑉𝑝𝑙1
𝑊
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𝑏𝑖
𝑊
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𝑉𝑝𝑙2

𝑊
)

𝐺(
𝑏𝑗

𝑊
) 𝐻(

𝑉𝑝𝑙2
𝑊

)
=  

𝐺(
𝑏𝑖
𝑊

) 

𝐺(
𝑏𝑗

𝑊
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  (14) 

 

They demonstrated that, for a constant reference value for 𝑏𝑗/𝑊, 𝑆𝑖𝑗 can be written as 

𝑆𝑖𝑗 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × (
𝑏𝑖

𝑊
)

𝜂𝑝𝑙
=  (

𝑏𝑖

𝑏𝑗
)

𝜂𝑝𝑙

  (15) 

 

The following procedure can then be applied to determine 𝜂𝑝𝑙. (i) Select a reference uncracked ligament length b(𝑗). (ii) 

Determine 𝑆𝑖𝑗 by plotting the ratio of the loads for two uncracked ligament lengths 𝑏𝑖 and 𝑏𝑗 as a function of 𝑉𝑝𝑙. The 

curve should reach a constant value for sufficiently high values of 𝑉𝑝𝑙.Note that, 𝑆𝑗𝑗 = 1. (iii) Plot the asymptotic 

separation parameter 𝑆𝑖𝑗 for different values of 𝑏𝑖/𝑊 and fit a power law function according to equation (15) to obtain 

𝜂𝑝𝑙 which corresponds to the exponent of the power law. The procedure is applied in Fig. 10-a. 𝑆𝑖𝑗 varies until it 

converges to a constant value when the plastic displacement is larger than 1 mm. The fit of the power law leads to a 𝜂𝑝𝑙 

parameter equal to 1.71 (Fig. 10-b). This method can be applied only to situations where 𝜂𝑝𝑙 is constant with a/W (i. e. 

SE(B) specimens), or has a weak dependence (C(T) specimens). In the case of PLT specimen, 𝜂𝑝𝑙 weakly depends on 

a/W in the range 0.5 ≤ 𝑎/𝑊  ≤ 0.7 (see Fig. 13-a), hence 𝑆𝑖𝑗 method is applicable only in this range of 𝑎/𝑊. 

𝛾𝑝𝑙 = 𝜂𝑝𝑙 − 1 = 0.71. 

 

Fig. 10 (a) Separation parameters for a reference ligament length 𝑏𝑗/𝑊 = 0.32. (b) Power law fit of the separation parameter and determination 

of 𝜂𝑝𝑙 

4.4.2. Limit load (𝐹𝐿) method 

The limit load method has been validated on standard specimens by Anderson et al. [14]. Sanyal et al. [11] used this 

method to determine 𝜂𝑝𝑙 of their PLT specimens and to assess the fracture toughness of Zircaloy-4 fuel cladding. To 

apply this method, the expression of limit load 𝐹𝐿 as a function of normalized crack length 𝑎/𝑊 is required. This 

function is assumed to be expressed using the following form: 

𝐹𝐿 = 𝜎𝑌 𝐵 𝑊 𝑔 (
𝑎

𝑊
)  (16) 

 

where 𝜎𝑌 is the flow stress corresponding to the average value between 𝜎𝑌𝑆 (yield stress) and 𝜎𝑢 (ultimate tensile 

strength), and 𝑔(𝑎/𝑊) a function dependent of 𝑎/𝑊.  



 

Fig. 11 (a) Limit load determination from FEA (b) 2nd order polynomial fit of Limit Load as a function of 𝑎/𝑊 

Then using 𝐹𝐿(𝑎/𝑊) determined from elastoplastic FEA (see Fig. 11-a), the expression η𝑝𝑙 is determined from the 

following equation 

𝜂𝑝𝑙 = − (1 −
𝑎

𝑊
)

1

𝐹𝐿

𝜕𝐹𝐿

𝜕(𝑎
𝑊⁄ )

  (17) 

 

To apply this method, the limit loads obtained using finite element simulation of the PLT test for various crack lengths 

are plotted as a function of 𝑎/𝑊. The resulting plot is shown in Fig. 11-b. This plot allows fitting the 𝑔(𝑎/𝑊) function 

as a polynomial. 𝜂𝑝𝑙  is then expressed as follows, using equation (17) 

𝜂𝑝𝑙 = (1 −
𝑎

𝑊
) 

0.503−0.408 (
𝑎

𝑊
)

0.204(
𝑎

𝑊
)

2
−0.503 (

𝑎

𝑊
) + 0.2893

  (18) 

 

4.4.3. 𝐺𝜃 method 

This method is based on the calculation of the 𝐽-integral from a domain integral using the 𝐺𝜃 method already used above 

to determine 𝑓𝐾(𝑎/𝑊). However, for an elastoplastic material as it is supposed here, the determined 𝐽-integral is the 

total 𝐽 and has an elastic part and a plastic part b. By introducing the plasticity and large strains in the mechanical model, 

the 𝐽-integral determined by the 𝐺𝜃 method becomes more dependent on the integration domain than for the case of the 

elastic/small strains. The integration domain size was varied by taking different layers of elements. When taking a large 

enough domain for a given 𝑎/𝑊, the value of the 𝐽-integral converges as shown in Fig. 12-a. The converged value of 

the 𝐽-integral is then taken into account in the analysis. 𝐽𝑒𝑙 is calculated using the geometric function determined from 

the elastic FE analysis (FEA) (see section 4.3.2). 𝐽𝑝𝑙 is then calculated from equation (1). For a constant 𝑎/𝑊, the 

evolution of 𝐽𝑝𝑙 as a function of the plastic area (𝐴𝑝𝑙) under the load-CMOD curve is supposed to be linear. As in the 

elastic case, the linearity of this curve is affected by progressive contact for the first loading steps. It becomes linear for 

higher levels and, being in static crack condition, its slope is 𝜂𝑝𝑙 multiplied by the constant value 1/𝐵𝑏 as shown in 

(Fig. 12-b). 

The different values of 𝜂𝑝𝑙 determined for different 𝑎/𝑊 are then plotted and fitted (see G_theta plot in Fig. 13-a). The 

polynomial fit of the plot gives the following 𝜂𝑝𝑙 function 

𝜂𝑝𝑙 =  3.2674 (
a

𝑊
)

2
 −  3.382 (

a

𝑊
)  +  2.5622  (19) 

 



  

Fig. 12 (a) Relative 𝐽-integral as a function of the number of element layers (b) 𝜂𝑝𝑙 determination from the domain integral for 𝑎/𝑊 = 0.61. 

4.4.4. Comparison of the plastic and correction factors and discussion 

Three different methods have been applied to determine 𝜂𝑝𝑙 . The different fitted functions are plotted together with the 

results obtained by Sanyal et al. [11] for their specific PLT setup in Fig. 13-a. The results of Sanyal et al. [11] were 

checked using the “𝐺𝜃 method” which gave similar results. The three methods give relatively equivalent 𝜂𝑝𝑙 values for 

the PLT specimen of this study. However the geometry used by Sanyal et al. [11] appears to be more sensitive to 𝑎/𝑊. 

The 𝑆𝑖𝑗 method leads to a constant value for  𝜂𝑝𝑙. It is therefore a suitable method in the case where 𝜂𝑝𝑙 is not very 

sensitive to 𝑎/𝑊 like for CEA ODS steels PLT specimens geometry. It can also be applied directly to experimental data 

(see Sharobeam and Landes [33], [34]) when the material is ductile enough. The limit load method is also a suitable 

method that can also be applied to experimental data to determine 𝜂𝑝𝑙 if the material is ductile enough so that the 

maximum load is reached before crack initiation. It also provides an 𝜂𝑝𝑙 factor that varies as a function of 𝑎 𝑊⁄  but 

relies on the derivative of a fitted function. The “𝐺𝜃 method” seems to be a more suitable method to determine 𝜂𝑝𝑙 for 

PLT specimens for the present material which exibits early cracking. It must be applied only using elastoplastic FE 

analysis of the test. In the case of the material of this study, which shows limited ductility, the two first methods cannot 

be experimentally applied to determine 𝜂𝑝𝑙. However, the three methods are suitable when applied using FEA and give 

equivalent plastic factors as shown in Fig. 13-a. 

 

Fig. 13 (a) Comparison of the 𝜂𝑝𝑙 factors as a function of /𝑊 (b) Comparison of the 𝛾𝑝𝑙 factors as a function of  𝑎/𝑊 

The different 𝛾𝑝𝑙 are calculated using the different 𝜂𝑝𝑙 functions using equation (6). As for 𝜂𝑝𝑙, the three methods give 

equivalent 𝛾𝑝𝑙 factors (see Fig. 13-b). The different determined 𝜂𝑝𝑙 and 𝛾𝑝𝑙 give very similar 𝐽 − R curves when applied 

to the experimental data. 

4.5. Accounting for non-linearities due to contact between the specimen and the mandrels 

As mentioned in section 4.3.2,  𝐾𝐼 is not a linear function of 𝑃 𝐵√𝑊⁄  at low loads due to the increase in the contact area 

between the specimen and the mandrels. In this previous section, 𝑓𝐾  was evalulated considering the linear part of the 

curve corresponding to high values of 𝐾𝐼. As the ODS 9Cr steel shows a limited toughness, measured toughnesses (see 



section 5) lie in the region where contact affects the values of 𝑓𝐾 as the maximum value of  𝐾𝐽 is 230 MPa√m. It can 

be observed in Fig. 14-a (𝑎 𝑊⁄ = 0.47) that the error in the estimation of 𝐾𝐼 can be up to 33 MPa√m which corresponds 

to the interpolated value of 𝐾𝐼 at zero load (cross in Fig. 14-a). This value is about 30% of the maximum value of the 

“elastic” 𝐾𝐼 reached during experimental tests. To quantify the effect of the initial fit, new values for 𝑓𝐾 and 𝜂𝑝𝑙 are 

computed in the following by limiting the fit to low values of 𝐾𝐼. They are referred to as 𝑓𝐾
∗ and 𝜂𝑝𝑙

∗ . 

Determination of 𝑓∗(𝑎/𝑊) 

𝑓∗ is computed for values of 𝐾𝐼 between the origin and the point at which 𝐾𝐼 = 200 MPa√m which is the average 

maximum value of 𝐾𝐽 obtained during the test using the original functions 𝑓𝐾 and 𝜂𝑝𝑙.  A linear regression is used 

(dashed line in Fig. 14-a) with a determination coefficient equal to 0.988.The method is applied to different 𝑎/𝑊 in the 

range of 0.47 to 0.82 to determine the function 𝑓𝐾
∗(𝑎/𝑊) as follows: 

𝑓∗ (
𝑎

𝑊
) =  434.383 (

𝑎

𝑊
)

3

 −  695.761 (
𝑎

𝑊
)

2

 +  414.764 (
𝑎

𝑊
)  −  75.243  (20) 

 

As shown in Fig. 14-b, 𝑓𝐾
∗(𝑎/𝑊) is larger than 𝑓𝐾(𝑎/𝑊) as the initial slope is higher than the slope of the assymptote 

reached for high 𝐾𝐼 (in Fig. 14-a). 

 

Fig. 14 (a) Determination of 𝑓∗
 for 𝑎/𝑊 = 0.47 (b) Comparison of 𝑓(𝑎/𝑊) and 𝑓∗(𝑎/𝑊) 

Determination of 𝜂𝑝𝑙
∗  

To determine  𝜂𝑝𝑙
∗ , the procedure explained in section 4.4.3. was again employed using the same values of the 𝐽 

integral. 𝐾𝐼 and 𝐽𝑒 were then determined determined for every 𝑎/𝑊 using 𝑓∗(𝑎/𝑊) in equation (3)). This allows 

evaluating 𝐽𝑝𝑙 which is plotted against 𝐴𝑝𝑙/𝐵𝑏 (see Fig. 15-a). It can also be observed from Fig. 15-a that the  𝐽𝑝𝑙
∗  -

𝐴𝑝𝑙/𝐵𝑏 curve shows a much smaller initial vertical offset than previously observed (see Fig. 12-b). This allows 

computing 𝜂𝑝𝑙
∗  from the average slope of this curve. A linear regression is used (black line in Fig. 15-a) with a 

determination coefficient equal to 0.99. 𝜂𝑝𝑙
∗   as a function 𝑎/𝑊 is  fitted as shown by a polynomial function as (see 

Fig. 15-b): 

𝜂𝑝𝑙
∗ = 6.8303 (

𝑎

𝑊
)

2
−  8.1182 (

𝑎

𝑊
)  +  3.6764  (21) 

 

Fig. 15-b also shows that 𝜂𝑝𝑙
∗  is smaller than 𝜂𝑝𝑙. 𝛾𝑝𝑙

∗  can then be determined using equation (6) as for the other methods. 



 

Fig. 15 (a) 𝜂𝑝𝑙
∗  determination for 𝑎/𝑊 = 0.47 (b) Comparison of 𝜂𝑝𝑙

∗  and 𝜂𝑝𝑙 

To evaluate if there is an effect on the determination of 𝐽-integral when using 𝑓∗ and 𝜂𝑝𝑙
∗  method rather than 𝑓𝐾 and 𝜂𝑝𝑙, 

the two methods have been applied to an experimental test. Fig. 16 shows that the 𝐽 − 𝑅 curves obtained with both 

methods are equivalent but that the proportion between the elastic and plastic parts of the 𝐽-integral differ. When using 

𝑓𝐾
∗ and 𝜂𝑝𝑙

∗ ,  𝐽𝑒𝑙 is higher and 𝐽𝑝𝑙 is consequently lower. It can be concluded that the use of either method affects the 

values of 𝐽𝑒𝑙 and 𝐽𝑝𝑙 without affecting the total value of the total 𝐽-integral. When using 𝑓∗ and 𝜂𝑝𝑙
∗ , the non-linearity at 

early stages of the PLT test are taken into account, which makes these two functions more adapted to materials that 

show early cracking as for the material of the study. 

 

Fig. 16 (a) 𝐽, 𝐽𝑒𝑙 and 𝐽𝑝𝑙 as functions of ∆𝑎  determined using 𝑓𝐾  and 𝜂𝑝𝑙. (b)  𝐽, 𝐽𝑒𝑙 and 𝐽𝑝𝑙 as functions of ∆𝑎  determined using 𝑓∗ and 𝜂𝑝𝑙
∗  (Sp4 

test). 

Note: The determination of 𝑓∗ and 𝜂𝑝𝑙
∗  depends on the value of 𝐾𝐼 selected for the linear fit of 𝑓∗ (200 MPa√m in this 

work). However, if a different value is chosen, the values of 𝐽𝑒 et 𝐽𝑝 will be changed but 𝐽 = 𝐽𝑒 + 𝐽𝑝 will also remain 

unchanged. Another solution would be to express  𝑓∗ and 𝜂𝑝𝑙
∗  as functions of 𝑎/𝑊 and the load 𝑃. This solution is 

believed to be too complex for practical applications. 

5. Experimental results and discussion 

Experimental PLT tests were carried out on the CEA 9Cr ODS steel fuel cladding material under the conditions 

discussed in section 3.2. Several specimens with different 𝑎0 were tested as presented in Table 2. From the optical 

tracking of crack extension, it was noticed that crack initiation occurs before the opening displacement reaches 

CMOD𝐶min
, i.e., the crack opening displacement corresponding to 𝐶min. Hence, when CMOD ≤ CMOD𝐶min

 recorded 

images were used to determine crack propagation ∆𝑎 (Fig. 17). Crack advance at 𝐶min is between 400 and 700 𝜇m 

depending on the specimen. Beyond that point, the unloading compliance method is applied to determine crack extension 

using equation (8). Final crack extensions ∆𝑎𝑓 were measured on fracture surfaces following the procedure discussed 

in section 3.3. To validate the application of the unloading compliance method, the estimated final crack propagations 

∆𝑎𝑓 are compared to those measured post-mortem following the procedure discussed in section 3.3. As presented in Fig. 



18, the unloading compliance estimated ∆𝑎𝑓 are in accordance with those measured post-mortem with an average error 

of 7.7%. From recorded images, a crack deviation is observed at the beginning of the test. The crack deviates from the 

middle plane before it progresses following the propagation axis (the longitudinal direction) after a crack extension of 

about 400 µm (see Fig. 17-(d)). This is due to a rotation of about 45° of the crack plane. This deviation is often observed 

for cracks propagating in sheets (see, e.g., Besson et al. [38] and El Naaman et al. [39]). It may be facilitated by the 

through-thickness stress heterogeneity in the crack front region, as shown in the appendix (see A.1).  

 

Fig. 17 (a) Experimental and simulated Load-CMOD curves. (b) Experimental and simulated compliance-CMOD curves. (c) Crack opening at 

crack initiation. (d) Crack opening and advance at 𝐶𝑚𝑖𝑛. 

The tests were simulated using the FE method, including the partial unloading to mimic the experiments (Fig. 17-a). It 

is shown that the decrease in compliance with increasing CMOD is well described (Fig. 17-b). As the FE model does 

not include the simulation of cracking, the increase in compliance after crack initiation is indeed not reproduced. 

𝑓(𝑎 𝑊⁄ ), 𝜂𝑝𝑙 and 𝛾𝑝𝑙 determined by  the 𝐺𝜃 method were used to analyze the PLT tests and obtain the resistance curves. 

Experimental 𝐽 − R curves are plotted in Fig. 19-a. A relatively small scatter is obtained. Scatter is attributed to 

variations in the gap existing between the specimen and the mandrels, as shown in the appendix. A power law fit of 

each 𝐽 − R curve is then performed as 𝐽 = 𝐶Δ𝑎𝑚 as recommended in the ASTM E1820-22e1 standard  [1]. The blunting 

line that corresponds to 𝐽 = 2𝜎𝑦∆𝑎 and parallel lines with an offset of 0.2 mm and 1 mm are drawn. The intersections 

of the fitted 𝐽 − R curve with both lines are used to evaluate  𝐽0.2  and  𝐽1(Fig. 19-b). Mean values of  𝐽0.2 =  34.7 ±

6.6 kJ m2⁄  and 𝐽1 =  102.4 ± 7.5 kJ m2⁄  are  then determined. The use of a slope of 2𝜎𝑦 for the blunting line is 

proposed by ASTM E1820-22e1 [1] for standard test and can be discussed. It has been used in this study so that the 

obtained results are comparable with the previous ones on other materials using PLT test [11]. The use of an unlimited 

slope would be suitable regarding to the direct method used to determine the crack length at the first stages of crack 

extension.  

According to ASTM E1820-22e1 standard [1], 𝐽0.2 can be considered as a fracture toughness value 𝐽𝐼𝐶 if the initial 

uncracked ligament 𝑏0 and the specimen thickness 𝐵 verify the following condition: 



𝐵, 𝑏0  >  10 𝐽0.2/𝜎𝑌  (22) 

 

This means that the intersection between the power law fit and the 0.2 mm offset line falls in the ASTM E1820-22e1 

box that indicates valididity limits delimited by 𝐽𝑚𝑎𝑥 and ∆𝑎𝑚𝑎𝑥 dashed lines. Considering that 𝐵 corresponds to two 

times the wall thickness (𝑡). Because the fracture surface is composed of two independent surfaces, it is better to check 

that the above condition is valid considering 𝑡 instead of 𝐵. The corresponding 𝐾𝐽0.2
, is considered the critical stress 

intensity factor at crack initiation,  and is determined in plane stress condition as 

𝐾𝐽0.2
=  √𝐽0.2𝐸  (23) 

 

A value of 88.3 ± 8.2 MPa.m1/2  is obtained. Following ASTM E1820-22e1 standard [1], the 9Cr ODS steel PLT 

specimens verify the condition given by equation (22) as one gets (10𝐽0.2)/𝜎𝑌  = 350𝜇m < t = 500𝜇m. 𝐾𝐽0.2
can be 

considered as 𝐾𝐽𝐼𝐶
. 

 

Fig. 18 Comparison between crack extensions determined from unloading compliance estimates and post-mortem measurements. 

 

Fig. 19 (a) Experimental 𝐽 − 𝑅 curves obtained using the developed method. (b) Power law fits of the  𝐽 − 𝑅 curves and determination  of 𝐽0.2  

and  𝐽1 

6. Conclusion 

In this paper, the PLT test was used to determine the fracture toughness of 9Cr ODS steel fuel cladding. A single 

specimen method based on the use of the unloading compliance method was developed and used because the material 

is scarce, especially when irradiated. Detailed FEA of the PLT test set was conducted to simulate the pre-cracked 

specimen behaviour during testing. This simulation was used to determine the geometric functions 𝑓(𝑎 𝑊⁄ ), 𝑎/𝑊(𝑢), 

𝜂𝑝𝑙 and 𝛾𝑝𝑙 needed to run and analyze the test following the procedure proposed by ASTM E1820-22e1. It was shown 

that progressive contact between the specimen and the mandrels affects the results. In addition, it was observed (see 



appendix) that bending exists along the crack front. This phenomenon is related to the design of the PLT test but has 

not previously been addressed in the literature. However, the developed procedure allows for determining the 𝐽 − R 

curve. 

Several tests were carried out and a good reproducibility of the obtained 𝐽 − R curves is observed. The low scatter is 

mainly attributed to the variation of the gap between the internal radius of the PLT specimen and the radius of the 

mandrels. It is recommended to minimize the gap to limit the progressive contact. The limited ductility of the material 

implied the use of a direct method to determine the crack extension at the beginning of the test to have a better 

determination of the fracture tiughness at initiation. In the case of more ductile materials, the developed method is likely 

to be directly applicable without relying on optical measurements of crack extension. 

Despite its main drawback (contact with the mandrels), the method shows potential to run PLT tests on irradiated 

cladding materials in hot cells. Indeed this type of characterization is required for the integrity assessment of all the type 

of  fuel claddings used in nuclear reactors.  Further developments of the test method will include testing at high 

temperatures to be more representative of in-service conditions. 
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Appendix: Study of bending through the thickness and effect of the gap 

It is experimentally and computationally observed that the Load-CMOD curve during a PLT test is not linear at the 

beginning of the test. This behavior is related to the change in the contact surface between the specimen and the 

mandrel. To better understand the loading of the specimen, the contact surface and stress profiles along the crack 

propagation were investigated. Opening stress profiles are taken at the outer surface, the inner surface, and the center 

of the specimen.  Three loading steps are considered (witout taking into account crack advance): (a) crack initiation as 

observed during the test (i.e.,  CMOD ≈ 0.5mm), (b) when 𝐶min is reached (i.e.,  CMOD ≈ 1mm), (c) at a load point 

for which the specimen undergoes large-scale yielding (CMOD ≈ 1.8mm). Results are shown in A.1. 

The contact surface increases with increasing load. At low load, the stress profiles show bending close to the crack tip, 

with the inner surface being in tension and the outer surface in compression. This is due to an unfolding of the side 

edges of the specimen until it matches the shape of the mandrels close to the crack tip. As load increases, this effect is 

suppressed at the crack tip. Opening stresses are close to 0 at the center of the ligament.  On the rear side of the specimen, 

bending is always observed, with the inner surface being in compression and the outer surface in tension. At this location, 

bending appears to increase with increasing load. These results indicate that even though the specimen may 

geometrically resemble a C(T) specimen, its mechanical state strongly differs. 

 



 

A.1 Evolution of contact surface with uncracked ligament stress profiles at (a) crack initiation (b) Cmin (c) end 

The effect of the gap between the specimen and the mandrel was also studied. The specimen’s compliance was evaluated 

as a function of 𝑎/𝑊 for values of the gap equal to 10, 65 (nominal value), and 100 𝜇m. Results are shown in A.2. It is 

shown that most of the experimentally determined values lie between the bound obtained using the minimum and 

maximum values for the gap. It can be concluded that the scatter observed for the determination of crack extension is 

mainly due to the variations of the tube diameter due to manufacturing.  

 

A.2 (a) Compliance as a function of normalized crack length for various gaps and comparison with experiments. 
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