

Jay Ram Lamichhane, Lionel Alletto, Wen-Feng Cong, Elana Dayoub, Pierre Maury, Daniel Plaza-Bonilla, Moritz Reckling, Sergio Saia, Elias Soltani, Gilles Tison, Philippe Debaeke

Session: C1 - Yield and seed composition response to environment

World Soybean Research Conference 18 – 23 June 2023 Vienna | Austria

What is relay cropping?

Adapted from Brun and Levèque, 2020

Crop 1: primary crop Crop 2: relay crop

Why relay cropping gains increasing attention?

- Reduced profitability of conventional cereal-based cropping systems (Maresma et al., 2019),
- O Unfavorable weather for sequential double cropping (Liu et al., 2019; Soba et al., 2022):
 - ✓ Heat/drought stresses, especially under rainfed conditions,
 - ✓ Insufficient thermal time to reach grain maturity,
 - ✓ Limited field access for grain harvest (e.g. early autumn rainfall).

Alternative to SDC across central Illinois, USA, "the northern limit" for SDC (Brown and Graffis, 1976; Chan et al., 1980)

Lengthening of the growing season across higher latitudes under climate change (Mueller et al., 2015).

An important measure (Tanveer et al., 2017; Gesch et al., 2023):

- ✓ Climate change adaptation and mitigation
- ✓ Spatio-temporal diversification

Relay cropping: a trade-off between food security and environmental sustainability

Numerous benefits compared to conventional system (Tanveer et al., 2017)

Higher economic profitability

Higher environmental sustainability (Gesch et al. 2023)

But relay cropping has also drawbacks

- Difficulty to manage the two crops in general and "the competition phase" in particular,
- A lot of need for anticipation and organization even before sowing the primary crop,
- High labor costs vs. low or unsecured harvest.

Lower competitiveness of relay cropping compared to conventional or sequential double cropping: main cause of poor adoption?

Ideal characteristics of species for relay cropping

Primary crop

- Plasticity (no rigid structure)
- Early maturing
- Short strawed
- Upright growth habit (no spreading)

Relay crop

- Wide range of maturity groups
- Shade tolerance
- Low sensitivity to phytotoxicity
- Slow growth habit during the competition phase
- Drought tolerance
- Resistance to mechanical crushing

Soybean fulfils most of the characteristics of the relay crop!!!

Soybean as a relay crop for relay cropping: knowns and unknowns

 Ideal primary crops for soybean: small-grain cereals (wheat, oat, barley, triticale & rye) + other primary crops: maize, rice, winter camelina, oilseed rape & sorghum

Optimal sowing dates & densities

- Traits and/or indicators:
 - ✓ Stand establishment (e.g. emergence vigor, drought tolerance)

- ✓ Competition phase (e.g. slow growth rate)
- ✓ Post-competition phase (e.g. high growth rate)

Soybean as a relay crop for relay cropping: knowns and unknowns

 Primary/relay crop row numbers, spacing & orientation

4:2 configuration

2:1 configuration

Optimal quantity/timing of fertilization & irrigation

Optimal equipments (adaptations) for harvest

Conclusions and perspectives

- Need to identify key factors affecting relay cropping adoption,
- Public policy supporting farmers during the transition period (incentives?),
- More research to fill the current knowledge gaps:
 - ✓ Specific genotypes for relay cropping?
 - ✓ Relay crop modeling and development of decision support systems,
 - ✓ Technological innovation for an improved management of relay cropping,
 - ✓ A multi-criteria assessment comparing relay vs. conventional vs. sequential double cropping system across contrasted environmental conditions.

For more detailed information

Field Crops Research 291 (2023) 108795

Contents lists available at ScienceDirect

Field Crops Research

journal homepage: www.elsevier.com/locate/fcr

Relay cropping for sustainable intensification of agriculture across temperate regions: Crop management challenges and future research priorities

Jay Ram Lamichhane ^{a,1,*}, Lionel Alletto ^a, Wen-Feng Cong ^b, Elana Dayoub ^c, Pierre Maury ^d, Daniel Plaza-Bonilla ^e, Moritz Reckling ^{f,g}, Sergio Saia ^h, Elias Soltani ⁱ, Gilles Tison ^j, Philippe Debaeke ^a

- a AGIR, Université Fédérale de Toulouse, INRAE, Castanet-Tolosan, France
- b College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193 Beijing, China
- c AGIR, INP-PURPAN, Université Fédérale de Toulouse, INRAE, 31326 Castanet-Tolosan, France
- d INP-ENSAT Toulouse, UMR AGIR, Université Fédérale de Toulouse, 31326 Castanet-Tolosan, France
- e Department of Crop and Forest Sciences Agrotecnio-CERCA Center, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain
- f Leibniz Centre for Agricultural Landscape Research, 15374 Müncheberg, Germany
- 8 Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Sweden
- h Department of Veterinary Sciences, University of Pisa, 56129 Pisa, Italy
- i Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran
- J UE APC. Auzeville, INRAE, France

E-mail: jay-ram.lamichhane@inrae.fr

Poster: subsection C1 (Debaeke *et al.*), key results on wheat-soybean relay cropping in Southwest France

Relay-cropping of soybean cultivars into wheat for ecological intensification of agriculture

P. Debaeke¹, C. Lemouzy², E. Sitnikow¹, J.R. Lamichhane¹, D. Marchand¹
P. Maury³, G. Tison²

Acknowledgements:

