
HAL Id: hal-04165802
https://hal.science/hal-04165802v1

Submitted on 19 Jul 2023 (v1), last revised 6 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A ROS-based kinematic calibration tool for serial robots
Caroline Pascal, Olivier Doaré, Alexandre Chapoutot

To cite this version:
Caroline Pascal, Olivier Doaré, Alexandre Chapoutot. A ROS-based kinematic calibration tool for
serial robots. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Oct 2023, Detroit, Michigan, United States. �hal-04165802v1�

https://hal.science/hal-04165802v1
https://hal.archives-ouvertes.fr

A ROS-based kinematic calibration tool for serial robots:
the unburdeing of a crucial task*

Published as: A ROS-based kinematic calibration tool for serial robots

Caroline Pascal1, Olivier Doaré2, Alexandre Chapoutot1

Abstract— The use of serial robots for industrial and research
purposes is often limited by a flawed positioning accuracy,
caused by the differences between the robot nominal model, and
the real one. Such an issue can be solved by means of kinematic
calibration, which are usually tedious and intricate tasks. In this
paper, we propose a complete kinematic calibration procedure
relying on established geometric modeling, measurements de-
sign and parameters identification methods, as well as multiple
integration tools, to provide a high adaptability as well as a
simplified handling. The overall process was bundled up in
a ROS-based modular and user-friendly kinematic calibration
package for serial robots, whose main objective is to offer
a smooth and fully integrated framework. Our solution was
successfully tested using a motion tracking device, and allowed
to increase the overall positioning accuracy of two different
serial robots by 75% in a matter of hours.

I. INTRODUCTION

In the near future, serial robots are to become an essential
asset in the development of an ageing industry, by offer-
ing autonomous and reproducible means of manufacturing
and production control [1–3]. In particular, time-consuming
metrology operations, aiming to ensure the mechanical com-
pliance and manufacturing quality of produced parts, are
perfect candidates for automation using robotic arms [4, 5].
Yet, considering the demanding precision requirements of
current metrology applications, the flawed absolute position-
ing accuracy of serial robots is an unfortunate issue.

Fortunately, this issue has been the focus of an extensive
research work in the last decades, and was mainly answered
by the kinematic calibration of robots. The main idea behind
kinematic calibration is to estimate the values of the geomet-
ric parameters involved in the kinematic modeling of serial
robots, with respect to experimental observations [6].

A kinematic calibration procedure is usually split in three
steps: (1) the kinematic modeling of the serial robot, (2) the
choice of the configurations in which the observations are to
be performed and their practical implementation, and (3) the
identification of the parameters exhibited in (1) according
to the observations done in (2). To ensure the efficiency of

*This work was partially supported by Carnot TSN, Carnot Mines and
the CIEDS project APRO.

1Caroline Pascal and Alexandre Chapoutot are with
U2IS, ENSTA Paris, Institut Polytechnique de Paris,
828 boulevard des Maréchaux, 91120 Palaiseau, France
caroline.pascal.2020@ensta-paris.fr
alexandre.chapoutot@ensta-paris.fr

2Olivier Doaré is with UME, ENSTA Paris, Institut Polytechnique
de Paris, 828 boulevard des Maréchaux, 91120 Palaiseau, France
olivier.doare@ensta-paris.fr

the results, an additional verification step is also performed,
and consists in a direct comparison between the calibrated
kinematic model output, and wisely chosen observations.
Finally, the identified geometric parameters are either directly
overwritten in the robot controller (correction), or passed to
a post-processing adaptive tool (compensation) [7]. Never-
theless, as most efforts have been focused on improving
each calibration tasks separately [1], the effective roll-out
of calibration still suffers from the lack of its complete and
smooth integration into an easily and effectively usable tool.

Related work: The directly embedded and sensor-less
calibration routines offered by robots manufacturers, usually
only allows for a brand dependant, partial [8, 9] or restricted
[10] identification. More complete and generic solutions are
provided by proprietary external software, such as RoboDK
[11], which handles all steps from the gathering of exper-
imental data to the identification of the robot kinematic
parameters. Yet, the details of the implementation remain
opaque, with no clear insight about the hardware and soft-
ware interfaces, or the actual parameters identification pro-
cess. Several open-access solutions were also developed, but
none of them propose an actual smooth and full integration of
the calibration procedure. The software GECARO [12] effec-
tively deals with the design of observations, and the identifi-
cation of kinematic parameters, but is completely unrelated
from both the robot, and the experimental data gathering
parts. The integration of the robot as an integral part of the
whole process is tackled by ROSY [7], featuring a simulation
model to be adjusted to the real mechanism, and COMET [2],
offering a catalog of predefined robot models. Yet, both of
them are facing integration issues regarding the heterogeneity
of proprietary programming languages and communication
protocols. Concerning the practical embedding of the ex-
perimental observations, the resort to an external measuring
device, in an opened-loop way, has drawn much attention.
Various authors [3, 13, 14] proposed solutions highlighting
the connections between the measuring device, the robot and
the main calibration process, without taking advantage of
their potential for a smooth and complete integration of all
calibration steps. In parallel, Ginani and Motta [15] ensure
the interchangeability of the measuring device, provided that
the broadcast data satisfy a given interface, but with no clear
sign of collaboration. Additionally, most of these solution
are not easily accessible in a directly usable form, and
offer small algorithmic adaptability, in regards with quickly
evolving techniques. Looking towards a smoother hardware-

software interface and increased modularity, the Robotic
Operating System (ROS) middleware [16], holds promising
prospects. Several free access packages dedicated to the
kinematic calibration of serial robots have indeed already
been developed [17, 18]. Yet, they mainly rely on the use
of monocular cameras, and rather focus on the challenging
hand-eye calibration issue, than on the integration aspects
triggered by the calibration of serial robots.

Problem statement: Eventually, kinematic calibration
procedures, which remain crucial to ensure serial robots
accuracy, have become a burdening task, suffering from
(1) an unequal integration of the fundamental calibration
steps, (2) discontinuous hardware-software interfaces, and (3)
impractical algorithmic adaptability.

Contributions: We present a novel and complete kine-
matic calibration procedure, which allows to automatically
calibrate a serial robot, from its kinematic modeling to the
verification of the final identified model. This tool, based on
the ROS middleware, allows for a comprehensive and smooth
integration of the calibrated serial robot and measuring
device, with the only requirements that these devices are
compatible with ROS. Finally, having in mind that each step
of the kinematic calibration process is likely to be improved
separately, the proposed architecture is very modular, hence
facilitating the integration of new algorithms. The project
is available at https://gitlab.ensta.fr/pascal.
2020/robot_arm_calibration.

Paper organization: In Section II, we detail the steps
contained in our kinematic calibration procedure, and the
challenging hardware-software interfaces are discussed in
Section III. Section IV presents an experimental validation of
the proposed approach, followed by discussions about future
work and conclusion in Section V.

II. KINEMATIC CALIBRATION PROCEDURE

In this section, the theoretical aspects as well as the
algorithmic implementation of all four steps contained in our
kinematic calibration procedure are detailed (c.f., Figure 1).

A. Step 1: Geometric modeling of serial robots
The modeling of the robot kinematic chain, i.e., the

relationship between the robot state and the position and ori-
entation of the end effector, is a crucial step, as it conditions
the parameters to be identified [6]. In practice, defining a
faithful model may become a complex task, depending on
the diversity and complexity of the modeled phenomena:
flexibilities, gear-induced drift, thermal effects, etc. Yet, dis-
crepancies caused by manufacturing and assembling defects
appear to have to most determining impact on the robot
accuracy [15, 19, 20] and benefit from a simplified and often
sufficient geometric modeling.

In addition to the compliance with the robot true be-
haviour, calibrated models must meet continuity, complete-
ness, and minimal requirements, in order to ensure a reliable
parameters identification [21]. Efforts have been made in
order to streamline the generation of such models, based
on usual representations, such as the widespread Denavit-
Hartenberg parameters [20–22]. Following the systematic
method presented in [23], we developed a fully automated
Python routine, able to extract the analytic geometric model
of a serial robot based on its Denavit-Hartenberg parametri-
sation, or directly using an URDF file.

Taking into account the geometric parameters related to
the robot base, end effector, links and joints, the pose of the
end effector against a fixed reference frame is given by

T (q, π) = TBase(πBase) · [TJoint1(q1, πJ1) · TLink1(πL1
)]

· [TJointN (qN , πqN) · TLinkN (πLN)] · TEE(πEE) (1)

where each T -indexed matrix defines the corresponding local
homogeneous transformation matrix, q describes the N joints
angles, and π = (πBase, πJi , πLi , πEE) denotes the Nπ
geometric model parameters, relative to the robot base, joints,
links and end effector respectively, with π0 denoting the
nominal values of these parameters.

Based on this analytic formulation, our routine also com-
putes the so-called identification Jacobian matrix:

Jπ =

(
∂T (q, π)

∂πi

)
i=1...Nπ

.

End effector
parameters

Robot nominal
parameters

Robot URDF
& ROS node

Environment
parameters

Kinematic model

Model
parameters

Configurations
sampling

Measurements
design

Measurements

Measuring
device

Robot

Parameters
identification

Calibrated
parameters

Verification

Compensation
Correction

MODELING OBSERVATIONS IDENTIFICATION INTEGRATION

Fig. 1: Description of the overall kinematic calibration procedure

https://gitlab.ensta.fr/pascal.2020/robot_arm_calibration
https://gitlab.ensta.fr/pascal.2020/robot_arm_calibration

Both the robot model and identification Jacobian matrix
are compiled into callable Python functions, and stored in a
dedicated file for further use.

B. Step 2: Experimental observations design and execution
For the previously defined model to accurately describe the

behaviour of the actual robot, its parameters must be iden-
tified regarding to experimental observations of the robot.
Such observations can either be performed in a closed-loop
way, where the robot end effector is linked to the robot base
[2], or geometrically constrained [12], or in an open-looped
way, using an external measuring device. Even though the
latter implies a more complex and expensive setup, its usual
use and simpler implementation makes it our default choice.

Open-loop measurements consist in moving the robot into
several configurations, in which the state of the robot is
measured. In the case of a geometrical approach, both the
joints angles and the pose (i.e., position and orientation) of
the end effector are monitored.

Most basic calibration procedures rely on randomly chosen
configurations. It has been shown that an insightful choice of
measurements configurations may improve both the robust-
ness and accuracy of the calibration [6, 23, 24]. The aim is to
pick a set of configurations maximizing a given metric, often
related to the identifiability of the parameters, and computed
using the identification Jacobian matrix. The search for such
configurations can either be done continuously over the
whole actuators angular range [23], or discretely, after a
sampling of the configurations [24]. Despite being more
restrictive, the discrete method provides a precious advantage
for collisions avoidance, as these events are roughly inserted
into a continuous optimization problem, depending on the
robot and external environment complexity. On the other
hand, each discretely sampled configuration can be filtered
based on its reachability, thus avoiding eventual collisions.

Following this reasoning, we developed a simulation based
sampling tool, detailed in Section III, taking as inputs both
the robot and the environment collision properties, and
returning a set of sampled and reachable configurations. This
tool also takes as input an optional subspace restriction, in
order to narrow down the sampling into an area of interest,
or related to the projected task [25]. The obtained sampled
configurations are then stored in a YAML configuration
file, and made available for further use. A partial sampling
example is pictured in Figure 2.

Once the configurations sampled, usual combinatorial
methods such as genetic algorithm, simulated annealing, or
greedy exchange algorithm [24] can be used to extract the
optimal configurations. In our case, all cited methods and
usual observable metrics were implemented using a generic
and simple interface, thought for further additions and de-
velopments. The practical handling of the measurements will
be further detailed in Section III.

C. Step 3: Kinematic parameters identification
As previously stated, the identification step aims to find

the best parameters estimation regarding to gathered experi-
mental data. In practice, this problem is solved by finding the

(a) Unrestricted sampling (b) Spatially restricted sampling

Fig. 2: Partial configuration sampling example using an
UR10e serial robot

vector minimizing the Euclidean distance between the Nmeas.
measured end effector poses, and their modeled counterparts:

π∗ = argmin
π

Nmeas.∑
i=1

||T (qi, π)− Tmeasured(qi)||2 . (2)

In order to avoid the homogeneity and measurement issues
caused by full-pose measurements [23], we opted for a
partial-pose approach, where only the position of NEE end-
effector reference points is measured, i.e.

π∗ = argmin
π

Nmeas.∑
i=1

NEE∑
j=1

∣∣∣∣∣∣P j(qi, π)− P jmeasured(qi)
∣∣∣∣∣∣2 (3)

where P j denotes the position of the jth end effector point,
in a fixed reference frame, often given by the measuring
device reference frame. It should be noted that only the local
homogeneous transformation associated to the end effector
T jEE(π

j
EE) differs from one end effector point to another.

Provided that the complete identification Jacobian matrix
is computed during the modeling step, its partial form is
obtained by truncating the three first rows, corresponding to
the position, and combining the resulting matrix for all end
effector points. The optimal parameters estimation is then
obtained using SVD based methods [14], the gradient descent
method [7] or the widespread Gauss-Newton [6, 12] and
Levenberg-Marquardt [7, 15] algorithms. As for the previous
step, most cited methods were implemented, with intended
room for further improvements.

D. Step 4: Verification, correction and compensation

To round off the calibration procedure, the identified
parameters estimates still have to be verified, and integrated
to the use of the robot.

The verification step often relies on an additional round of
measurements, using either random, or task specific config-
urations. In the same vein as the measurements design step,
our implementation allows verification configurations to be
generated in a collision-aware way, or manually specified by
the user. Using the metrics introduced in Equation (2) and

Equation (3), the quality of the estimation and the resulting
accuracy can then be assessed.

Finally, the identified parameters are combined in a YAML
configuration file and translated into an URDF file to ensure
a smooth and facilitated use.

III. HANDLING OF HARDWARE-SOFTWARE
INTERFACES

As precised in the introduction, most calibration software
suffer from an incomplete, or rough integration of hardware
interactions with the measuring device, the studied robot, and
their surrounding environment. In this heterogeneous context,
the Robotic Operating System (ROS) offers a promising al-
ternative, providing support for low-level device control and
message-passing between processes at a hardware abstraction
level guaranteeing a high modularity. In this regard, this sec-
tion will go through the tools and abstraction methods used
to ensure the smoothness and versatility of the hardware-
software interfaces (c.f., Figure 3).

A. Robot interface - Simulation and control

The most crucial, yet challenging, interface applies to the
calibrated robot, as the off-line programming of serial robots
still mostly relies on proprietary and laboriously compatible
software [2]. Yet, this burdening issue has been successfully
tackled by Moveit [26], an open source and user-friendly
robotics manipulation platform, allowing for a simplified
integration of serial robots in ROS. This tool offers numerous
useful features, out of which three major ones were blended
in our calibration module:

• A well stocked and accessible catalog of fully integrated
robots, including complete URDF descriptions, out of
which our modeling routine can build identifiable geo-
metric models;

• A collision aware simulation tool, providing a priori in-
sight on the reachability of the sampled configurations;

• A high level motion planning and control API, allowing
the development and execution of generic targets reach-
ing routines, and therefore crucial for the completion of
the measurements step.

It should be noted that to be fully compatible with Moveit, a
robot must provide some specific interfaces, including a joint
level controller interface, able to process angular commands
inputs, and a monitoring service, providing information about
the current robot state, e.g., angular joint values, speed,
etc. If both interfaces are necessary for Moveit to be fully
operable, the output of the latter is all the more crucial for
the measurements steps.

Thereby, provided that the studied robot is set up to
work with ROS and Moveit, its hardware integration in our
calibration package is ensured.

B. External environment interface - Collisions

As highlighted in the previous section, a specificity of
our approach is a preliminary spatially constrained and
above all collision aware sampling of the measured robot
configurations. These collisions can either be caused by
the robot itself, when a link collides with another one,
or by its external environment, when a link collides with
surrounding objects. The first ones are directly handled by
Moveit during the simulation step, but the second ones need
an additional step of modeling and embedding of the robot
environment. The modeling part is handled using simple
geometrical primitives (e.g., spheres, cylinders and cubes)
stored in an user provided YAML configuration file, and
embedded to Moveit simulated environment on start-up. As
collision avoidance only require a coarse over-approximation
of colliding objects, this methods only requires a fast and
approximate assessment of the surroundings, and provides a
simple yet efficient solution.

C. Measure device interface - Synchronisation and recording

Together with an easily controllable robot, a well inter-
faced measuring device is key to a smooth and error free
calibration. This requirement has been met in our software
through a virtual ROS service, allowing a properly synchro-
nized communication between the robot, the main calibration
procedure, and the measuring device. Concretely, when the
robot reaches a targeted configuration, its state shift triggers
a blocking call to the ROS service. On the server side, a

Calibration
procedure

Measuring
device

Simulation
planning
& control

Robot

Environment

models

trigger

status

reachability

targets

collisions

monitoring

commands

Fig. 3: Description of the hardware-software interfaces. Squares represent ROS nodes, and connecting arrows represent data
exchanged over topics and services. Ellipse stands for a configuration file containing a description of surrounding obstacles.

(a) Real work cell (b) Modeled work cell

Fig. 4: Modeling example of the collisions objects laying in
a work cell

completely hardware generic routine is executed and the
measured data gathered into a dedicated CSV file, along with
the monitored robot state. Once the measurement is either
performed, or encountered a failure, the corresponding status
is sent back, and the ability to start the next motion given
back to the robot.

Concerning the hardware interface in itself, the only
requirement is that the measured data is published on an
accessible ROS topic, whose name is to be filled in to
our package configuration parameters. It should also be
noted that, although the measurement service currently only
handles position measurements, any ROS compatible sensor
can be readily added in a few lines of code. In this way,
all measurements, regardless of their source, are performed
at the same time and are fully synchronized with the robot
motion, hence reducing the risk of errors.

IV. EXPERIMENTAL RESULTS

To assess the actual efficiency, ease of use and adaptability
of the proposed solution, this section details its practical
application to the calibration of two ROS-compatible serial
robots: a 6-axis UR10e and a 7-axis Franka Emika Panda.
Both robots geometric models were directly derived from the
URDF description provided by their ROS packages.

Calibration measurements were performed using both the
robots controllers state monitoring outputs, and an OptiTrack
motion tracking tool, equipped with 6 Prime 13 cameras.
Even though no information is provided concerning the ac-
tuators encoders, which are assumed to be perfectly accurate,
the tracking system allows us to measure the absolute posi-
tion of infrared reflective spherical marker with an accuracy
of ± 0.2mm. In order to implement the took on partial-
pose measurements approach, a custom structure holding 7
markers in a three dimensional and asymmetrical layout, was
designed and thought to be fixed on the serial robots flange.

Each marker then describing an end-effector point, their
positions relative to the robot flange is added to the robots

Fig. 5: The 7 markers measurement tool used on an UR10e

models, based on CAD data. It should be noted that, although
only 3 end effector points are theoretically necessary, a
higher number of markers brings redundancy in the measure-
ments, and robustness to the parameters identification, while
keeping the number of identified parameters relatively low.
In addition, a planar pattern of 7 markers was also created,
and inserted between the robots bases and support to provide
a rough estimation of the robot location in the OptiTrack
reference frame. Although this estimation is not necessary
[23], it remains a simple and inexpensive tool, to remove the
measuring tool reference frame dependency. Regarding the
sampling step, the ranges of each robot actuators were split in
5, and the reachability of the corresponding angular combina-
tions tested against self and external collisions. According to
the frequently used criterion, twice as many configurations as
parameters to identify were randomly extracted on one hand,
and wisely picked using the recommended O1-optimality
index [24] on the other hand. This index is given by the
determinant of the product of the identification Jacobian
matrix by its transpose:

o1 =
√

det (JTπ Jπ) .

The discrete optimization was performed separately using
the simulated annealing, and greedy exchange algorithms,
with a limited number of iterations set to 150. Following
the selected configurations, all 14 markers positions mea-
surements were carried out using the mocap optitrack ROS
package. For the geometric parameters identification step,
the recorded data and previously computed identification
Jacobian matrix were exploited using, disjointly, the gradi-
ent descent and Gauss-Newton algorithms, with a stopping
criterion defined by a relative improvement lower than 10−8.
The finally obtained results, produced during the verification
step, are summed up in Table I, along with the monitored
duration of each calibration steps. The identified parameters
validity was assessed using 20 collision free configurations
randomly picked over all actuators angular ranges. Details
of the obtained accuracy outcomes are pictured on figures 6
and 7.

For both robots, our calibration procedure led to an
increase in positioning accuracy of at least 75% over the
20 verification configurations, and 7 end effector points.
However, the detailed results highlight inconsistencies both

TABLE I: Summary of the main results obtained during the
calibration of the studied robots

UR10e F. E. Panda

Number of axes 6 7
Number of parameters 45 49
Number of robot specific parameters 18 22

Overall calibration duration (hours) 7.03 4.38
Analytical modeling (min) 45 55
Measurements (hours) 6.0 3.1
Identification (min) 17 22

Initial average accuracy (mm) 14.4 7.66
Best final average accuracy (mm) 2.03 1.63
Improvement rate 85.9% 78.7%

between the configurations and end effector points, which
bring to attention possible flaws in the motion tracking
system readings (lightning, obstructions, etc.), and likely
improvements in the choice of measurements configurations.

Comparing the two robots, the Franka Emika Panda
broadly showed a lower increase in accuracy, presumably
caused by a too restrictive geometric modeling for a flexible
7-axis robot. On a side note, the positioning repeatability
of these robots was not assessed in this study, as their
expected values lie below the measuring device sensibility.
This conclusion might also be extended to the UR10e as
well, as the best results still remain way above the minimal
sensibility allowed by the measuring device.

Globally, no clear trend stands out concerning the impact
of the identifiability index, or the combinatorial optimiza-
tion algorithm. For instance, randomly picked measurements
configurations for the Franka Emika Panda lead to a better
accuracy than the ones selected by the simulated annealing

1 5 10 15 20
Verification configurations

10−3

10−2

V
er

ifi
ca

ti
on

er
ro

r
ov

er
th

e
7

m
ar

ke
rs

(m
)

uncalibrated

annealing

greedy

random

Fig. 6: RMS positioning errors over the 7 markers obtained
with and without calibration - UR10e (logarithmic vertical
scale). Results obtained with Gauss-Newton and gradient
descent algorithms coincide.

1 5 10 15 20
Verification configurations

10−3

10−2

V
er

ifi
ca

ti
on

er
ro

r
ov

er
th

e
7

m
ar

ke
rs

(m
)

uncalibrated

annealing

greedy

random

Fig. 7: RMS positioning errors over the 7 markers obtained
with and without calibration - Franka Emika Panda (loga-
rithmic vertical scale). Results obtained with Gauss-Newton
and gradient descent algorithms coincide.

algorithm. Concerning the parameters identification, both the
gradient descent and the Gauss-Newton algorithm led to the
same parameters estimations, but the latter broadly had a
faster convergence pace, and is recommended for further use.

Thanks to its genericity and completeness, the proposed
software allowed for both robot calibrations to run smoothly,
with almost no interruptions, and in an autonomous way.

As highlighted in Table I, in both cases, the calibration
results were obtained in a matter of hours, including all steps
from the geometric modeling of the robot, to the recovery of
the identified parameters. The major difference between the
two robots lies during the measurements step, and is caused
by an extended reachability testing and motion duration for
the UR10e. This robot is indeed more bulky (1.3m against
0.85m for the Franka Emika Panda), and less mobile (6
against 7 axes for the Franka Emika Panda), which makes the
motion planning task and the motion itself more complicated.

V. FUTURE WORKS & CONCLUSIONS

Closing this paper, we presented a complete kinematic cal-
ibration procedure for serial robots, including their geometric
modeling, the insightful choice of observations configura-
tions upstream positioning measurements campaigns, and the
identification of experience conditioned model parameters.
This procedure was fully and smoothly integrated into an
open access ROS package, whose main intent is to leave as
much room as possible for further algorithmic improvements
and testings. Benefiting from the middleware strength, this
package provides generic and ergonomic hardware interfaces,
allowing a simplified set up of any ROS compatible robot, or
position sensor, while ensuring a time efficient implementa-
tion of the calibration itself. This package was successfully

evaluated on two serial robots, and helped to increase their
absolute positioning accuracy by 75% in a matter of hours.

Yet, in the continuation of the results presented in the
previous section, several relevant leads should still be inves-
tigated to improve both the proposed procedure and pack-
age. Considering the calibration procedure itself, significant
interest should be paid to the kinematic modeling of serial
robots, which can significantly benefit from the embedding
of more complex phenomena, such as flexibilities [3, 27] or
thermal and mechanisms related effects [13]. On another
aspect, one may focus on the optimality metric used to
select the measurements configurations, as most of them
rather focus on the identifiability of the kinematic param-
eters, rather than on the targeted accuracy itself [23].On the
practical application side, some refinement work might help
improve the time complexity of the implemented steps. In
particular, the analytical modeling step might be simplified
into a numeric, yet approximate, equivalent counterpart, and
the reachability testing highly accelerated using high-level
parallelism. Regarding the hardware, additional work might
be carried out to include full-pose measurements, and their
inherent homogeneity issues.

ACKNOWLEDGMENT

Author warmly thanks Thibault Toralba and Clément Yver
for their implication building tools needed for experiments.

REFERENCES

[1] S. N. Chiwande and S. S. Ohol, “Comparative need analysis
of industrial robot calibration methodologies,” in Proc. IOP
Conf. Ser.: Mater. Sci. Eng., vol. 1012, Jan. 2021, p. 012009,
publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.
1088/1757-899X/1012/1/012009

[2] U. Schneider, M. Drust, M. Ansaloni, C. Lehmann, M. Pellicciari,
F. Leali, J. W. Gunnink, and A. Verl, “Improving robotic machining
accuracy through experimental error investigation and modular com-
pensation,” Int. J. Adv. Manuf. Technol., vol. 85, no. 1, pp. 3–15, July
2016.

[3] M. H. To, “A framework for flexible integration in robotics and its ap-
plications for calibration and error compensation,” Ph.D. dissertation,
School of Eng., Cranfield Univ., June 2012.

[4] P. Margerit, T. Gobin, A. Lebe, and J.-F. Caron, “The robotized laser
doppler vibrometer: On the use of an industrial robot arm to perform
3D full-field velocity measurements,” Opt. Lasers Eng., vol. 137, p.
106363, Feb. 2021.

[5] N. Knezevic, M. Bjelic, and K. Jovanovic, “Automated Sound Intensity
Measuremant With Robot And Intensity Probe,” Int. J. Elect. Eng.
Comput., vol. 2, pp. 20–28, June 2018.

[6] J. Hollerbach, W. Khalil, and M. Gautier, “Model Identification,” in
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Berlin, Heidelberg: Springer, 2008, pp. 321–344.

[7] L. Beyer and J. Wulfsberg, “Practical robot calibration with ROSY,”
Robotica, vol. 22, no. 5, pp. 505–512, Oct. 2004.

[8] “Calibration,” in Product manual IRB 1200. ABB, Oct. 2022.
[9] “MotoCal V EG.” [Online]. Available: https://www.automate.org/

products/yaskawa-america/motocal-v-eg
[10] Kinematic Calibration Manual for e-Series. Universal Robots A/S,

2021.
[11] “Simulator for industrial robots and offline programming - RoboDK.”

[Online]. Available: https://robodk.com/
[12] W. Khalil and P. Lemoine, “A software package for the calibration of

robots,” in Proc. CESA’96 IMACS, July 1996, p. 131.
[13] M. Vocetka, Z. Bobovsk, J. Babjak, J. Suder, S. Grushko, J. Mlotek,

V. Krys, and M. Hagara, “Influence of Drift on Robot Repeatability
and Its Compensation,” Appl. Sci., vol. 11, no. 22, p. 10813, Jan. 2021.

[14] H. Stone and A. Sanderson, “A prototype arm signature identification
system,” in Proc. IEEE Int. Conf. Robot. Automat., vol. 4, Mar. 1987,
pp. 175–182.

[15] L. S. Ginani and J. M. S. T. Motta, “Theoretical and practical aspects
of robot calibration with experimental verification,” J. Bras. Soc. Mech.
Sci. Eng., vol. 33, pp. 15–21, Mar. 2011.

[16] M. Quigley, “ROS: an open-source Robot Operating System,” in Proc.
IEEE Int. Conf. Robot. Automat., Jan. 2009.

[17] J. Meyer, “robot cal tools.” [Online]. Available: https://github.com/
Jmeyer1292/robot cal tools

[18] M. Ferguson, “robot calibration.” [Online]. Available: https://github.
com/mikeferguson/robot calibration

[19] S. Kana, J. Gurnani, V. Ramanathan, S. H. Turlapati, M. Z. Ariffin,
and D. Campolo, “Fast Kinematic Re-Calibration for Industrial Robot
Arms,” Sensors J., vol. 22, no. 6, p. 2295, Mar. 2022.

[20] W. Khalil and E. Dombre, “Chapter 11 - Geometric calibration of
robots,” in Modeling, Identification and Control of Robots. Oxford:
Butterworth-Heinemann, Jan. 2002, pp. 257–289.

[21] K. Schrer, S. L. Albright, and M. Grethlein, “Complete, minimal
and model-continuous kinematic models for robot calibration,” Robot.
Comput.-Integr. Manuf., vol. 13, no. 1, pp. 73–85, Mar. 1997.

[22] A. Pashkevich, “Computer-aided generation of complete irreducible
models for robotic manipulators,” in Proc. 3rd Int. Conf. Model.
Simul., Jan. 2001, pp. 293–298.

[23] Y. Wu, A. Klimchik, S. Caro, B. Furet, and A. Pashkevich, “Geometric
calibration of industrial robots using enhanced partial pose measure-
ments and design of experiments,” Robot. Comput.-Integr. Manuf.,
vol. 35, pp. 151–168, Oct. 2015.

[24] D. Daney, Y. Papegay, and B. Madeline, “Choosing Measurement
Poses for Robot Calibration with the Local Convergence Method and
Tabu Search,” Int. J. Robot. Res., vol. 24, no. 6, pp. 501–518, June
2005.

[25] L. Lattanzi, C. Cristalli, D. Massa, S. Boria, P. Lpine, and M. Pel-
licciari, “Geometrical calibration of a 6-axis robotic arm for high
accuracy manufacturing task,” Int. J. Adv. Manuf. Technol., vol. 111,
no. 7, pp. 1813–1829, Dec. 2020.

[26] D. T. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing the
Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study,”
J. Softw. Eng. Robot., Jan. 2014.

[27] A. Klimchik, Y. Wu, S. Caro, B. Furet, and A. Pashkevich, “Geometric
and elastostatic calibration of robotic manipulator using partial pose
measurements,” Adv. Robot., vol. 28, Oct. 2014.

https://dx.doi.org/10.1088/1757-899X/1012/1/012009
https://dx.doi.org/10.1088/1757-899X/1012/1/012009
https://www.automate.org/products/yaskawa-america/motocal-v-eg
https://www.automate.org/products/yaskawa-america/motocal-v-eg
https://robodk.com/
https://github.com/Jmeyer1292/robot_cal_tools
https://github.com/Jmeyer1292/robot_cal_tools
https://github.com/mikeferguson/robot_calibration
https://github.com/mikeferguson/robot_calibration

	INTRODUCTION
	KINEMATIC CALIBRATION PROCEDURE
	Step 1: Geometric modeling of serial robots
	Step 2: Experimental observations design and execution
	Step 3: Kinematic parameters identification
	Step 4: Verification, correction and compensation

	HANDLING OF HARDWARE-SOFTWARE INTERFACES
	Robot interface - Simulation and control
	External environment interface - Collisions
	Measure device interface - Synchronisation and recording

	EXPERIMENTAL RESULTS
	FUTURE WORKS & CONCLUSIONS
	References

